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Undergraduates in an introductory topology course participated in a series of study sessions in which they were asked to prove or disprove statements. We present a case study of one student who alternated between using gestures and constructing diagrams when communicating her informal ideas while proving true statements. This cycle was repeated until she identified the key idea of the proof, at which point she began to translate this idea into a formal proof. We observed that the use of gesture combined with diagram modification to explore a heuristic idea supported her identification of the key idea and subsequent completion of a written proof.

INTRODUCTION

Advanced mathematical thinking is often communicated as formal proof. Learning to construct proofs is a critical part of the undergraduate mathematics major curriculum. Many studies have shown that students struggle to construct valid proofs [START_REF] Weber | Proofs that Develop Insight[END_REF][START_REF] Weber | Semantic and Syntactic Proof Productions[END_REF]. The concepts involved in these proofs often have multiple representations, both formal and informal. Among the informal representations are gestures and diagrams, which students use to develop and communicate their insights about a problem. These insights can lead to the use of formal notations and logical structures that we see used by the mathematics community. Here, we present a study in which we examine how gesture informs diagram construction and the discovery of the key idea of a proof.

Proof is a form of advanced mathematical discourse, i.e., how we communicate advanced mathematical ideas in written and spoken forms. Research has shown that mathematicians often begin with an image [START_REF] Carlson | The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework[END_REF][START_REF] Gallagher | A possible framework for students' proving in introductory topology[END_REF][START_REF] Zazkis | Coordinating Visual and Analytic Strategies: A Study of Students' Understanding of the Group D 4[END_REF]. McNeill observed, "…language is inseparable from imagery. The imagery in question is embodied in the gestures that universally and automatically occur with speech. Such gestures are a necessary component of speaking and thinking." (McNeill, 2005, p. 15) [START_REF] Roth | From gesture to scientific language[END_REF] argued that because students are unfamiliar with scientific discourse, their gestures precede their verbal discourse.

Further, Yoon, Thomas, and Dreyfus indicated "gestures are a useful, generative, but potentially undertapped resource for leveraging new insights in advanced levels of mathematics." (2011, pp. 891-892). They advised that students should be provided opportunities to spontaneously create gestures (in small group problem solving sessions) and that instructors model gestures for students in lecture. We created an environment in which students were encouraged to engage in mathematical discourse in order to observe how imagery and gestures may influence the development of formal mathematics. In this paper, we examine how gesture and diagram construction facilitate discovery of the key idea in topology proofs when students are working in small groups.

THEORETICAL PERSPECTIVE

Embodied Cognition

We frame our work by viewing mathematics as a semiotic bundle and taking an embodied cognition perspective. A semiotic bundle is made of signs, such as words (oral and written), gestures, drawings, graphs, and technological devices, that are used by people engaged in a discourse. [START_REF] Arzarello | Gestures as semiotic resources in the mathematics classroom[END_REF] noted,

The novelty of the semiotic bundle…is that it allows us to describe the multimodal semiotic activity of subjects in a holistic way as a dynamic production and transformation of various signs and of their relationships. In particular, it properly frames the role of gestures in mathematical activities. (p. 100)

There is a large body of work in cognitive science focused on embodied cognition, which posits that knowledge is shaped by our experiences and interactions with the world around us [START_REF] Lakoff | Where Mathematics Comes From: How the Embodied Mind Brings Mathematics Into Being[END_REF][START_REF] Nunez | A fresh look at the foundations of mathematics: Gesture and the psychological reality of conceptual metaphor[END_REF]. Through bodily experiences, such as gesture, our understanding of complex concepts is shaped. [START_REF] Roth | From gesture to scientific language[END_REF] suggested that "…schools (and universities) may be ideal 'laboratories'… to study the genesis of formal discourses (e.g., science and mathematics) and the role gestures play during this development." (p. 1712). While there have been many studies of the effects of gesture on younger students' learning of mathematics [START_REF] Alibali | Embodiment in Mathematics Teaching and Learning: Evidence from Learners' and Teachers' Gestures[END_REF][START_REF] Goldin-Meadow | Gesturing gives children new ideas about math[END_REF], there have been considerably fewer of undergraduate students in advanced mathematics classes. This study documents how students interact, through speech and gesture, with the inscriptions they create as they work to construct proofs. Similar to [START_REF] Bjuland | The Interplay Between Gesture and Discourse as Mediating Devices in Collaborative Mathematical Reasoning: A Multimodal Approach Mathematical Thinking and Learning[END_REF] and [START_REF] Arzarello | Gestures as semiotic resources in the mathematics classroom[END_REF], we examine discourse, gesture, and inscriptions; however, our focus is on students of university age. [START_REF] Roth | Inscriptions: Toward a theory of representing as social practice[END_REF] noted that "When inscriptions are absent from face-to-face encounters, conversational troubles may quickly arise." (p. 43). They further pointed out that representing is a social activity and that interpreting inscriptions is challenging for students. More recently, de Freitas and Sinclair (2011) proposed that diagrams and gesture are intrinsically linked -diagrams are a way to capture gesture. The diagrams that are constructed as a result of gesture are a public inscription that captures embodied (personal) knowledge. Hence, we seek to understand how students (collaboratively) construct inscriptions while determining the key idea of a proof.

Proof: Key Idea

Proof primarily serves two purposes: 1) to convince oneself, and 2) to convince others [START_REF] Harel | Students' Proof Schemes: Results from Exploratory Studies[END_REF]. [START_REF] Raman | Key Ideas: What are they and how can they help us understand how people view proof[END_REF] defined three types of ideas used in proof: heuristic, procedural, and key. A heuristic idea is based on informal understandings and provides a sense of personal understanding; convincing oneself. In contrast, a procedural idea is based on logic and formal manipulations to provide a sense of conviction; convincing others. Finally, Raman defines, "A key idea is an heuristic idea which one can map to a formal proof with appropriate sense of rigor" (p. 323); convincing oneself and others.

As students learn the discourse of proof, they need to identify and use key ideas. While students discuss the mathematics verbally, they will likely gesture. In turn, these gestures facilitate the construction of diagrams. The resulting diagrams are public inscriptions that capture embodied knowledge. In this study, we start to answer the following question: How does the interplay between gesture and diagram help students identify the key idea when constructing topology proofs?

METHODS

We recruited students from an introductory undergraduate course in point-set topology at a large university in the United States. Participants attended weekly one-hour sessions in which they were asked to complete proof tasks (including "prove" and "disprove" prompts). Participants engaged in nine distinct problem sets over the course of the semester and were encouraged to collaborate on all proof tasks. Only one student, Stacey (a pseudonym), attended all sessions. A qualitative case study methodology [START_REF] Cohen | Research Methods in Education London[END_REF][START_REF] Yin | Case Study Methods[END_REF] was used to examine how Stacey used gesture and diagrams as she engaged in proof construction tasks.

Sessions were video recorded, and the videos were transcribed and coded for gesture use according to the coding scheme below. We also identified the moment in each session when Stacey verbally expressed the key idea [START_REF] Raman | Key Ideas: What are they and how can they help us understand how people view proof[END_REF] of the proof of the "prove" prompt, in those sessions where this occurred. We coded Stacey's recognition of the key idea as the moment first moment she vocalized the idea she would eventually turn into a formal proof. This occurred, at most, once per session. The results we present in this paper concentrate on data collected from the "prove" prompts.

The definition of gesture varies in the literature, sometimes including all visible body movement including eye gaze and body posture. For this study, we use the definition given by [START_REF] Rasmussen | Classroom mathematical practices and gesturing[END_REF]: "movement made by a hand with a specific form: the hand(s) begins at rest, moves away from the position to create a movement, and then returns to rest" (p. 303), which is adapted from a definition given by [START_REF] Roth | Gestures: Their Role in Teaching and Learning[END_REF] but not as broad as other definitions, see [START_REF] Kendon | Gesture: Visible Action as Utterance[END_REF].

We classified our gestures using McNeill's dimensions of iconicity, metaphoricity, and deixis [START_REF] Kendon | Gesture: Visible Action as Utterance[END_REF][START_REF] Mcneill | Hand and Mind: What gestures reveal about thought[END_REF][START_REF] Mcneill | Gesture and Thought[END_REF]. Iconic gestures are those that have real world objects and actions associated with them while metaphoric gestures are those that are created in the mind to represent something abstract. All representational gestures (i.e., iconic and metaphoric gestures) that referred to mathematical objects such as sets, points, or functions, were coded as metaphoric gestures, since the referents were abstract and not concrete. Deictic gestures are pointing gestures; we further subdivided deictic gestures into static points (using a finger/hand to point to something and not moving it) and tracing points (a gesture that starts as a point but then continues to move to highlight a secondary attribute of the referent, such as tracing the shape of a graph). We agree with [START_REF] Mcneill | Gesture and Thought[END_REF] that these dimensions are not mutually exclusive, and that gestures may contain elements from a mix of dimensions. In Session 9, Stacey was asked to prove that, given a compact subspace 𝑌 of a Hausdorff space and a point 𝑥 ∉ 𝑌, there exist disjoint open sets 𝑈 and 𝑉 such that 𝑥 ∈ 𝑈 and 𝑌 ⊆ 𝑉. Stacey began by extracting a list of details given in the problem statement, and she "wrote it out in symbols to help [her] think of it better," then talked through those details while using static points to highlight each one. It appeared that Stacey did not initially have a heuristic idea for this proof, as she spent a few minutes exploring the implications of her list of given conditions and browsing her textbook for useful hints.

RESULTS

We

Stacey's examination of her textbook led her to realize that 𝑌 must be closed in 𝑋, as a compact subspace of a Hausdorff space, a fact which she added to her written list on the board. She then constructed a diagram (Figure 5, left), which she modified as she elaborated:

The open set 𝑈 would be the complement of 𝑌 in 𝑋 [writing 𝐶 (𝑌) (right)], because you know it's open because 𝑌 is closed. I don't know if there's a theorem or something that would get me there, but the fact that 𝑌 is a compact subspace of something Hausdorff might mean that there exists an open set within it [metaphoric gesture indicating a subset of 𝑌]oh wait, no. Because 𝑌 has to be in 𝑉 [static point to her inscription, 𝑌 ⊆ 𝑉 (right)]. So we need something like this [draws a larger set containing 𝑌, labels it 𝑉 (right)]. And then you also need their intersection to be empty. So I guess you can't really take just the complement of 𝑌 [static point to the label 𝐶 (𝑌)] because -you can't just take the set 𝑌 because it's closed, you need an open set for 𝑉. So you need something bigger than 𝑌 [tracing point to the boundary of 𝑉], but if you take anything bigger than 𝑌, then you're in the complement of it [static point to the label 𝑋], and then the intersection isn't empty. So you need something within this complement of 𝑌 [static point to 𝐶 (𝑌)] to be the set 𝑈.

Stacey used her diagram and her gestures to explain and explore her heuristic idea. In contrast to Sessions 5 and 7, however, her combination of diagram and gesture usage exposed flaws in her reasoning. The exposure of these flaws allowed her to modify her understanding of the problem and proceed in search of a new idea. Stacey never identified the key idea of the proof in Session 9, but she continued to explore new ideas through gesture and modifying her diagram to reflect her evolving understanding.

DISCUSSION

The data from Sessions 5 and 7 suggest a sequence of events in Stacey's recognition of key ideas and subsequent proof constructions. Stacey's use of gestures and their role in the production of diagrams are critical to her recognition of the key idea [START_REF] Raman | Key Ideas: What are they and how can they help us understand how people view proof[END_REF] that eventually leads to the writing of the formal proof.

The embodied cognition perspective [START_REF] Lakoff | Where Mathematics Comes From: How the Embodied Mind Brings Mathematics Into Being[END_REF][START_REF] Nunez | A fresh look at the foundations of mathematics: Gesture and the psychological reality of conceptual metaphor[END_REF] suggests that internal knowledge is shaped by interactions with the external world. Engaging in discussions of mathematical ideas is a prominent means of interacting with the world. Verbal discourse is enhanced when we use gestures and diagrams to aid in our communication. As [START_REF] Roth | Inscriptions: Toward a theory of representing as social practice[END_REF] noted, communication suffers in the absence of inscriptions. In the data we presented, Stacey began reasoning about her proofs by drawing a diagram to represent her understanding of the problem, giving her ideas physical manifestations. Stacey then gave verbal descriptions accompanied by gestures, and she then used her diagrams to further facilitate communication of her informal mathematical ideas. With her ideas now part of the external world, she was free to interact with them physically, modifying her understanding as she modified her diagrams. The result of this activity was recognition of the key idea of the proof.

Our analysis of Stacey's proof-writing in Sessions 5 and 7 suggests a pattern in her proving behaviours (see Figure 6). In the following paragraphs, we describe this pattern, and we speculate on the reasons for the observed behaviours.

Stacey's proof production process began with the formation of a heuristic idea: she started with an informal reason why she believed the statement to be proved might be true. Collaboration with another individual (whether another student or the session's facilitator) produced a need to communicate that idea externally, resulting in the production of gestures or an inscription (often, a diagram). Though Stacey may have possessed a heuristic idea, she was only able to represent one or two pieces of the idea at a time via gesture alone, and she may only have been able to hold a comparable number of pieces in her working memory. In order to record her gestures, Stacey created or modified a diagram, freeing her to produce new gestures to further explain her idea [START_REF] De Freitas | Diagram, gesture, agency: theorizing embodiment in the mathematics classroom[END_REF]. These new gestures could then be added to her diagram, and this cycle repeated. The diagram became a more complete representation of Stacey's heuristic idea as more gestures were captured with each iteration of the cycle.

As the diagram became a more complete representation of Stacey's heuristic idea, she began to see how she might be able to translate her informal ideas into a formal proof. Stacey's heuristic idea became the key idea when she recognized that it should translate into a formal proof. Once this recognition was achieved, Stacey was free to begin construction of the formal proof and the development of the procedural idea, eventually leading to the completion of the proof. Though Stacey did not complete a proof in Session 9, we emphasize that Stacey did not identify a key idea during this session. Further, Stacey did not immediately generate a diagram like she did in Sessions 5 and 7. Stacey only drew a diagram after she arrived at an intuitive (albeit inaccurate) idea of why the given statement might have been true, and it was through a combination of gestures, speech, and diagram modification that she recognized the error in her idea. This provides support for the idea that gesture use and diagram modification were integral to Stacey's success in producing proofs.

CONCLUSIONS

This study sought to understand how the interplay between gesture and diagram construction facilitates students' proof writing. We observed that Stacey's engagement in a cycle of using verbal descriptions of her thinking accompanied by gestures and diagram construction led to her success in identifying the key idea of the proof and writing a correct proof. This adds to our knowledge of how gesture and advanced mathematical thinking are linked.

While we chose tasks that we thought would prompt students to draw diagrams and produce gestures, the tasks did not require students to engage in these activities. Future studies could investigate the effect of explicitly prompting students to gesture when explaining their thinking. Additionally, we suggest examining how the instructors of these courses use gesture and how that affects students' gesture use and conceptual understanding. Lastly, we acknowledge that our sample size was small and that to determine the extent of the generalizability of our results additional data are needed. It would further expand our knowledge to observe students working on proofs in other areas of advanced mathematics such as abstract algebra and geometry with a focus on the relationship between gesture and inscriptions.

Proof construction is challenging for students. Our results indicate that the combination of dialogue, gesture use, and diagram construction may be an effective tool to help students translate their informal ideas into formal mathematics. As students transition from the algorithmic, computational mindset of early grades mathematics to advanced mathematics that require more creativity and flexibility, the tools we give them must increase in flexibility as well. Communication is about more than just talk; gestures complement our verbal communication by providing a visual component that may be captured in inscriptions. We concur with [START_REF] Yoon | Gestures and insight in advanced mathematical thinking[END_REF] that encouraging students to express their mathematical thinking with gesture can help them to be successful in communicating and understanding mathematical ideas.

  discuss instances of Stacey's gesture use and diagram generation in three proof productions as well as her recognition of the key ideas of those proofs. During Session 5, Stacey and Tom were asked to prove that, given a subset 𝐴 of a topological space (𝑋, 𝒯), "[I]f for each open set 𝑂 ∈ 𝒯 we have 𝐴 ∩ 𝑂 ≠ ∅, then 𝐴 is dense in 𝑋." Stacey began by drawing the diagram in Figure 1 (left).

Figure 1 :

 1 Figure 1: Stacey's evolving diagram. She then began to explain her thinking (referencing the diagrams in Figure 1): I can't really show it with a picture because I can't draw a dashed line over a … solid line, but we have 𝑋 [static point to the label 𝑋 (left)] on the outside [tracing point along the boundary of 𝑋 (left)] and then we have the set 𝐴 [static point to the label 𝐴 (left)] which is represented by the dashed [tracing point along the boundary of 𝐴 (left)], which I wish I could get closer to this [static point to the border of 𝑋 (left)], but I can't. So, if we had the closure of 𝐴 [static point to the label 𝐴 (left)], then it would just be the same as that solid line [tracing point along the border of 𝑋 (left)]. So then if you take any open set [drawing circles on her diagram (center)] anywhere, there has to be some kind of intersection with 𝐴 [static point to one of her open sets (center)]. So if it wasn't … if the intersection could be … the empty set [static point to ∅ in the problem statement] -[draws the diagram in Figure 1 (right)] You've got 𝑋 here, and 𝐴 here, and you could have an open set here, and their intersection would be the empty set [recognizes key idea]. But then this closure [static point to the boundary of 𝐴 (right)] wouldn't be equal to 𝑋 [static point to the boundary of 𝑋 (right)]. I get it conceptually I think, but I'm not sure how to prove it. Notice the alternation between diagram construction/modification and explanation accompanied by gesture production. The diagram gave Stacey a concrete referent to which

Figure 2 :

 2 Figure 2: Session 5, Stacey reasoning about her diagrams using gestures. she could point while explaining her thoughts, and the articulation of her ideas led to further modification of the diagram. After a few such alternations, Stacey arrived at the key idea of the proof. Following this excerpt, Stacey and Tom chose to use the method of proof by contradiction and wrote their formal proof. Stacey's task in Session 7 was to prove that, given a topological space (𝑋, 𝒯), "If the sets 𝐶, 𝐷 form a separation of 𝑋, and if 𝑌 is a connected subspace of 𝑋, then either 𝑌 ⊆ 𝐶 or 𝑌 ⊆ 𝐷." As in Session 5, Stacey began by drawing a diagram (Figure 3, left).

Figure 3 :

 3 Figure 3: Stacey's diagram for a separation of a topological space. Referencing Figure 3, she explained, If you have 𝑋, the ambient space [static point to the boundary of 𝑋 (left)], and then you have the sets 𝐶 and 𝐷 [alternating static points to the left and right rectangles (left)], they form a separation, so that means that they're disjoint [static points to the left rectangle, then the right (left)], so they don't have any of the same elements, and that their union is 𝑋 [static point to the boundary of 𝑋 (left)], so that is satisfied for this [alternating static points to left and right rectangles (left)]. And then if 𝑌 is connected, which means it's not in these sets [metaphoric gesture indicating two disjoint subsets of 𝑌 (Figure 4, left)] that are disjoint whose union is 𝑌, it's just one cohesive set [metaphoric gesture indicating 𝑌 as a connected set (Figure 4, right)], then it has to be either in 𝐶 or in 𝐷. It can't be in both, because if it was like that [draws the subset in Figure 3 (right)], it would be disjoint. [recognizes key idea]

Figure 4 :

 4 Figure 4: Stacey describing a connected subspace with gestures.

Figure 5 :

 5 Figure 5: Stacey's evolving diagram of a Hausdorff space.

Figure 6 :

 6 Figure 6: Stacey's observed proof-writing sequence in Sessions 5 and 7.