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Relation between understandings of linear algebra concepts in the 
embodied world and in the symbolic world 

Mitsuru Kawazoe 
Osaka Prefecture University, Faculty of Liberal Arts and Sciences, Japan, 

kawazoe@las.osakafu-u.ac.jp 
For the use of embodied notions in teaching linear algebra, some studies indicate that 
it is helpful, but another study indicates that it is sometimes problematic. Hence more 
study is needed. In this study, linear (in)dependence and basis were focused on, and 
the relation between understandings of them in the embodied world and in the symbolic 
world was investigated. The effectiveness of an instruction emphasizing geometric 
images of them was also investigated. The main results of the study were the following: 
conceptual understanding of linear dependence of four spatial vectors such that any 
three of them do not lie on the same plane was positively associated with understanding 
of basis in the symbolic world; however, understanding of linear dependence of such 
vectors had not been improved by a geometrical instruction. 
Keywords: linear algebra, teachers’ practices, linear independence, basis. 

BACKGROUND AND THE PURPOSE OF THE STUDY 
It is widely recognized that linear algebra is a difficult subject to learn due to its abstract 
and formal nature. Dorier and Sierpinska (2001) stated that “linear algebra remains a 
cognitively and conceptually difficult subject.” It has been a big challenge to overcome 
the difficulty in teaching linear algebra. Some researchers pointed out that the use of 
embodied notions, namely the use of visual images, helps students to understand 
concepts in linear algebra (cf. Stewart & Thomas, 2007; Hannah et al., 2014; 
Donevska-Todorova, 2018, p. 268). However, there is another study indicating that 
using visual images is sometimes problematic in teaching linear algebra (Sierpinska, 
2000, p. 244). These studies indicate that the use of visual images in teaching linear 
algebra and its effectiveness should be more investigated. That is a motivation of our 
research to investigate students’ conceptions of linear algebra concepts in the context 
of geometric vectors.  
In our previous studies, we observed the following: (1) there are many students who 
fail to determine linear dependence of four spatial vectors such that any three of them 
do not lie on the same plane (Kawazoe et al., 2014); (2) some of those students take a 
longer time to image that three spatial vectors not lying on the same plane span the 
whole space (Kawazoe & Okamoto, 2016; Kawazoe, 2018). However, we have not 
investigated how these observations are related to understanding of concepts and 
procedures in linear algebra.  
In this study, we focused on concepts of linear (in)dependence and basis, and studied 
the following research questions: (1) Is geometrical understanding of linear 
(in)dependence in the embodied world related to understanding of linear 



  
(in)dependence and basis in the symbolic world?; (2) Can geometrical understanding 
of linear (in)dependence in the embodied world including the case of four vectors be 
improved by an instruction emphasizing a geometric image of linear (in)dependence? 

THEORETICAL FRAMEWORK 
We use Tall’s model of three worlds (Tall, 2013) combined with APOS theory (Arnon 
et al., 2014) to distinguish students’ understanding for linear algebra concepts, 
following Stewart and Thomas (2007). Tall (2013) described the development of 
mathematical thinking in terms of three worlds: embodied world, symbolic world, and 
formal world. Tall stated that “the combination of embodied and symbolic mathematics 
can be seen as a preliminary stage to the axiomatic formal presentation of mathematics.” 
In linear algebra, the embodied world is a world of geometric vectors (arrows), the 
symbolic world is a world of numerical vectors, matrices, polynomials, and operations 
using symbols. APOS theory enables us to distinguish students’ conceptions into four 
levels: Action, Process, Object, and Schema. Then, students’ conceptions in linear 
algebra can be described in each of three worlds (cf. Stewart & Thomas, 2007). As for 
linear (in)dependence, Action-Process-Object conceptions in the embodied world are 
described as follows. Students having Action conception draw a linear combination 
explicitly in a discussion of linear (in)dependence. Students having Process conception 
can use a set of linear combinations but cannot use a spanned space correctly. Students 
having Object conception can completely understand that any two non-parallel 
geometric vectors are linear independent and they span a plane, any three geometric 
vectors not lying on the same plane are linear independent and they span the whole 
space, and any four geometric vectors are always linearly dependent.  
We view some linear algebra concepts from the viewpoint of Lakoff and Núñez (2000). 
For an example, we regard a role of basis of a vector space as the ‘discretization’ of a 
space, following the explanation given by Lakoff and Núñez (ibid., p. 260-261). To 
give a basis for a vector space is equivalent to give a coordinate for the space. In the 
embodied world, it means to represent every point in a plane or a space as a pair or a 
triple of numbers. Moreover, we apply the ‘Basic Metaphor of Infinity’ (ibid., p. 158) 
to students’ image of spanned space, according to an observation of our previous study 
(Kawaoze & Okamoto, 2016) that many students image a space spanned by linearly 
independent three spatial vectors as a ‘gradually expanding three-dimensional object’ 
which finally fills the whole space. We used these viewpoints in designing linear 
algebra lessons in this study.  

CONTEXT: THE COURSE, STUDENTS, DESIGN OF LESSONS AND TASKS 
The study was conducted in a linear algebra course aiming at engineering students at 
our university, but in a special class for students who failed to pass it when they were 
in the first-year. The course consists of a spring semester class and a fall semester class. 
The former is a 2-credit class, meeting for 90 minutes each week for 15 weeks. The 
latter is a 4-credit class, meeting for 180 minutes each week for 15 weeks. Each of 



  
them is followed by an examination period. The course covers usual linear algebra 
topics: matrix, gaussian elimination, system of linear equations, and determinant, etc. 
in the spring semester; formal vector space, spanned space, linear (in)dependence, basis, 
dimension, linear map, inner product, orthogonal basis, eigenvalue, eigenvector, and 
diagonalization, etc. in the fall semester. This study was conducted during the first five 
weeks in the fall semester class. In these weeks, students learned formal vector space, 
spanned space, linear (in)dependence, basis, and dimension.  
Design of lessons 
Each lesson consisted of a lecture part and an exercise part. Lectures were given in the 
first half, and exercises were given in the second half. The lecture part was designed as 
to emphasize geometric images of linear algebra concepts especially by using the 
image of a spanned space in the embodied world. In the lecture part, the teacher 
introduced linear algebra concepts in the following way.  
First, the notions of linear combination and spanned space were introduced. A space 
spanned by three linearly independent spatial vectors was shown to students by using 
teacher’s fingers, and it was emphasized that linear combinations with negative 
coefficients were contained in the spanned space. The teacher stressed the importance 
of imaging a part of the space consisting of linear combinations with some (or all) 
coefficients being negative in order to grasp the correct image of the spanned space.  
The notions of linear independence and dependence were introduced by using usual 
formal definitions, but the meaning of linear independence and dependence of vectors 
v1, v2, …, vn in a vector space were explained in terms of spanned space as follows: 

Vectors v1, v2, …, vn are linearly dependent if and only if one of the n vectors can be 
represented by a linear combination of the other n-1 vectors, that is, one of the n 
vectors is contained in the space spanned by the other n-1 vectors.  
Vectors v1, v2, …, vn are linearly independent if and only if none of the n vectors can 
be represented by a linear combination of the other n-1 vectors, that is, none of the 
n vectors is contained in the space spanned by the other n-1 vectors. 

It was also explained that linearly independent vectors v1, v2, …, vn give an ascending 
sequence of vector spaces V1⊊V2	⊊…⊊Vn where Vk (k=1, 2, …, n) is the space spanned 
by v1, v2, …, vk. 
Then, the notion of basis was introduced by using a usual formal definition: 

Vectors v1, v2, …, vn in a vector space V is a basis of V if and only if they are linearly 
independent and any vector in V can be represented as a linear combination of them. 

It was explained that the second condition is equivalent to that V is spanned by v1, v2, 
…, vn. In the introduction of basis, the role of basis was explained as to give a coordinate 
system, and a basis was explained as a set of ‘axes.’ It was explained that the second 
condition means that it contains a sufficient number of axes to represent the whole 
space and that the first condition means that there is no extra axis in the set.  



  
In the exercise part, students worked on paper-based exercises given by the teacher. 
Exercises mainly consisted of questions in the symbolic world and some of them can 
be viewed as questions in the embodied world: determining linear (in)dependence of 
vectors in  ℝ$ (n=2,3,4) or in polynomial spaces, determining whether a given set of 
vectors in  ℝ$ (n=2,3,4) or in polynomial spaces is a basis or not, finding a basis and 
the dimension of given subspaces in  ℝ$ (n=2,3,4) or in polynomial spaces, etc. Many 
of the questions were computational ones. Some of them were related to the geometric 
instruction given in the lecture part and they can be answered with geometrical 
reasoning.  
Design of tasks 
The following four tasks, which were translated from Japanese, were designed in order 
to investigate students’ understanding of dimension, linear (in)dependence and basis.  
Task 1: Answer the following questions. If you do not know (or if you have not learned), 
write your answer as “I don’t know.” 

(1) Describe your image of an example of one dimension, two dimension, and three 
dimension, respectively, using figures and words freely.  
(2) For vectors v1, v2, …, vn, vn+1, assume that vectors v1, v2, …, vn span an n-
dimensional space V, and that v1, v2, …, vn, vn+1 span an (n+1)-dimensional space W. 
When you draw a picture showing this situation, what kind of picture do you draw? 
Draw a picture of your image. 

Task 2: Determine whether spatial vectors given in each picture are linearly 
independent or not. Note that each vector lies on a line or a plane shown in the picture. 
(If there are multiple planes, each vector lies on one of them.) 

(1) (2) (3) (4) (5) 

(6) 

 

(7) 

 

(8) 

 

(9) 

 

(10) 

Figure 1: Test items in Task 2 

Task 3: (Q1) For vectors v1, v2, …, vn in a vector space V over K, describe two conditions 
(in the definition of basis) for v1, v2, …, vn to be a basis of V. Write your answer in the 
answer columns (A) and (B). (Q2) Determine whether the following set of vectors is a 
basis or not. If it is not a basis, answer which condition that you described in Q1 is not 
satisfied. In the latter case, write your answer by using the symbol A or B, and write 
“A, B” in both cases. (Vector spaces are as follows: (1) ℝ%, (2) ℝ&, (3) ℝ', (4) ℝ&, (5) 

a

b

a

b

a

bc

d

a

b

c

a

b

a

b

c

a

b
c

a

b

c
d

a

b

c

a

b
c



  
the space of polynomials 𝑓(𝑥) with degree less than 3 whose coefficients are in ℝ, (6) 
the space of polynomials 𝑓(𝑥) with degree less than 2 whose coefficients are in ℝ.) 
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Task 4: (Q1) Determine whether spatial vectors given in each picture are linearly 
independent or not, and describe the reason. (Q2) Determine whether the given vectors 
in ℝ& are linearly independent or not, and describe the reason. 
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Figure 2: Test items in Task 4 

A priori analysis of tasks 
Task 1 and Task 2 are pre-tests conducted at the beginning of the semester. Task 1(1) 
can be answered as ‘line’, ‘plane’, and ‘space’. Task 1(2) is a non-routine task to 
examine whether students have an image that V is contained in W, or W extends outside 
of V as a space. Task 2 includes all of the important cases of less than or equal to four 
spatial vectors regarding linear (in)dependence. Task 2 is the same one that we used in 
our previous study (Kawazoe & Okamoto, 2016). According to our previous result 
(ibid.), Task 2 (8) was expected to be difficult for the participants. Task 2 (8) contains 
four vectors and any three of them do not lie on the same plane, hence it cannot be 
reduced to the case of less than or equal to three vectors. Task 2 (3) also contains four 
vectors, but it can be reduced to the case of three vectors because the vectors a, b, c lie 
on the same plane. The terms ‘dimension’, ‘span’, and ‘linearly independent’ were used 
in the texts in these tasks. Since the participants were in the second-year or higher, they 
had already learned them when they were in the first-year. 
The aim of Task 3 is to investigate students’ understanding of the definition of basis. 
For any set of vectors listed in (1)-(6), one can determine their linear (in)dependence 
without computation. Only (2) and (6) are basis, and the others are not. 
In Task 4, Q1 is a task in the embodied world, and Q2 is a task in the symbolic world. 
The two pictures in Q1 was taken from Task 2. According to the result of our previous 
study (ibid.), determining linear (in)dependence of four spatial vectors is problematic. 
Q1(1) and Q2(2) present essentially the same situation, and Q1(2) and Q2(1) present 
essentially the same situation. Q1(1) and Q1(2) can be answered by drawing vectors 
representing linear combinations, or by using the fact on vector subspaces spanned by 
two or three vectors. Q2(1) and Q2(2) can be answered by using numerical computation 
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(with or without the use of the Gaussian elimination), but they also can be answered 
with geometrical reasoning.  

METHODOLOGY AND DATA COLLECTION 
We implemented four-weeks lessons whose design is described in the above. Task 1 
and 2 were conducted at the beginning of the first lesson. Task 3 was conducted at the 
third week, and Task 4 was conducted at the beginning of the fifth week lesson. 
Participants’ answers for Task 1 were analyzed whether they have an image of 
dimension less than or equal to three and whether they have an image of increment of 
dimension. Participants’ reasoning for Task 4 Q1 were analyzed with APOS theory. 
Participants’ reasoning for Task 4 Q2 were classified into two types: algebraical 
reasoning, and geometrical reasoning. For other tasks, participants’ answers were 
evaluated depending on their correctness. Then, the relations between the results of 
these tasks were investigated. 
The study was conducted in the fall semester in the academic year 2018. All data were 
collected during the first five weeks in the linear algebra class for engineering students 
who had failed in the previous year or before. The number of students in the class were 
58. Among the 58 students, 38 of them worked out all the tasks from Task 1 to Task 4. 
In this study, the data of the 38 participants was statistically analyzed. 

RESULTS 
The result of each task and setting of groups 
Task 1. For Task 1 (1), almost all participants described their images for dimension 1, 
2, 3, as ‘line’, ‘plane’, ‘space’, respectively. For Task 1 (2), only 11 (28.9%) of them 
could draw their image of increment of dimension as extending outside the space. We 
set two groups according to the result of Task 1 (2): GI+ is the group of 11 participants 
having a geometric image of increment of dimension, GI- is the group of the others.  
Task 2. The percentages of correct answers for Task 2 were as follows: (1) 97.4%, (2) 
94.7%, (3) 65.8%, (4) 97.4%, (5) 89.5%, (6) 94.7%, (7) 86.8%, (8) 52.6%, (9) 89.5%, 
(10) 86.8%. The percentages of correctness for (3) and (8) were much lower, compared 
with the others. The pictures of (3) and (8) contain four vectors. The number of vectors 
in the others is less than four. The result of Task 2 was almost the same as the one in 
our previous study (Kawazoe & Okamoto, 2016), except for the result of (3). In the 
previous study, the percentage of correct answers for (3) was 84.5%. The median of 
the number of correct answers per participant was 9. We set two groups according to 
the result of Task 2: GV+ is the group of participants who answered correctly to more 
than 8 questions, and GV- is the group of the others.  
Task 3. For Q1, the number of participants who could describe two conditions in the 
definition of basis correctly was 23 (60.5%). While 34 (89.5%) of the participants could 
describe linear independence of the vectors correctly as one of the conditions, 24 
(63.2%) of them could described correctly that the vectors span V or that any vector in 



  
V can be represented as a linear combination of the vectors. 8 (21.1%) of the them 
described ‘dim V=n’ as one of the conditions, which is a wrong answer because ‘dim 
V’ is defined after the definition of basis is introduced.  
For Q2, while the percentages of correct answers for (2), (3), (4) were high, those of 
(1), (5), (6) were relatively low: (1) 78.9%, (2) 97.4%, (3) 94.7%, (4) 94.7%, (5) 78.9%, 
(6) 65.8%. As for reasoning in (1), (3), (4), and (5), we evaluated whether a participant 
could answer correctly based on the necessary and sufficient conditions to be a basis. 
Hence, for a participant who described ‘dim V=n’ in Q1, we evaluated his/her answer 
for Q2 whether it was logically correct based on his/her answer in Q1. The percentages 
of correct answers for reasoning were as follows: (1) 65.8%, (3) 63.2%, (4) 36.8%, (5) 
65.8%. The median of the number of errors in Q2 (including errors in reasoning in the 
case of non-basis) per participant was 2. We set two groups according to the number 
of incorrect answers for Task 3 Q2: B+ is the group of participants whose incorrect 
answers were less than or equal to 2, and B- is the group of the others. 
Task 4. The percentages of correct answers for Task 4 were as follows: Q1(1) 89.5%, 
Q1(2) 55.3%, Q2(1) 86.8%, Q2(2) 89.5%. The pictures in Q1(1) and Q1(2) are same 
as in Task 2 (3) and Task 2 (8), respectively. While the percentage of correct answers 
for Q1(2) remained still low, the one for Q1(1) was much improved from the result of 
Task 2 (3). Though Q1(2) is essentially same as Q2(1) from a geometrical viewpoint, 
the results of them were different. According to the reasoning in Q1, we set the 
following groups: For j=1, 2, Oj+ is the group of participants showing Object 
conceptions in the reasoning for Q1(j), Oj- is the group of participants showing 
Action/Process conceptions or giving no reason in the reasoning for Q1(j). According 
to the reasoning in Q2(j), we set the following groups: For j=1, 2, GRj+ is the group of 
participants using geometrical reasoning for Q2(j), GRj- is the group of the others.  
The relations between the results of each task 
In the following analysis, we used Fisher’s exact test instead of the Chi-square test 
because there were small numbers in cross-tabulation.  
Relation between understanding in the embodied world and understanding of basis: 
Fisher’s exact test indicated that having a geometric image of increment of dimension 
(Task 1 (2)) and the result of Task 3 Q2 were positively associated (p<0.05, Table 1). 
Fisher’s exact test also indicated that showing Object conceptions in reasoning for Task 
4 Q1(2) and the result of Task 3 Q2 were positively associated (p<0.05, Table 2). On 
the other hand, we could not find any significant relation between O1+/- and B+/-. 

 B+ B- 

GI+ 9 2 
GI- 11 16 

Table 1: Relation between the results of 
Task 1(2) and Task 3 Q2 

 B+ B- 

O2+ 8 1 
O2- 12 17 

Table 2: Relation between having Object 
conception and the result of Task 3 Q2 



  
Relation between understandings in the embodied world and in the symbolic world: 
Fisher’s exact test indicated that showing Object conception in reasoning for Task 4 
Q1(2) and the number of correct answers in determining linear (in)dependence in Task 
4 were positively associated (p<0.01, Table 3), where NC means the number of correct 
answers in determining linear (in)dependence in Task 4. On the other hand, we could 
not find any significant relation between O1+/- and the result of Task 4. Fisher’s exact 
test also indicated that the use of geometrical reasoning for Task 4 Q2 and the number 
of correct answers in determining linear (in)dependence in Task 4 were positively 
associated (p<0.05, Table 4), where GR+= GR1+∪GR2+, GR-= GR1-∩GR2-, and NC is 
the same as in Table 3. Fisher’s exact test also indicated significant correlations for 
GR1+/- (p<0.05) and for GR2+/- (p<0.05).  

 NC=4 NC<4 

O2+ 8 1 

O2- 9 20 

Table 3: Relation between having Object 
conception and the result of Task 4 

 

 NC=4 NC<4 

GR+ 10 5 

GR- 7 16 

Table 4: Relation between the use of 
geometrical reasoning and the result of 

Task 4 

Difference of understanding of linear (in)dependence between before and after of four-
weeks lessons: The picture in Task 4 Q1(1) and Q1(2) are same as the one in Task 2 
(3) and (8), respectively. McNemar’s test indicated that there was a significant 
difference between the results of Task 2 (3) and Task 4 Q1(1) (p<0.05, Table 5), where 
the participants were divided into two groups depending on whether their answers for 
Task 2(3) were correct (T2(3)+) or not (T2(3)-), and they were divided into two groups 
depending on whether their answers for Task 4 Q1(1) were correct (T4Q1(1)+) or not 
(T4Q1(1)-). On the other hand, Fisher’s exact test indicated that the result of Task 2 and 
the number of correct answers in determining linear (in)dependence in Task 4 Q1 were 
positively associated (p<0.01, Table 6), where NCQ1 means the number of correct 
answers in determining linear (in)dependence in Task 4 Q1. 

 T4Q1(1)+ T4Q1(1)- 

T2(3)+ 23 2 

T2(3)- 11 2 

Table 5: Relation between the results of 
Task 2 (3) and Task 4 Q1(1) 

 NCQ1 =2 NCQ1 <2 

GV+ 16 7 

GV- 3 12 

Table 6: Relation between the result of 
Task 2 and the result of Task 4 Q1 

DISCUSSIONS 
As for the first research question, we observed some relations between understanding 
in the embodied world and understanding in the symbolic world. The analysis for Table 



  
1 indicated that having a geometric image of increment of dimension and 
understanding of basis in the symbolic world were positively associated. The analysis 
for Table 4 indicated that the use of geometrical reasoning in the symbolic world and 
understanding of linear (in)dependence in both embodied and symbolic world were 
positively associated. The analysis for Table 2 and 3 indicated that having Object 
conception for linear (in)dependence in the embodied world, especially for the case of 
four spatial vectors such that any three of them do not lie on the same plane (as in the 
picture of Task 2(8) and Task 4 Q1(2)), was positively associated with understanding 
of basis in the symbolic world (Table 2), and also positively associated with 
understanding of linear independence in both embodied and symbolic world (Table 3).  
As for the second research question, we observed that the effectiveness of the 
implemented instruction emphasizing geometric images was limited. The analysis for 
Table 5 indicated that understanding of linear dependence of four spatial vectors in the 
picture of Task 2 (3) had been improved during the four-weeks lessons. On the other 
hand, the result of Task 4 and the analysis for Table 6 indicated that understanding of 
linear dependence of four spatial vectors in the picture of Task 2 (8) had not been 
improved. Improving students’ understanding of Task 2 (8) was more important 
because conceptual understanding of linear dependence in the case of Task 2 (8) was 
related to understanding of basis and linear independence in the symbolic world. How 
should we consider this result? There may be the following two possibilities: one is 
that the geometrical instruction implemented in this study was insufficient and it can 
be more improved; the other is that there is a limitation of students’ perception even in 
the embodied world and it is cognitively hard to overcome such limitation. In the latter 
case, we should take into account of such limitation in teaching linear algebra, and it 
may lead us to reconsider how to design a linear algebra course under the framework 
with Tall’s model of three worlds, especially to reconsider the balance and integration 
between geometric and algebraic presentation. However, the two possibilities need to 
be carefully examined in the future study. 
Finally, we should mention the limitations of the study. First, the sample size was small. 
Second, the participants were not ordinary because they were students who had failed 
to pass the subject in the earlier years. Hence, further studies with a larger number of 
first-year students are needed. 
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