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Abstract: Nematic twist-bend phases (NTB) are new types of nematic liquid crystalline phases
with attractive properties for future electro-optic applications. However, most of these states are
monotropic or are stable only in a narrow high temperature range. They are often destabilized under
moderate cooling, and only a few single compounds have shown to give room temperature NTB phases.
Mixtures of twist-bend nematic liquid crystals with simple nematogens have shown to strongly lower
the nematic to NTB phase transition temperature. Here, we examined the behaviour of new types of
mixtures with the dimeric liquid crystal [4′,4′-(heptane-1,7-diyl)bis(([1′,1”-biphenyl]4”-carbo-nitrile))]
(CB7CB). This now well-known twist-bend nematic liquid crystal presents a nematic twist-bend
phase below T ≈ 104 ◦C. Mixtures with other monomeric alkyl or alkoxy -biphenylcarbonitriles
liquid crystals that display a smectic A (SmA) phase also strongly reduce this temperature. The most
interesting smectogen is 4′-Octyl-4-biphenylcarbonitrile (8CB), for which a long-term metastable NTB

phase is found at room and lower temperatures. This paper presents the complete phase diagram
of the corresponding binary system and a detailed investigation of its thermal, optical, dielectric,
and elastic properties.

Keywords: liquid crystals; nematic twist-bend; binary mixtures; nematic elastic constants

1. Introduction

The nematic phase, N, where mesogenic molecules possess long-range orientational order along a
direction (called the director n) is one of the simplest liquid crystalline states and is also the most used
one for electro-optic applications. Several types of nematic states other than the basic N have been
identified during the more than a century-long history of liquid crystals (LCs). Their local structure
cannot be distinguished from the N phase, but they present some additional features at a larger scale,
such as the continuous twist of the director along the helix of the cholesteric (N*) phase, for example.
One of the last identified nematic phase [1–4] is the twist-bend nematic (NTB) phase, whose structure
was proposed many years before its discovery [5,6]. It is currently mostly accepted that the mesogens of
an NTB phase also spontaneously self-assemble into a helical orientational ordering with a rather short
pitch length (a few nanometres). The simultaneous twist and bend deformation, however, defines an
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intermediate tilt angle 0 < θ < π/2 between the director and the direction of the helix axis [4,6,7].
With achiral molecules, the handedness of the local structure is doubly degenerate, and domains of
opposite chirality are formed.

If well aligned, these domains exhibit electro-optic response times down to the microseconds [8,9]
under the application of a DC field perpendicular to the helix. The potential use of this phenomenon
in actual electro-optic devices is, however, limited due the thermal properties of the compounds.
The occurrence of an NTB phase has been evidenced now in many compounds, mainly with dimeric,
trimeric, tetrameric, or bent-core molecules [10]. Apart from a few exceptions [11,12], the N-to-NTB phase
transition in pure compounds is found much above room-temperature. Even more problematically,
the twist-bend nematic has often a monotropic behaviour or, at best, displays a very limited temperature
range of stability [13]. Supercooling is present in most compounds and permits the studies at lower
temperatures, but crystallization tends to occur within a few hours. Long-lived metastable NTB phases
at room temperature are thus quite rare, even if recent synthesized compounds have shown to exhibit
a wider NTB temperature range [14] or even to form a glassy NTB phase rather than to crystallize [15].

Using mixtures is another way to lower the NTB temperature range. It was first used shortly after
the discovery of an NTB phase for the dimer 4′,4′′′-(nonane-1,9-diyl)bis(([1,1′-biphenyl]-4-carbonitrile))
(CB9CB) [16]. When mixed with the widely-used 4′-pentyl-4-biphenylcarbonitrile (5CB), a simple
monomeric nematogen, a strong lowering of the N-to- NTB phase transition is observed from 104 ◦C
for pure CB9CB to 50 ◦C for 40 wt % of 5CB. Other similar binary mixtures were studied later [17,18] in
detail and showed that the NTB phase was usually quite robust against the addition of linear mesogens
of the same chemical family or could even be stabilized by them. In one case at least, an NTB phase
was also induced in a binary mixture [19]. Problems related to metastability for long term applications,
however, remain present with mixtures. They are even amplified since a crystallization in a binary
mixture might yield demixing. Note, however, that a very recent (and specific) mixture obtained with
a photoreactive monomer has been shown to promote the stabilization of a metastable NTB phase at
room temperature by forming a solid network after photopolymerization [20].

Among the compounds that have been mixed with twist-bend nematic liquid crystals, nematogens
have been mostly employed. The fact that smectogens have been rarely studied [17,21] might be due
to a relative lack of data about the interplay between the NTB phase and smectic phases. The NTB

phase shares many textural features, such as focal conic domains, with the smectic-A (SmA) phase
due to its pseudo-layer structure [22]. It has even been mistaken for this latter phase in several liquid
crystals [2,23] for many years. A very limited number of pure compounds, however, shows the
presence of both smectic and NTB phases [10]. Until recently, only a single fluorinated compound was
reported to exhibit the three mesophases: nematic, twist-bend, and SmA [24,25]. Since then, syntheses
of various homologue series [26,27] have revealed that the NTB phase tends to be replaced by smectic
phases in the phase sequence below the nematic phase. The state can be either a SmA phase or a more
complex heliconical smectic phase, also predicted by Dozov [6], in which a short-pitch helical structure
is present. Mixing a smectogen and a twist-bend nematic liquid crystal could then be a simple way
to enforce the coexistence of SmA and NTB phases in a binary system and induce the elusive phase
transition between them.

In this paper, we examined the behaviour of [4′,4′-(heptane-1,7-diyl)bis(([1′,1”-biphenyl]4”-carbo-
nitrile))] (CB7CB) when it is mixed with smectogenic monomers. CB7CB is the first dimeric compound
where the nematic twist-bend phase was unambiguously identified [2]. It has been studied in detail and
its properties thoroughly investigated [4]. We focused on its mixing with other well-known monomeric
alkyl or alkoxy–biphenylcarbonitriles and especially with 4′-n-octyl-biphenyl-4-carbonitrile (8CB).
One objective was to specify the influence of a smectic region in the binary phase diagrams and to
compare with the case of the nematogen 4′-n-pentyl-biphenyl-4-carbonitrile (5CB), whose mixing
with CB7CB has been studied in detail [4,17,18,28,29]. Aside from the complete phase diagram of
8CB/CB7CB binary system, we investigated its thermal, optical, dielectric, and elastic properties.
Another interest of mixtures is indeed the possibility to continuously modify their physical properties.
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The second objective was then related to the evolution of the properties of the nematic phase in such
binary systems. In particular, we focused on the question of the bend elastic constant in a system when
NTB and SmA phases are present. Although both phases have layered or pseudo-layered structures,
the bend constant K33 of the nematic phase is expected to behave very differently in the vicinity of the
corresponding phase transitions. K33 is seen to diverge in smectogens (such as 8CB) when the smectic
phase is approached [30,31] (bend deformation is not permitted in a set of parallel layers). On the
contrary, the N-to-NTB phase transition has been predicted or explained by the vanishing of K33 [6] or
of its renormalized version [32,33] in agreement with measurements revealing a strong decreasing of
K33 when approaching the NTB phase in pure compounds [3,29,34].

2. Materials and Methods

2.1. Materials

The liquid crystal 1,7-bis(4-cyanobiphenyl-4-yl) heptane (CB7CB) was present in all studied binary
mixtures. It is a well-studied LC [2,13,18] that displays an NTB phase below 104 ◦C. Below T = 102 ◦C,
the NTB phase becomes metastable and tends to crystallize at long times, even in thin cells. We explored
the mixtures of CB7CB with different smectogens, mostly 4′-Octyl-4-biphenylcarbonitrile (8CB) but
also 4′-Decyl-4-biphenylcarbonitrile (10CB) and 4′-(Octyloxy)-4-biphenylcarbonitrile (8OCB). All three
mesogens have similar chemical groups and display a Smectic A phase. The molecules were obtained
from Synthon Chemicals GmbH & Co (Bitterfeld-Wolfen, Germany) except for 8OCB (BDH Chemicals,
Ltd., Poole, UK).). The chemical formulas and the phase temperature transitions of the compounds are
given in Figure 1.
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Figure 1. Chemical structure and phase transition temperatures (◦C) of 4′-Octyl-4-biphenylcarbonitrile
(8CB), 4′-Decyl-4-biphenylcarbonitrile (10CB), 4′-(Octyloxy)-4-biphenylcarbonitrile (8OCB) and
[4′,4′-(heptane-1,7-diyl)bis(([1′,1”-biphenyl]4”-carbo-nitrile))] (CB7CB) liquid crystals.

2.2. Optical Microscopy

Optical observations were performed using either commercial liquid crystal cells (5 µm thickness,
polyimide coating from EHC. Co., Ltd., (Tokyo, Japan) or homemade ones with polyvinyl alcohol (PVA)
rubbed anchoring layers providing a planar alignment [35,36]. We also used glass substrates silanized
with dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP), which usually
provides a homeotropic alignment for n-alkyl-cyanobiphenyl systems [37]. The cells were mounted by
assembling two treated substrates (in an antiparallel configuration for the brushed polymers) using
epoxy glue. Their thicknesses were carefully measured using a spectrometer (UV-1205 from Shimadzu
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Corporation, Kyoto, Japan) before capillary filling on a Kofler bench. Polarization optical microscopy
(POM) observations were made using a LABORLUX 12 POL S microscope (Leitz, Wetzlar, Germany)
equipped with a 1024 × 768 digital camera (XCD-X710 from Sony Corporation, Tokyo, Japan), a color
camera (D90 from Nikon Corporation, Tokyo, Japan), and a HS400 heating and cooling stage with
its STC200D controller (Instec, Boulder, CO, USA, 0.1 ◦C regulation). Temperature under microscope
ranged from −20 ◦C to 130 ◦C.

Contact experiments were carried out in homemade 20 × 20 mm2 PVA cells of thickness about
5 µm opened on the four sides. The cells were filled by capillarity at 130 ◦C with the isotropic phase of
CB7CB and the other examined compound (deposited on two opposite sides). An interface formed
between the isotropic liquid. Due to the miscibility and the interdiffusion of the molecules, a spatial
gradient of concentration was then established. The width of this interface increased with time, but it
evolved quite slowly after a few minutes due to the concomitant decrease of the concentration gradient.
This method was used to establish rapidly qualitative binary phase diagrams since the concentration of
CB7CB ranged from 0 wt % to 100 wt % across this interface. The different states of the phase diagrams
could therefore be detected when the temperature was changed.

2.3. Birefringence Measurements

Quantitative birefringence measurements were performed at 546 nm with an Abrio System
(CRI Inc., Chantilly, VA, USA) installed on a Leica 2500P microscope. This set-up allowed a rapid
determination of the optical axis and the retardation for each pixel of the cooled CCD camera. A typical
measurement consisted in choosing a region (of typical size 50 × 50 µm2) that remained perfectly
planarly aligned in the NTB phase. After heating in the nematic phase close to the isotropic phase,
the sample was cooled downed at 0.1 ◦C. min−1 while measuring the mean retardation of the region.

2.4. X-Ray Characterization

The different phases were identified by X-ray scattering in a wide-angle configuration (WAXS).
A high brightness low power X-ray tube coupled with aspheric multilayer optics (GeniX3D from
Xenocs SA, Grenoble, France) was employed. It delivered an ultralow divergent beam (0.5 mrad,
λ = 0.15418 nm). Scatterless slits were used to give a clean 0.6 mm beam diameter with a flux of
35 Mphotons/s on the sample. We worked in a transmission configuration, and scattered intensity was
measured by a 2D “Pilatus” 490 × 600 pixels detector (Dectris, Baden-Daettwil, Switzerland) with pixel
size of 172 × 172 µm2, at a distance of 0.2 m from the sample. Liquid crystal samples were studied
in Lindeman glass capillaries (diameter 1.5 mm) filled by capillarity using a Kofler bench and sealed
by flame. Scattering intensities were corrected by subtracting the empty cell contribution taking into
account the different transmissions.

2.5. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) measurements were performed using a Q2000 DSC
system (TA instruments, New Castle, DE, USA)). Heating-cooling cycles were carried out at a constant
temperature rate of 10 ◦C.min−1 with a 10 min isotherm between heating and cooling. The samples
had a mass between 5 and 7 mg and were sealed in aluminium pans and kept in nitrogen atmosphere
during measurement. Thermal data were extracted from the second cooling trace. The enthalpy values
∆H(J/g) were obtained by the integration of the peak of the transition using TA Universal Analysis
2000 software (TA instruments, New Castle, DE, USA, Version 4.5A).

2.6. Dielectric and Elastic Characterization

Dielectric measurements and the determination of bend and splay elastic constants of the nematic
phase were performed using a homemade system based on a TTi TGA12101 arbitrary wave generator
(Thurlby Thandar Instruments Ltd., Huntingdon, UK), a Krohn-Hite 7600 wideband voltage amplifier
(Krohn-Hite, Brockton, MA, USA), and a Tektronix DPO3014 oscilloscope (Tektronix Beaverton,
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OR, USA), all driven with a PC with a LabVIEW code. Our approach was based on the capacitance
technique [30,38] modified as follows. A planar liquid crystal cell (10 µm thick, from EHC Japan) was
filled by capillarity in the isotropic phase and connected in series with a load resistance Rc. The circuit
was submitted to an AC voltage with frequency f and variable amplitude Ug. The complex impedance
of the cell, Z, was then obtained by measuring the amplitude and the phase of the voltage drop, Uc,
on the load resistance. A first series of measurements was performed at fixed small, applied voltage
(below Freedericksz threshold) with variable values of f and Rc. This first step allowed the detailed
characterization of the equivalent RC circuit of the LC cell and provided the internal cell parameters
(LC resistivity, resistance of the indium tin-oxide (ITO) electrodes, and capacitance of the alignment
layers). These parameters were then used to determine accurately the dependence of the liquid crystal
layer capacitance C on the applied voltage U when varying Ug. In a second step, the C(U) curves were
measured across the whole nematic phase range by cooling from the isotropic state with f and Rc

values fixed at their optimal values defined during the first step. The C(U) curves were then fitted to
the expected theoretical dependences [30,39–41] with the LC elastic and dielectric constants as fitting
parameters but also taking as additional free parameters the pretilt angle and the surface anchoring
strength. The detailed description of this technique will be published elsewhere [42].

3. Results and Discussions

3.1. Phase Diagrams

The 8CB\CB7CB phase diagram (see Figure 2) was obtained from POM observations,
complemented by XRD and dielectric measurements. In polarization optical microscopy (POM),
cells were cooled down from 120 ◦C at −1 ◦C/ min in order to detect the phase transitions.
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Figure 2. Phase diagram of 8CB/CB7CB binary system. The phase transition temperatures were
obtained either by (POM) (black symbols) or dielectric measurements (red symbols). The nature of
the lower temperature phase was confirmed using XRD. The green line indicates the stable crystalline
state of CB7CB. NTB phase is metastable almost everywhere, except possibly a few degrees below the
N/NTB phase transition. The thermodynamically stable state of green dashed region is a two phase
equilibrium between crystalline CB7CB and either NTB in the high temperature corner or N phase at
lower temperatures (see main text). Error bars are mainly due to uncertainty in the concentration of
small-quantity samples. They correspond to the data dispersion of the phase transition temperatures.

Let us first focus on the peculiar phase sequence of the pure CB7CB material (shown in the
right part of Figure 2) and already well described in the literature [2]. On cooling from the isotropic
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(Iso), CB7CB exhibited phase transitions: Iso to N at 117 ◦C and N to NTB at 104 ◦C (see Figure S1 in
supplementary materials). As said in the introduction, NTB phases of many compounds are monotropic
and are therefore entirely metastable. The crystalline form of CB7CB, however, melted slightly below
the temperature where NTB phase appeared under cooling [2]. This indicates that NTB phase was stable
in a narrow temperature range between ~102 ◦C and ~104 ◦C. The phase supercooled extensively, and
it was possible to maintain it at room temperature during a few days before crystallization occurred.
In an unsealed liquid crystal cell, crystallization could be nevertheless provoked at will with a crystal
germ, even at high temperatures (see the growth of crystals in typical NTB textures in Figure S2). Finally,
note that it was also evidenced that the (metastable) NTB phase of CB7CB evolved to a (metastable)
glassy state below ~4 ◦C [43]. This state is not indicated in Figure 2.

Similar transitions were observed in the mixtures containing a limited amount of 8CB, as shown
in Figure 3 for a sample containing 50 wt % CB7CB. Two-phase regions could be observed at the phase
transitions when fixing the temperature. They were nevertheless very narrow (typically a few tenths of
degrees) and are not visible in Figure 2. Usually, the nature of LC phases and an accurate determination
of the transitions temperatures can be obtained from POM observations alone, but here, the properties
of phases and phase transitions required several additional techniques. First, the NTB and the SmA
textures looked very similar with the same macroscopic defects (focal conic domains) [2]. XRD was
then used to identify the nature of the low-temperature phase. Contrary to nematic and NTB phases,
the SmA phase is indeed characterized by a sharp Bragg peak (see Figure S3) due to the presence of a
positional order inexistent in the two other phases [4]. Furthermore, for concentrations between 15
and 30 wt % of CB7CB, the N/NTB as well as the N/SmA precise phase transitions temperatures were
hardly determined by optical means. While the front interface was easily visible outside this range
(see Figures 3 and 4a), the nematic fluctuations slowly vanished while decreasing temperature, and a
clear front interface was no longer observed. Figure 4b shows this phenomenon at φ =30 wt %. For this
concentration, the phase transition could still be determined in a narrow temperature interval, but at
lower concentrations, the contrast change occurred over several degrees. A similar behaviour was
already reported with 5CB/CB7CB mixtures at a high 5CB concentration [17]. The resulting texture
remained planar, devoid of defects, while the typical NTB textures appeared rapidly when φ & 30 wt %
(see Figure 3c). It was only at much lower temperature, after fast cooling, that the typical textures of
NTB in planar cells were observed (see Figure S4). Dielectric measurements, however, still showed
a sudden increase of the Freedericksz threshold at the N/NTB (or at the N/SmA) phase transition,
which was then used to identify more accurately the lower boundary of the N phase with a typical
resolution of ~1 ◦C. The nature of the SmA phase was still confirmed by a sharp X-Ray present below
φ ≈ 20%.

As with 5CB [17,18], the addition of 8CB to CB7CB induced a decrease of both Iso/N and N/NTB

phase transitions temperatures. It should be noted that adding CB7CB to 8CB also decreased the N/SmA
transition temperature but concomitantly increased the Iso/N transition temperature, which yielded
a broadening of the N phase. The largest N temperature range (about 60 ◦C) was observed at
φ = φc ≈ 20 wt % in a tongue-like region that separated the SmA and the NTB phases. A clear
NTB/SmA phase transition was thus not observed but rather an extension of N phase down to very low
temperatures (~−20 ◦C). Although NTB and SmA phases displayed very similar textures, a direct phase
transition between the two phases was not observed neither with 8CB nor with other cyanobiphenyl-like
smectogens. We tested close compounds such as 8OCB with higher phase temperature transitions
and 10CB, a smectogen without N phase. Contact experiments performed in liquid crystals cells
between CB7CB and one of these mesogens showed the simultaneous presence of SmA and NTB phases
separated by a nematic domain, even at room temperature (see Figures S5 and S6). In each case, the N
region expanded and separated the NTB and the SmA regions down to the lowest temperatures for
which the mixture crystallizes. This is in contrast with a few studies [24,27,44–46] where an Sm/NTB

phase transition was reported in pure compounds. In our case, this behaviour, however, promoted
the existence of low temperature N and NTB phases in the mixtures. We examined the behaviour of
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the NTB phase in contact with a tiny crystal seed briefly deposited at the periphery of an opened cell
(see a detailed example in Figure S7). The seed yielded a partial crystallization in the entire cell and the
coexistence of crystals with a nematic phase, indicating that the N phase was stable, whereas the NTB

phase was only metastable at low temperature. The equilibrium phase diagram of the 8CB/CB7CB
binary system, therefore, shows a large two-phase region in place of the NTB domain (see Figure 2).
In sealed cells, however, 8CB/CB7CB mixtures in the range 40 wt % < φ < 55 wt % exhibited room
temperature NTB phases that were observed to be metastable for at least 6 months in XRD capillaries
and optical cells. It should be noted that, if other studies have already reported low temperature
NTB phases in mixtures [16–18,47], many of them tend to rapidly crystallize at room temperature [20].
This feature allowed us to characterize the 8CB/CB7CB system in detail.
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3.2. Enthalpies of the Phase Transitions

Adding 8CB to CB7CB was expected to affect the properties of the different phases as well as
the various phase transitions. DSC measurements showed a clear heat flow peak at the Iso/N phase
transition in the whole range of concentrations φ (see Figure S8). The N/NTB phase transition peak,
on the contrary, rapidly decreased while decreasing φ and was hardly detectable when approaching φc.
For pure CB7CB, the enthalpy values of Iso/N (1.76 J/g) and N/ NTB (1.84 J/g) phase transitions were
close (see also [18]), but they rapidly differed when adding 8CB. For φ = 32.5 wt %, the enthalpy value
of the Iso/N transition (6.48 J/g) was much higher than the N/NTB one (0.062 J/g), which had strongly
decreased. Near φc, the latter was quite low (a few tens of mJ/g), indicating an almost second order
phase transition (Figure 5). The fact that the Iso/N and the N/NTB enthalpies showed antagonistic
evolutions has already been observed and investigated in another mixture containing CB7CB [48].
The second compound was, however, also a twist-bend nematic liquid crystal, and this phenomenon
was explained by the different average curvatures of the mesogens in a mean-field Landau approach.
It was also observed in a series of pure compounds [45] (difluoroterphenyl-based dimers with alkyl
spacers). In that case, it was explained by the role of the spacer length, which facilitates the twist of the
molecules and concomitantly reduces the energy difference between N and NTB phases. The authors
of reference [45] noted that their molecular approach was compatible with the results of reference [48],
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assuming an average flexibility in a binary system. The presence of rod-like 8CB molecules in the
mixtures we examined could play here the same role for the average mesogen, rendering it less bent.

Crystals 2020, 10, x FOR PEER REVIEW 8 of 17 

 

 
Figure 4. Polarized optical micrographs of the 8CB/CB7CB binary system during the N/NTB phase 
transitions at two different concentrations. (a) 𝜙 = 55 wt%: a front interface between the two phases 
is easily observed at T = 37 °C. (b) 𝜙 = 30 wt%: the phase transition is characterized by a gradual 
change of contrast (over ~0.5 °C) but without any front interface. Slightly uncrossed polarizers. 

As with 5CB [17,18], the addition of 8CB to CB7CB induced a decrease of both Iso/N and N/NTB 
phase transitions temperatures. It should be noted that adding CB7CB to 8CB also decreased the 
N/SmA transition temperature but concomitantly increased the Iso/N transition temperature, which 

Figure 4. Polarized optical micrographs of the 8CB/CB7CB binary system during the N/NTB phase
transitions at two different concentrations. (a) φ = 55 wt %: a front interface between the two phases
is easily observed at T = 37 ◦C. (b) φ = 30 wt %: the phase transition is characterized by a gradual
change of contrast (over ~0.5 ◦C) but without any front interface. Slightly uncrossed polarizers.
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3.3. Evolution of Birefringence

The softening of the N/NTB phase transition was also revealed by optical measurements.
Birefringence of pure CB7CB as a function of temperature is given in Figure 6a. A similar measurement
has already been discussed in [7] and can be summarized as follows. The birefringence ∆n of the N
phase was well-fitted with the classical Haller formula [49]. A slight departure was, however, present a
few degrees above the N/ NTB transition, marked by a small jump of the birefringence value [7,17] at the
phase transition and characteristic of a first-order phase transition. Under cooling, after the transition,
∆n decreased rapidly presumably due to the increase of the conical tilt angle θ of the NTB phase [7].
This behaviour was not found in mixtures with a sizable amount of 8CB. For example, the mixture with
φ = 43.5 wt % (Figure 6b) showed a quite different behaviour. The birefringence of the N phase could
still be partially fitted by Haller formula at high temperature. However, under cooling, a maximum
value was observed at T ≈ 38 ◦C, preceding a slight decrease of 0.012 before remaining almost constant.
The N/NTB transition was found at much lower temperature (T ≈ 22 ◦C) but could be hardly detected
by a change of ∆n (see inset of Figure 6b). The continuity of the birefringence value also tends to
indicate a very weak first order transition when approaching φc. Birefringence measurements with
higher resolution techniques could be useful to analyse in depth the behaviour of d∆n/dT and to
characterize more quantitatively the evolution of the phase transition order when approaching φc.

3.4. Anchoring Transition

The evolutions of the NTB textures and the anchoring properties were also very sensitive to the
amount of 8CB in the mixtures. Two main phenomena were observed. First, as said above, the typical
stripes and rope textures of NTB phases [1,50,51] (Figure S9) were not observed when approaching
φc. This behaviour could be correlated to the evolution of the birefringence with φ. According to
the simple model developed in [7], the NTB birefringence was mainly related to the tilt angle of the
local director n with respect to the twist-bend helix. A constant birefringence in the vicinity of the
phase transition thus tended to indicate that the tilt angle remained quite small when entering into the
NTB phase. This could explain why one can go further into the NTB phase without provoking stripes.
These typical textures of the NTB phases are indeed considered to be the consequence of a mechanical
Helfrich-Hurault instability [51,52] due to the increase of the heliconal angle and the correlated decrease
of the pseudo-layers thickness. Second, the pure CB7CB compound showed a degenerate planar
anchoring on DMOAP-treated substrates (Figure 7), as evidenced by the presence of ±1/2 disclinations.
Below 50 wt % of CB7CB, the mixtures, however, displayed a perfect homeotropic texture under crossed
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polarisers for both N and NTB phases, as shown in Figure 7. It should be noted that homeotropic
textures of an NTB phase are quite difficult to achieved in cells. In a few rare cases, they were obtained
using somewhat complex methods such as an inorganic passivation layer [53] or with a shear [54,55].
Here, we obtained them simply by applying a classic silane treatment. This evolution is the direct
consequence of the presence of 8CB. The self-assembled monolayers of DMOAP indeed give rise to
a compact alkyl monolayer on the substrates that favours the perpendicular alignment of the 8CB
molecules [56], which possess a pendant alkyl chain contrary to CB7CB molecules. A larger amount of
8CB then drives an anchoring transition from planar to homeotropic.
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Figure 6. Variation of the birefringence with the temperature for (a) CB7CB (φ = 100 wt %), (b) a
mixture with φ = 43.5 wt %. In both figures, the plain red curve (extended by a dashed curve) is
a fit of the birefringence in the nematic phase using Haller formula [49]. The birefringence of the
mixture strongly departs from Haller formula much above the N/NTB phase transition, indicating
strong pretransitional effects. The black dashed lines indicate the position of the N/NTB phase transition
measured by optical microscopy. A small effect is also seen at the transition in the mixture but is of the
order of our resolution. Error bars (δT ∼ 0.1 ◦C and δ∆n ∼ 0.001) are smaller than symbols in the
main panels.
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Figure 7. In symmetric cells treated with dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium
chloride (DMOAP), CB7CB displays a degenerate planar anchoring in the N phase (a) giving rise to
unoriented stripes in NTB phase (b). On the contrary, the mixture φ = 38.42 wt % shows a very good
homeotropic alignment in both N ((a), inset) and NTB ((b), inset) phases. Polarized optical micrographs,
crossed polarizers.
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3.5. Dielectric Permittivities

The addition of 8CB also strongly modified the dielectric anisotropy and the elastic constants of
CB7CB. We examined them as a function of the reduced temperature Tr. The latter is defined as the
ratio of the temperature T to the Iso/N phase transition temperature TIso/N (both in Kelvin). Although
the Maier–Saupe [57] universal variation of the nematic order parameter S as a function of the reduced
temperature is not fully respected in practice, the use of Tr permits to compare values of compounds
physicals properties at roughly similar values of S. This is interesting especially for the studied system
which shows large variations of temperature transitions and ranges of nematic phase existence.

Figure 8 shows the dielectric permittivities of different mixtures in the N phase. The values of the
pure compounds are comparable to the values reported in the literature (for 8CB, see [30,49,58] and
CB7CB, see [29]). The pure CB7CB has a parallel permittivity (ε‖) value lower than the 8CB but a higher
perpendicular one (ε⊥) [29,30], yielding a rather small dielectric anisotropy. Upon the addition of 8CB,
we observe both an increase of ε‖ and a decrease of ε⊥ concomitantly to the increase of the nematic
temperature range. These factors all contribute to a significant enhancement of the dielectric anisotropy
∆ε in the N phase, up to ∆ε ≈ 10 when approaching φc. For instance, the value of the anisotropy for the
mixture of 42 wt % is around 7.2 at room temperature, while that of CB7CB is only 2.2.
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Figure 8. Dielectric permittivities of the mixtures as a function of the reduced temperature Tr and for
different fraction φ of CB7CB. Closed symbols represent the parallel dielectric permittivity ε‖ whereas
open symbols indicate the perpendicular dielectric permittivity (ε⊥ ). Errors bars are smaller than the
size of the symbols.

3.6. Nematic Elastic Constants

Concerning the elastic constants, while the splay constant did not change too much in the mixtures
(Figure 9a), a strong evolution of the bend one is observed (Figure 9b). The pure compounds have very
similar splay constants K11 that peak at ≈ 8 pN at their respective lower nematic range. Larger values
are observed in some mixtures, but this was mainly due to the broadening of the nematic range. At a
given reduced temperature, the splay constant indeed is maximal for the pure compounds. The lowest
values of K11 are then found for mixtures about 30 wt % of CB7CB and are slightly larger than half the
values of the pure compounds. The behaviour of the K33 bend constant is very different. The N/SmA
transition is, as expected [30], characterized by the divergence of K33 (see Figure 9b). On the contrary,
cooling decreases the bend modulus of CB7CB to a very low value, about 0.6 pN, about a degree
above the N/NTB phase transition before showing a slight increase. This behaviour is now well
documented for twist-bend liquid crystals [29,34,59], including CB7CB [60] (reference [29] gives similar
but slightly different values with a different technique). More interestingly, in the binary system
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studied here, we observe that the values of K33 close to the N/NTB phase transition first decrease when
8CB is added (for φ = 42 wt %, we measured K33 ≈ 0.3 pN) before increasing at higher fractions.
This surprising behaviour can be related to the very recent observation [61] that the lowest bend
constant of a 5CB/CB7CB/CB11CB ternary system is much lower than in CB7CB or CB11CB alone.
In our case, however, a careful examination of Figure 9b shows that, at a given value of reduced
temperature (~given nematic order parameter), the addition of 8CB continuously increases the value of
K33, thus the lower values in mixtures could be mainly due to the broadening of the nematic thermal
range. This could be also the main explanation of the effect noted in reference [61].
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Finally, we note that the change of behaviour of K33 from a strong decrease to a divergence is
rather progressive. Around φc, the bend constant does not decrease towards sub-pN values, even in
the very close vicinity of the NTB phase. At φc, one can even observe (Figure 9b, φ = 20.2%) an almost
flat value of 4–5 pN over tens of degrees, a perfect illustration of the antagonistic influences of the close
SmA and NTB phases. This evolution certainly deserves more attention to clarify the behaviour or the
role of K33 with the N/NTB phase transition.

4. Conclusions

We extensively studied here a binary system consisting of a well-known dimeric twist-bend
nematic liquid crystal (CB7CB) mixed with a smectogen (8CB) of the same chemical family. Similarly
to simple nematogens, 8CB added to CB7CB strongly reduced the N-NTB phase temperature transition
and improved the thermodynamic metastability of the NTB phase. A broader nematic region was
obtained, showing the good compatibility between the molecules. The lower phase was either an NTB

or a SmA phase, but we were not able to observe a plain NTB to SmA phase transition. Despite their
macroscopic resemblance, SmA and NTB domains seem incompatible and are separated by a nematic
region down to the lower temperatures. Similar trends were also found with 8OCB and 10CB.

Apart from the stabilization of the twist-bend nematic phase at room temperature, the addition of
8CB to CB7CB yields strong changes. This can be either surface properties such as an easy homeotropic
orientation of the NTB phase or bulk properties. In particular, a broad nematic phase with a large
dielectric anisotropy and a very low bend elastic constant is present in the centre of the phase
diagram. The evolution of K33 with the concentration is especially interesting, since it can be easily
and continuously tuned on a wide range of values while the splay constant remains almost the same.
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