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. At the specific focus are aspects for bridging and extending concepts within and across Analysis. Goals of the analyses are to reflect the potential learning gain (beyond the concrete content) by studying advanced mathematics and to lay content-related foundations for pursued teaching innovations.

INTRODUCTION

The main aim of this contribution is to highlight subject-specific potentials of studying and learning advanced mathematics with research references with regard to aspects of transition, rationales and compartmentalization by means of the presentation of a classical result from Nonlinear Approximation in DeVore (1998; see also the synopsis in the Appendix). At the focus of our considerations are transitions within and across Analysis. For overviews of research on transition aspects in university mathematics education, see [START_REF] Gueudet | Transitions in mathematics education[END_REF] and [START_REF] Hochmuth | Transitions to, across and beyond university[END_REF]. As far as the author knows, very advanced Analysis contents have not yet been didactically explored.

In the introduction we start with a preliminary clarification of the notions transitions, rationales and compartmentalization and pose respective research questions underlying the subsequent analyses. In the course of this contribution, both the notions and the research questions will further be specified against the background of ATD and its 4T model as well as illustrated by examples in the Appendix.

First, we will focus on transitions: Advanced mathematics is based on knowledge from basic lectures. The fact that certain terms and ideas are taught in basic university lectures, such as Analysis and Linear Algebra, and the way they are treated is also due to their importance for advanced mathematics. Depending on the field, advanced mathematics covers content that is relevant for graduates and their professional careers, as well as content that is relevant to current research. This raises the question of how respective transitions and the connection between content of basic lectures and advanced courses might be described. Similarly it may be asked: What are the inter-relations between the contents of successive advanced courses? If there are essential relations between contents of advanced courses from different mathematical fields, how can they be characterized, e.g. in praxeological terms? In this paper we subsume those relationships under the key word transition since it expresses the dynamic nature of those relationships regarding learning and knowing. We believe that those transitions are an important part of the rationale of teaching mathematical concepts, and their adoption in learning processes could be seen as an effective possibility to overcome compartmentalized knowledge.

Second, rationales for the treatment of content in basic mathematical courses are sometimes not immediately clear to students. They complain in particular about a lack of relevance and a lack of application (Croft & Grove, 2015, p. 180). In order to counteract this problem, it is proposed to foster context and problem based learning (p. 185). In our opinion, subject related analyses, as presented here, are useful for their subject related design, since relevant rationales can be identified in texts on advanced research related mathematics. Formulated as a question: Are reasons for theoretical discourses and e.g. the introduction of certain terms in context with the considered advanced mathematical content explicated?

Compartmentalization of knowledge means that related knowledge, for example knowledge that belongs to a domain, is composed in separate and not intertwined parts. [START_REF] Mandl | Misconsceptions and knowledge compartmentalization[END_REF] generally differentiate between "three types of knowledge compartmentalization: compartmentalization of incorrect and correct concepts, compartmentalization of several correct concepts, and compartmentalization of symbol systems and real world entities" (p. 162). In this paper, we focus mainly on the second type. Regarding Analysis and Stochastics, this type has also been considered by [START_REF] Derouet | Bridging probability and calculus: the case of continuous distributions and integrals at the secondary-tertiary transition[END_REF]. Particularly relevant in mathematics is another type-2-form of compartmentalization where the knowledge aspects calculi and logic are taught and learned as isolated subject areas and their intertwining is hardly visible in what is actually learned (see for example [START_REF] Barbé | Didactic restrictions on the teacher's practice: The case of limits of functions in Spanish high schools[END_REF]). Similar to the above, the question arises as to how and to what extent advanced mathematical content can contribute to a reduction of compartmentalization phenomena.

With respect to the mentioned issues, this paper focuses on subject-specific aspects. With the space available here, this can only be done by way of example and sketch. The selected example deals with a classical result by [START_REF] Kahane | Teoria constructiva de funciones[END_REF] from Nonlinear Approximation and its presentation in DeVore (1998), which is mirrored in the Appendix together with the mathematical notions necessary for its understanding. The line numbering in the Appendix allows referring to concrete places in the discussion of the issues.

The current article is structured as follows: In the next section, the ATD notions that are used in the analyses are briefly introduced. Then the issues transition, rationales and compartmentalization are discussed in some detail. Thereby, the ATD notions serve in particular to take a differentiated view of various transitions situations, to present preliminary praxeological and structural insights in a generalized form and to illustrate them by means of concrete passages from the Appendix. It goes without saying that the considerations formulated here in no way aim at completeness with regard to the research questions stated above, nor with regard to the chosen example. Further research ideas are sketched in the outlook.

Another final apology: The analyses refer to numerous mathematical concepts, such as rectifiability, or relations between such concepts, such as limited variation and Riemann-Stieltjes integral or Cea's lemma, without references. This is undoubtedly nasty and happens only for space reasons.

A FEW NOTIONS FROM ATD

ATD [START_REF] Chevallard | L'analyse des practiques enseignantes en théorie anthropologique du didactique[END_REF] aims at a precise description of knowledge and its epistemic constitution. The theoretical framework allows explicating institutional specificities of knowledge and related practices in university mathematics (Winslow, [START_REF] Winsløw | An institutional approach to university mathematics education: From dual vector spaces to questioning the world[END_REF]. A basic concept of ATD are praxeologies, which are represented in so called "4T-models (T,τ,θ,Θ)" consisting of a practical and a theoretical or logos block. The practical block Π (know-how, "doing math") includes the type of task (T) and the relevant solving techniques (τ). The logos block L (knowledge block, discourse necessary for interpreting and justifying the practical block) covers the technology (θ) explaining and justifying the used technique and the theory (Θ) justifying the underlying technology. In addition, we introduce the symbol PO to denote praxeologies and praxeological essembles in the sense of linked elements from practical and/or logos blocks. The interconnectedness of knowledge is particularly modelled in ATD by means of local and regional mathematical organizations that allow contrasting and integrating practical and epistemological aspects in view of different institutional contexts. Further relations between praxeologies from different institutions can be identified by comparing and contrasting blocks and their elements. In the analyses of this paper, we consider the 4T-model mostly as a heuristic tool for indicating relations and focus in particular on possible relations between praxeologies and their blocks. We consider mathematical areas that play a role in different courses or parts of courses such as Analysis and Nonlinear Approximation as different institutional contexts (represented in particular by standard textbook literature), which are indicated as subscripts of blocks or praxeologies. For example, we use the subscript A for a block or praxeology from Analysis or the subscript NL in the case of Nonlinear Approximation. In the next section, we use the praxeological notions to specify and elaborate on subject specific transitions regarding the piece of advanced mathematics presented in the Appendix.

Transitions

We consider three different transitions: the transition from basic Analysis lectures to the selected content area from Nonlinear Approximation, then from basic Approximation Theory to Nonlinear Approximation, and finally the transition from Nonlinear Approximation to themes of other advanced courses and vice versa. Each of these transition situations is further differentiated with regard to structurally distinct praxeological situations.

From Analysis to Nonlinear Approximation

i.

Praxeologies from basic Analysis lectures enter essentially unchanged into praxeologies of nonlinear approximation, i.e. 𝛱𝛱 𝐴𝐴 , 𝐿𝐿 𝐴𝐴 , 𝑃𝑃𝑃𝑃 𝐴𝐴 ↪ 𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁 , where 𝛱𝛱 𝐴𝐴 , 𝐿𝐿 𝐴𝐴 , 𝑃𝑃𝑃𝑃 𝐴𝐴 denote blocks, parts of them or praxeologies, in the sense of linked elements from practical and/or logos block forms, from Analysis and 𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁 denote praxeologies from Nonlinear Approximation. For this case, a large number of locations can be identified in the Appendix. One example is the use of metrics and norms in the mathematization of the idea of distance between objects (A7, A13, A17, A31 etc.). Already in Analysis lectures, important techniques are connected with the triangle inequality, here in particular the use of the triangle inequality itself, in addition, however, also the skillful introduction of third objects (implicit in A44). The latter refers to the logos block linked to the triangle inequality. This also applies to the use of 𝜖𝜖 in connection with limit value considerations and inequalities, which could be seen as a well-known praxeology from Analysis: One deduces a desired inequality up to an arbitrarily chosen 𝜖𝜖 > 0 and can finally conclude the desired inequality (A44-A49). ii.

Practical or logos blocks from Analysis or links of both (𝛱𝛱 𝐴𝐴 , 𝐿𝐿 𝐴𝐴, 𝑃𝑃𝑃𝑃 𝐴𝐴 ) are used, but supplemented by specific elements from the advanced situation (𝐿𝐿 � 𝑁𝑁𝑁𝑁 ), then linked to these (𝑃𝑃𝑃𝑃 � 𝐴𝐴 ) and finally find themselves in praxeologies of Nonlinear Approximation, i.e. 𝛱𝛱 𝐴𝐴 , 𝐿𝐿 𝐴𝐴 𝑃𝑃𝑃𝑃 𝐴𝐴 & 𝐿𝐿 � 𝑁𝑁𝑁𝑁 ↪ 𝑃𝑃𝑃𝑃 � 𝐴𝐴 ↪ 𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁 . In the present context, we would like to refer to the application of the varational semi-norm and the concept of BV as examples (A34-A49). Functions of bounded variation occur in Analysis in the context of rectifiable curves or the Riemann-Stieltjes integral. Here their use in another context is made fruitful and the Analysis-related logos block is extended. This is partly true for the use of the property Hölder-continuity (A13) as well, a notion which is rarely dealt with, although it is possible, within basic Analysis courses (at least in Germany, where Hölder-continuity appears in courses about partial differential equation). iii.

Logos blocks and their praxeologies (𝐿𝐿 𝐴𝐴 , 𝑃𝑃𝑃𝑃 𝐴𝐴 ) from Analysis are integrated into the practice blocks of Nonlinear Approximation and constitute an aspect of a type of tasks in the advanced situation, i.e. 𝐿𝐿 𝐴𝐴 , 𝑃𝑃𝑃𝑃 𝐴𝐴 ↪ 𝛱𝛱 𝑁𝑁𝑁𝑁 . Examples include the use of the terms average in the context of integral calculus (A23-A24) and the median for a continuous function (A24-A26), which is rarely discussed in an Analysis course, but may instead appear in a beginner's course in stochastics or statistics.

From Basic Approximation Theory to Nonlinear Approximation

Basic Approximation Theory stands for topics which do not have to be treated in specialised courses on Approximation Theory but might be taught in Numeric courses, e.g. in the context of polynomial or spline approximation or in more advanced contexts like Finite Element Methods considering Cea's lemma for example.

i.

Praxeologies from basic Approximation Theory (𝑃𝑃𝑃𝑃 𝐵𝐵𝐴𝐴 ) are taken up and supplemented by further questionings and praxeologies (𝑃𝑃𝑃𝑃 � 𝐵𝐵𝐴𝐴 ) and thus constitute a supplemented or completed praxeol-ogy of Nonlinear Approximation. As such, however, the supplement could have already been dealt with in the basic approximation theory, but it is rather not, i.e. 𝑃𝑃𝑃𝑃 𝐵𝐵𝐴𝐴 & 𝑃𝑃𝑃𝑃 � 𝐵𝐵𝐴𝐴 ↪ 𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁 . The saturation results that go beyond the direct estimates are mentioned here as an example (A18-A21). These could already be treated as such in basic courses, but will typically not be treated in introductory or advanced Numeric courses. In the context of Nonlinear Approximation, such results are obviously of particular relevance: From the direct estimates alone one cannot justify the additional gain by Nonlinear Approximation, because it could be that better direct estimates apply to Linear Approximation. The saturation results exclude this in the sense that better estimates, which could apply in principle to certain function classes in single cases, apply here only to the trivial case of constant functions. In this case, the approximation error in the context of piecewise constant functions and linear approximation is zero. ii.

Praxeologies from basic Approximation Theory (𝑃𝑃𝑃𝑃 𝐵𝐵𝐴𝐴 ) were again taken up but now supplemented by discourses from Nonlinear Approximation in such a way, that both were integrated to a new praxeology (𝑃𝑃𝑃𝑃 � 𝑁𝑁𝑁𝑁 ), i.e. 𝑃𝑃𝑃𝑃 𝐵𝐵𝐴𝐴 & 𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁 ↪ 𝑃𝑃𝑃𝑃 � 𝑁𝑁𝑁𝑁 . Following the considerations in i., one could think here of the Nonlinear Approximation results discussed at the end of the Appendix. (A50-A53 in combination with A18-A21)

From Nonlinear Approximation to another Advanced Course and vice versa

Nonlinear approximation is known to be at the intersection between Numeric and various advanced areas of Analysis, such as the Theory of Function Spaces or Interpolation Theory. Accordingly, Nonlinear Approximation praxeologies can be found as aspects of a praxeology from another area just mentioned and vice versa.

i.

Praxeologies of Nonlinear Approximation constitute an aspect (of the practice block, the logos block, or both) of a praxeology of another advanced mathematical domain (𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴 ), i.e. 𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁 ↪ 𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴 . Nonlinear Approximation and its praxeologies play a role in the advanced Theory of Function Spaces, for example in the study of characterizations and embeddings of function spaces [START_REF] Hochmuth | Wavelet characterizations for anisotropic Besov spaces[END_REF], then of course in the study of adaptive numerical methods , the related regularity theory of partial differential equations and integral equations (DeVore 1998), but also in Stochastics [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and wellconcentrated bases[END_REF]. ii.

Praxeologies of another mathematical domain (𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴 ) arise as aspects (of practical blocks, logos blocks or both) of a praxeology in Nonlinear Approximation, i.e. 𝑃𝑃𝑃𝑃 𝐴𝐴𝐴𝐴𝐴𝐴 ↪ 𝑃𝑃𝑃𝑃 𝑁𝑁𝑁𝑁 . Pertinent examples such as the Theory of Function Spaces (for inherent function related characterizations of approximation orders) or Interpolation Theory (ditto) have already been mentioned.

RATIONALES

Rationales are rather extensively explicated by DeVore (1998). This is, of course, in line with the type of publication: The series Acta Numerica as one of its goals wants to inform advanced students and researchers on all levels, in particular those with another special field, about specific underlying ideas from a new field, its most relevant results within and also across the fields. To a certain extent, the articles serve as an appetizer and, with this in mind, should in particular answer the question why someone should be interested in the area presented.

In addition to this general level, there is also a certain type of question that is often not addressed in research papers or in the standard literature that informs the teaching of basic university courses: There is a difference between the possibility to prove something and the formulation of this something as a theorem. Or in other words: To formulate something as a theorem is related to some justification, which often remains implicit but is made explicit in the text considered, and would substantially contribute to the logos-block of praxeologies, connecting, for example, praxeologies.

To provide an example, which is related to i. in the consideration of the transition from Basic Approximation Theory to Nonlinear Approximation: In the Appendix there is the following reason stated for highlighting the observation in (A15-A17), which would typically be presented as a theorem in a lecture: If the estimate (A17) holds for every possible partition, then necessarily 𝑓𝑓 ∈ Lip 𝑀𝑀 𝛼𝛼. In Approximation Theory and sometimes also in Numerical Analysis, such a statement is called an inverse theorem (cf. also A18-A19). For an elementary proof of this statement cf. (p. 62). This inverse theorem justifies the assumption 𝑓𝑓 ∈ Lip 𝑀𝑀 𝛼𝛼 in the stated result, which means that this assumption does not only allow the application of the arguments in the proof, which is a technically orientated argument, but is inherently related to the estimate. This relates to the general aim of getting rid of those assumptions which are related to the method or approach to prove something but is possibly not necessarily linked with the proved assertion. In basic Analysis courses, there are often results presented without such questioning and related justifications to keep things more simple. Getting to know such arguments could encourage students to search for comparable situations in their knowledge and to try to clarify the questions that arise. By the way, a further justification is given by the saturation theorem (A19-A21).

Finally, the presentation of the result by Kahane and also the presentation of the proof are further explicitly justified by the argument that both express two fundamental characteristics of Nonlinear Approximation: a) The first characteristic is that the partitions, hence the approximation scheme, providing the claimed approximation property depend on the specific given function f. This means that in contrast to linear approximation the scheme is not given in advance independently of the target function 𝑓𝑓.

b) Secondly, the 𝑓𝑓-depending partition is obtained in the proof by balancing the variation of f over the intervals in the partition, that is, the partition is chosen such that the specific error is somehow equally distributed over the interval (A38-A40). In other situations, Var(𝑓𝑓) is replaced by something else related to the respective error norm and also depending on f and the type of partitions. But balancing or equilibration often remains a crucial idea. This is also true for other adaptive schemes like for example adaptive finite element or also finite volume schemes utilizing a posteriori error estimates.

COMPARTMENTALIZATION

Our elaboration of transition situations within the little piece of work from Nonlinear Approximation relates to the second type of compartmentalization, i.e. the compartmentalization of several correct concepts (cf. the explanations in the introduction).

Each transition type and the corresponding examples presented above in a specific way address relations between correct concepts, relations between praxeologies, as well as between practical and logos blocks, and point to a possible intervention against the compartmentalization of knowledge. In addition, many explicit references to relations between pure mathematics and applications are presented in further parts of the paper by DeVore on which this contribution is based. These cover examples from Signal Theory, Image Compression and regarding numerical schemes for Partial Differential Equations modelling physical phenomena. Such references in particular address the compartmentalization between symbol systems and real world entities, which was also mentioned in the introduction as a type of compartmentalization.

OUTLOOK

The presented analyses have to be continued in the future and transferred to other mathematical areas. With regard to the issues of transitions, rationales and compartmentalization the contribution could demonstrate that Nonlinear Approximation possesses a strong potential for bridging and extending praxeologies from Analysis and beyond. It seems remarkable that this could be illustrated in so many (with respect to praxeological aspects) structural different ways by a brief example. It is reasonable to ask whether such learning potentials and manifold praxeological patterns of transitions could also be indicated for examples regarding other mathematical domains. Many questions were left open also for the analysed case: For example, it is not clear to what extent the potentials can be realised under the currently dominant teaching and learning conditions and how this could eventually be done effectively. The latter issue stimulates for example to think about whether inquiry orientated education approaches [START_REF] Artigue | Conceptualizing inquiry-based education in mathematics[END_REF][START_REF] Barquero | A bridge between inquiry and transmission: the study and research paths at university level[END_REF]) are particularly suitable. With regard to the education of prospective secondary school teachers and against the background of the job analysis of [START_REF] Bass | A practice-based theory of mathematical knowledge for teaching: The case of mathematical reasoning[END_REF], tasks for Analysis courses are presented in [START_REF] Hochmuth | Mathematischer Forschungsbezug in der Sek-II-Lehramtsausbildung? [Mathematical research topics in Sec-II teacher training[END_REF], which already take up some of the observations presented here. In corresponding future empirical studies, emotional-motivational aspects would also have to be considered.

𝑆𝑆(𝑇𝑇) the (linear) approximation error in the uniform (𝐿𝐿 ∞ ) norm is defined by 𝑠𝑠(𝑓𝑓, 𝑇𝑇) ≔

6 inf 𝜒𝜒∈𝑆𝑆(𝑇𝑇)
‖𝑓𝑓 -𝜒𝜒‖ ∞ . Hereby and in the following, norms and semi-norms without indicating the con-7 sidered interval etc. are to be understood w.r.t. the interval 𝐼𝐼.

8

The approximation error is related to the mesh length 𝛿𝛿 𝑇𝑇 ≔ max , where the supremum is consid-36 ered with respect to arbitrary partitions 𝑃𝑃 = {𝑥𝑥 1 < 𝑥𝑥 2 < ⋯ < 𝑥𝑥 𝑚𝑚 |𝑚𝑚 ∈ ℕ}. 

49

Summarizing the results with respect to linear and nonlinear approximation by piecewise constants, 50 one has the convergence order 1 for linear approximation if 𝑓𝑓 ∈ Lip 1 and for nonlinear approxima-51 tion if 𝑓𝑓 ∈ BV. Since 𝑓𝑓 ∈ Lip 1 means 𝑓𝑓′ ∈ 𝐿𝐿 ∞ and 𝑓𝑓 ∈ BV that 𝑓𝑓 ′ ∈ 𝐿𝐿 1 , this result shows that the 52 second condition is essentially weaker than the first one.

37A

  proof goes as follows: For 𝑓𝑓 ∈ BV with 𝑀𝑀 ≔ Var(𝑓𝑓) there is a partition𝑇𝑇 ≔ {0 ≔ 𝑡𝑡 0 < 𝑡𝑡 1 < 38 ⋯ < 𝑡𝑡 𝑛𝑛 ≔ 1} such that Var [𝑡𝑡 𝑘𝑘-1 ,𝑡𝑡 𝑘𝑘 ) 𝑓𝑓 ≤ 𝑀𝑀 𝑛𝑛 , 𝑘𝑘 = 1, … , 𝑛𝑛. If 𝑎𝑎 𝑘𝑘 is the median value of 𝑓𝑓 on [𝑡𝑡 𝑘𝑘-1 , 𝑡𝑡 𝑘𝑘 ],39 and 𝜒𝜒 𝑛𝑛 (𝑥𝑥) ≔ 𝑎𝑎 𝑘𝑘 , 𝑥𝑥 ∈ [𝑡𝑡 𝑘𝑘-1 , 𝑡𝑡 𝑘𝑘 ), 𝑘𝑘 = 1, … , 𝑛𝑛, then 𝜒𝜒 𝑛𝑛 ∈ 𝛴𝛴 𝑛𝑛 and ‖𝑓𝑓 -𝜒𝜒 𝑛𝑛 ‖ ∞ ≤ 𝑀𝑀 2𝑛𝑛 . Now to the other 40 direction: If the inequality in (33) holds for some 𝑀𝑀 > 0, let 𝜒𝜒 𝑛𝑛 ∈ 𝛴𝛴 𝑛𝑛 satisfy 41 ‖𝑓𝑓 -𝜒𝜒 𝑛𝑛 ‖ ∞ ≤ 𝑀𝑀+𝜖𝜖 2𝑛𝑛 with 𝜖𝜖 > 0. If 𝑥𝑥 0 ≔ 0 < 𝑥𝑥 1 < ⋯ < 𝑥𝑥 𝑚𝑚 ≔ 1is an arbitrary partition for I and 𝜈𝜈 𝑘𝑘 𝑘𝑘-1 , 𝑥𝑥 𝑘𝑘 ), then 43 |𝑓𝑓(𝑥𝑥 𝑘𝑘 ) -𝑓𝑓(𝑥𝑥 𝑘𝑘-1 )| ≤ 2𝜈𝜈 𝑘𝑘 ‖𝑓𝑓 -𝜒𝜒 𝑛𝑛 ‖ ∞ ≤ 𝜈𝜈 𝑘𝑘 (𝑀𝑀 + 𝜖𝜖) 𝑛𝑛 , 𝑘𝑘 = 1,2, … , 𝑚𝑚.

  For 𝛼𝛼 ∈ (0,1] and 𝑀𝑀 > 0, Lip 𝑀𝑀 𝛼𝛼 denote the set of all functions 𝑓𝑓 on 𝐼𝐼 such that For the midpoints 𝜉𝜉 𝐽𝐽 of 𝐽𝐽 ∈ 𝛱𝛱 hold by definition |𝑥𝑥 -𝜉𝜉 𝐽𝐽 | ≤ 𝑇𝑇) defined by 𝜒𝜒(𝑥𝑥) ≔ 𝑓𝑓(𝜉𝜉 𝐽𝐽 ), 𝑥𝑥 ∈ 𝐽𝐽, 𝐽𝐽 ∈ 𝛱𝛱, since 𝑓𝑓 ∈ Lip 𝑀𝑀 𝛼𝛼, Lip 𝑀𝑀 𝛼𝛼. Such a type of statement is usually called as inverse theorem. Additionally a saturation Replacing the 𝐿𝐿 ∞ -norm by 𝐿𝐿 𝑝𝑝 -norms, 0 < 𝑝𝑝 < ∞, similar results hold. It is interesting to note that 22 for 𝑝𝑝 ≥ 1the adequate constants are given by the average of 𝑓𝑓 over J, that is 𝜒𝜒(𝑥𝑥) ≔ BV, that is, f is of bounded variation on I, and |𝑓𝑓| BV ≔ Var(𝑓𝑓) is identical with 34 the smallest constant M for which the inequality (33) holds. Hereby, for a function 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] → ℝ 35 the variation Var [𝑎𝑎,𝑏𝑏] 𝑓𝑓 is defined by sup

	0≤𝑘𝑘≤𝑁𝑁-1 |𝑡𝑡 𝑘𝑘+1 -𝑡𝑡 𝑘𝑘 | and the smoothness |𝑓𝑓(𝑥𝑥) -𝑓𝑓(𝑦𝑦)| ≤ 𝑀𝑀|𝑥𝑥 -𝑦𝑦| 𝛼𝛼 𝑠𝑠(𝑓𝑓, 𝑇𝑇) ≤ 𝑀𝑀 � 𝛿𝛿 𝑇𝑇 2 � 𝛿𝛿 𝑇𝑇 2 , 𝑥𝑥 ∈ 𝐽𝐽, and for the related piecewise ‖𝑓𝑓 -𝜒𝜒‖ ∞ ≤ 𝑀𝑀 � 𝛿𝛿 𝑇𝑇 2 � 𝛼𝛼 . Furthermore, one can show: If the estimate holds for every possible partition, then necessarily of f: 10 9 13 and Lip 𝛼𝛼 ≔ ⋃ Lip 𝑀𝑀 𝛼𝛼 15 constant function 𝜒𝜒 ∈ 𝑆𝑆(16 17 18 |𝐽𝐽| ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡 𝐽𝐽 , medians are defined to be any number q for which |{𝑥𝑥 ∈ 𝐽𝐽|𝑓𝑓(𝑥𝑥) ≥ 𝑞𝑞}| ≥ |𝐽𝐽| 2 and 25 |{𝑥𝑥 ∈ 𝐽𝐽|𝑓𝑓(𝑥𝑥) ≤ 𝑞𝑞}| ≥ |𝐽𝐽| 2 . 26 Nonlinear approximation is related to Σ 𝑛𝑛 ≔ ⋃ 𝑆𝑆 1 (𝑇𝑇) #𝑇𝑇=𝑛𝑛+1 (#𝑇𝑇 denotes the cardinality of the set of 27 breaking points T), which is the set of piecewise constants with at most n pieces. Obviously, Σ 𝑛𝑛 is 28 not a linear space, since adding two functions from Σ 𝑛𝑛 results in a piecewise constant function with 29 possibly more than n breaking points. Given a uniformly continuous function 𝑓𝑓 the uniform error 30 of nonlinear piecewise constant approximation is defined by 𝜎𝜎 𝑛𝑛 (𝑓𝑓) ≔ inf 𝜒𝜒∈Σ 𝑛𝑛 ‖𝑓𝑓 -𝜒𝜒‖ ∞ . 31 Kahane (1961) has proven that for a function 𝑓𝑓 ∈ 𝐶𝐶(𝐼𝐼) one has 32 𝜎𝜎 𝑛𝑛 (𝑓𝑓) ≤ 𝑀𝑀 2𝑛𝑛 , 𝑛𝑛 = 1,2, …, 33 𝑓𝑓 ∈ 1 if and only if 𝑓𝑓 ∈ 𝑚𝑚-1 𝑖𝑖=1

𝑀𝑀>0

. In particular, 𝑓𝑓 ∈ Lip 1 if and only if f is absolutely continuous and 𝑓𝑓′ ∈ 11 𝐿𝐿 ∞ , where the derivative could be understood in the distributional sense. Then for 𝑓𝑓 ∈ Lip 𝑀𝑀 𝛼𝛼 holds 12 𝛼𝛼 : 14 𝑃𝑃 ∑ |𝑓𝑓(𝑥𝑥 𝑖𝑖+1 ) -𝑓𝑓(𝑥𝑥 𝑖𝑖 )|

tions T of dimension 𝑁𝑁 denoted by 𝑆𝑆(𝑇𝑇). For uniformly continuous functions 𝑓𝑓 and with respect to

theorem can be shown: If 𝑠𝑠(𝑓𝑓, 𝑇𝑇) = 𝜊𝜊(𝛿𝛿 𝑇𝑇 )for partitions T then f is a constant, which means, that

only trivial functions can be approximated with order better than 𝛰𝛰(𝛿𝛿 𝑇𝑇 ).

𝑥𝑥 ∈ 𝐽𝐽, 𝐽𝐽 ∈ 𝛱𝛱, and for 0 < 𝑝𝑝 < 1 adequate constants are the medians of 𝑓𝑓 on the intervals J, where

APPENDIX

The following sketch of the mathematical ideas and notions around linear vs. nonlinear approximation and the famous result by [START_REF] Kahane | Teoria constructiva de funciones[END_REF] closely follows DeVore (1998,(60)(61)(62)(63)(64)(65)(66)(67)(68)(69).

For functions 𝑓𝑓on an interval 𝐼𝐼 ≔ [0,1] two types of approximation are considered in the following, 1 linear and nonlinear approximation. Linear approximation starts with an a priori given sequence of 2 partitions T, 0 =:

and linear spaces of piecewise constant functions relative to the parti-