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Abstract: Information systems of companies and organizations are increasingly designed using web
services that allow different applications written in different programming languages to communicate.
These systems or some parts of them are often outsourced on the cloud, first to leverage the benefits of
cloud platforms (e.g., scalability) and also to reduce operational costs of companies as well. However,
web services as well as cloud platforms may be the target of attacks that alter their security, and the
security of web services is not completely addressed. The solutions proposed in the literature are
sometimes specific to certain types of attacks and they cannot ensure the attack tolerance of web
services. Attack tolerance can be defined as the capability of a system to function properly with
minimal degradation of performance, even if the presence of an attack is detected. As such, we
claim that, to achieve attack tolerance, one should detect attacks by a continuous monitoring and
mitigate the effects of these attacks by reliable reaction mechanisms. For this aim, an attack tolerance
framework is proposed in this paper. This framework includes the risks analysis of attacks and is
based on diversification and software reflection techniques. We applied this framework to cloud
applications that are based on web services. After describing the core foundation of this approach,
we express such cloud applications as choreographies of web services according to their distributed
nature. The framework has been validated through an electronic voting system. The results of these
experiments show the capability of the framework to ensure the required attack tolerance of cloud
applications.

Keywords: resilience; attack tolerance; monitoring; passive tests; runtime verification; web services
and cloud; software reflection

1. Introduction

Computer systems are now at the heart of all business functions (accounting, customer relations,
production, etc.) and more generally in everyday life. These systems consist of heterogeneous
applications and data. They are sometimes described through modular architectures that integrate and
compose them in order to meet the needs of the organization. Service Oriented Architectures (SOA)
are suitable for this purpose.

These architectures are distributed and facilitate the communication between heterogeneous
systems. The main components of such architectures are web services. A web service is a collection
of open protocols and standards for exchanging data between systems. Thus, software applications
written in different programming languages and running on different platforms can therefore use web
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services to exchange data. These services can be internal and only concern one organization. However,
with technological advances in communication networks especially the Internet and the expansion of
online services via cloud computing or simply the interconnection of IT systems, the need to expose
services to the outside world is growing. Cloud computing for example enables sharing of IT resources
(computing, storage, networks, etc.) on demand over the Internet. These services are often deployed
on the basis of smaller components (containers, virtual machines, etc.) deployed on a single site or on
several geographically distributed sites. They can also be provided by several different cloud service
providers (multi-cloud applications).

However, web services, as with many other technologies taking advantage of the Internet, are
also facing attacks on availability, integrity, and confidentiality of platforms and user data. Moreover,
web services deployed in the cloud inherit their vulnerabilities. Indeed, they are vulnerable to different
risks that have to be evaluated [1]. Recently, new attacks exploiting cloud vulnerabilities such as
side-channel, VM escape, hacked interfaces and APIs, and account hijacking [2–4] are considerably
reducing the effectiveness of traditional detection and prevention systems (e.g., firewall, intrusion
detection systems, etc.) available in the market. Web services deployed in the cloud also inherit their
vulnerabilities.

As mentioned above, cyber attacks are multiplying and becoming more and more sophisticated.
We show that, to better tolerate and limit the impact of these attacks, the monitoring of the information
systems is of paramount importance for any organization. Traditional intrusion detection systems are
deployed to identify and inhibit attacks as much as possible. Usually, the detection of anomalies is
based on the comparison of observed behaviors with previously established normal behaviors. An
alert is raised when these two behaviors differ. In the case of dysfunction of the information systems,
they are able to act accordingly. Moreover, monitoring makes it possible to analyze in real time the
state of the computer system and the state of the computer network for preventive purposes.

However, we believe that the monitoring and detection of attacks require an awareness of the
risks that the system might be exposed to. As such, it is mandatory to include risk management in
the monitoring strategy in order to reduce the probability of failure or uncertainty. Risk management
attempts to reduce or eliminate potential vulnerabilities, or at least reduce the impact of potential
threats by implementing controls and/or countermeasures. In the case in which it is not possible to
eliminate the risk, mitigation mechanisms should be applied to reduce their effects.

In this paper, we adopt a new end-to-end security approach based on risk analysis, formal monitoring,
software diversity and software reflection. This approach integrates security of cloud applications based
on web services at all levels: design, specification, development, deployment, and execution.

At the design phase, we model cloud applications as choreographies of web services in order to
benefit from the distributed nature of cloud applications. Besides when deploying choreographies, one
should ensure that these choreography are realizable and the participants of these choreographies act
according to the requirements. Choreographies are written as process algebras and formally verified
and projected on the peers. Each participant of that choreography is deployed in one container or
virtual machine and diversified. The basic idea is to have variants of the components of the system
and these variants react and replace themselves when one of these components is compromised due
to the effects of an attack. Skeletons of the corresponding services are generated by ChorGen, a new
Domain Specific Language (DSL) we propose.

To anticipate attacks and better monitor the system, we leverage the traditional risk management
loop to build a risk-based monitoring that integrates risks into monitoring. This risk analysis helps
identify the attacks most likely to be executed against the system. Once these attacks are identified,
we rely on software reflection to monitor the system and detect the attacks. Reflection is a software
engineering technique that helps a program to monitor, analyze, and adjust its behavior dynamically.

We propose an attack tolerance framework (offline and online) for cloud applications based on the
web services in [5]. This paper is an extension of that work covering different aspects, which are not
addressed in this first version. In particular, we enrich the related work and the risk analysis sections,
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by giving more details on the work carried out in these areas and by presenting in more detail our
results. In summary, the contributions of the paper are the following:

• We detail the methodological aspects (models, assumptions, and implementation) and all the
steps that led to the construction of this approach (Sections 3.5 and 4). In short, a more complete
framework is proposed in this paper.

• We illustrate the approach through a concrete case study: an electronic vote system (Section 5).
Experiments on this use case highlight the attack tolerance capability of the whole framework.
The use case is also detailed. In particular, we present how conformance of the roles with respect
to the choreography is achieved.

• We discuss improvements and research avenues in the area of attack tolerance (Section 6).

The paper is organized as follows. We review the main attack tolerance techniques and the
principal issues related to web services in Section 2. Section 3 fully describes the risk-based monitoring
methodology. In this section, we also detail remediation strategies to apply corrective actions for
mitigating the impact. Following the above methodology, an attack tolerance framework for cloud
applications is presented in Section 4. In Section 5, we present a concrete case study: an electronic vote
system. Experiments on this use case highlight the attack tolerance capability of the whole framework.
Conclusions and future enhancements of this work are given in Section 6.

It should be mentioned that this paper is focused on the design of a framework for attack tolerance
of cloud applications, and the proposed approach could be adapted to network security [6], but this
subject is out of the scope of the paper.

2. Attack Tolerance for Web Services

This section first presents attack tolerance and existing techniques highlighting the main issues
that remain unsolved. We explore software formal methods as well, in order to disclose their benefits
for attack tolerance. Finally we provide an overview of web services security issues and the proposed
attack tolerance approaches.

2.1. Attack Tolerance Techniques

The attack tolerance concept comes from fault tolerance, a term used in dependability [7].
Dependability is a generic notion that measures the trustworthiness of a system, so that the users
have a justified trust in the service delivered by that system [8]. It mainly includes four components:
reliability, maintainability, availability, and security. Dependability has emerged as a necessity in
particular with industrial developments. The goal is to build systems that are reliable and contain
near-zero defaults. As IT systems are facing both diversified and sophisticated intrusions, intrusion
tolerance can be considered as one of the crucial attributes of dependability to be taken into account.

Attack tolerance of a system is then the ability of that system to continue to function properly
with minimal degradation of performance, despite intrusions or malicious attacks. Several approaches
and techniques are proposed in the literature. The goal of the work in [9] is to identify common
techniques for building highly available intrusion tolerant systems. The authors mentiond that a major
assumption of intrusion tolerance is that IT systems can be faulty and compromised and the main
challenge consists in continuing to provide (possibly degraded) services when attacks are present. In
addition, the main techniques used for attack tolerance are presented in [10]. Voting and dynamic
reconfiguration are some examples of these techniques.

Furthermore, there are several solutions that provide attack tolerance using one or a combination
of such techniques [11–15]. Constable et al. [16] explored how to build distributed systems that are
attack-tolerant by design. The idea is to implement systems with equivalent functionality that can
respond to attacks in a more safe way. Roy et al. [17] proposed an attack tree, which they named
attack-countermeasure tree. The aim is to model and analyze cyber attacks and countermeasures. They
used this tree to allow automation of the attack scenarios.
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Other approaches have been developed to cope with intrusion-tolerance. In [18], the authors
proposed a hybrid authorization service. The main contribution of that study is the introduction of an
Intrusion tolerance authorization scheme. In this scheme, the system is able to distribute proofs of
authorization to the participants of the system.

Besides, La [10], Nguyen and Sood [19] classified ITS (Intrusion Tolerant Systems) architectures
into four categories:

• Detection-triggered architectures build multiple levels of defense to increase system survivability.
Most of them rely on an intrusion detection that triggers reactions mechanisms.

• Algorithm-driven systems employ algorithms such as the voting algorithm, threshold cryptography,
and fragmentation redundancy scattering (FRS) to harden their resilience.

• Recovery-based systems assume that, when a system goes online, it is compromised. Periodic
restoration to a former good state is necessary.

• Hybrid systems combine different architectures mentioned above.

The main conclusion of this section is that the complementary combination of these architectures
can lead to the design of more efficient architectures. Our intrusion tolerance approach for web services
in this paper also combines the attack tolerance mechanisms in a coherent manner by incorporating
new detection methods.

2.2. Formal Methods

One of the open issues in software engineering is the correct development of computer systems.
We want to be able to design safe systems. The secure design of software refers to techniques based on
mathematics for the specification, development, and verification of software and hardware systems.
The use of a secure design is especially important in reliable systems where, due to safety and security
reasons, it is important to ensure that errors are not included during the development process. Secure
designs are particularly effective when used early in the development process, at the requirements
and specification levels, but can be used for a completely secure development of a system. One of
the advantages of using a secure representation of systems is that it allows rigorously analyzing
their properties. In particular, it helps to establish the correctness of the system with respect to the
specification or the fulfilment of a specific set of requirements, to check the semantic equivalence of two
systems, to analyze the preference of a system over another one with respect to a given criterion, to
predict the possibility of incorrect behaviors, to establish the performance level of a system, etc. Formal
methods are well suited to address the above mentioned issues as there are based on mathematical
foundations that support reasoning.

There are two different categories of formal methods, static analysis, and dynamic analysis [20].
In static analysis, the code is not executed but some properties are proven. Dynamic analysis consists
of executing the code or simulating it in order to reveal bugs. Software testing consists in comparing
the result of a program with the expected result. A particular type of dynamic analysis is formal
monitoring which remains more used for the detection of attacks. This is why we deeply present
formal monitoring.

What Is Monitoring?

Monitoring is the process of dynamically collecting, interpreting, and presenting metrics and
variables related to a system’s behavior in order to perform management and control tasks [21].
The idea behind monitoring is to measure and observe performance, connectivity, security issues,
application usage, data modifications, and any other variable that permits determining the current
status of the entity being monitored. By keeping a constant view of the different entities, we can obtain
a real-time status of Key Performance Indicators (KPI) or Service Level Agreements (SLA) compliance
as well as faults and security breaches. In addition, security requirements can be specified using
different formalisms as regular expressions, temporal logic formulas, etc. Monitoring can be performed
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in several domains that include user activity, network and Internet traffic, software applications,
services, and security. The monitoring processes should not disturb the normal operation of the
protocol, application, or service under analysis.

The general processes involved in monitoring are: the definition of the detection method to track and
label events and measurements of interest; the transmission of the collected information to a processing
entity; the filtering and classification; and, finally, the generation decisions associated to the results
obtained after the evaluation [21]. Regarding how to collect events and measurements, monitoring
techniques can be classified into three main categories: active, passive, and hybrid approaches.

Active monitoring: The System Under Observation (SUO) is stimulated in order to obtain
responses to determine its behavior under certain circumstances or events. This technique permits
directing requests to the concerned entities under observation. However, it presents some drawbacks.
The injection of requests towards the SUO might affect its performance. This will vary depending on
the amount of data required to perform the desired tests or monitoring requests. For large amounts of
data, the SUO processing load might increase and produce undesirable effects. Secondly, the injected
information might also influence the measurements that are being taken, for example incurring in
additional delay. Lastly, active monitoring injects data that could be considered invasive. In a network
operator context, it could limit its use and applicability [22].

Passive monitoring: It consists in capturing a copy of the information produced by the SUO without
a direct interaction [23]. Runtime verification can be also considered as a form of passive monitoring [24].
This technique reduces the overhead required on active monitoring. Conversely, certain delay should be
considered when analyzing large amounts of data. Additionally, in some cases, it is not always possible
to perform real-time monitoring because of required offline data post-processing [23]. This technique has
the advantage over the active approach of not performing invasive requests [25–27].

We have seen that the formal methods make it possible to check that the system is working
properly according to the expected specifications. We also note the benefits of monitoring information
systems. Probes provide valuable information about the state of the system. In conclusion, monitoring
can contributes to attack tolerance.

2.3. Security Issues Related to Web Services

Web services are the target of Cyber attacks. Web services face several attacks. The main attacks
such as XML DoS are these listed in [28–30]. Moreover, web services are increasingly used to develop
Enterprise Service Oriented Architectures. These services are often deployed in the cloud. Indeed,
Sharma et al. [31] showed interest in deploying web services in the cloud. They pointed out that
deploying web services in the cloud increases the availability and reliability of these services and
reduces the messaging overhead. In fact, the resources, provided per demand in the cloud with great
elasticity, satisfy the requirements of the service consumers. In conclusion, web services deployed in
the cloud or used for building cloud applications inherit the vulnerabilities of the cloud platforms
(Table 1).

Moreover, few studies have been conducted to transpose the techniques and framework cited in
the previous section to web services. Sadegh and Azgomi [32] and Ficco and Rak [29] presented attack
tolerant web service architectures based on diversity techniques presented above. These solutions
protect essentially against XML DoS attacks. While these approaches are interesting, they do not
address the specificity of services-based application deployed on cloud platforms. The solutions
are attack-specific. Moreover, for this kind of application, it is necessary to integrate security in all
the process steps, i.e., from modeling to deployment. We need a more efficient intrusion-tolerant
mechanism.
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Table 1. Cloud-based attacks.

Attacks

Types

Data loss Attacks

• Data loss
• Cache-based side channel attacks
• Unauthorized access to data
• Data exfiltration
• Metadata modification
• Data sniffing/spoofing
• Others

Virtualization based
attacks

• Detecting a virtualized environment
• Identifying the hypervisor
• VM hopping
• Malicious VM creation
• VM escape
• Others

2.4. Discussion

To cope with all these issues, it is necessary to consider information security as a permanent issue
that needs to be managed in order to obtain attack-tolerant web services. In this work, we design
an attack tolerant system that integrates intrusion detection methods, formal methods, and diverse
defense strategies. By means of constant monitoring, we provide an attack-tolerant framework, so that
potential security breaches within can be dynamically detected and appropriate mitigation measures
can be activated on-line, thus reducing the effects of the detected attacks. As a result, we ensure a
total attack tolerance attack tolerance for applications based on web services deployed in the cloud.
Moreover, even though currently many companies continue to build their business applications using
a Service Oriented Architecture (SOA) approach, micro service architectures will become the standard
in the years to come. We believe our approach in this paper may suit new development paradigms
such as micro services.

3. Risk-Based Monitoring Methodology

We leverage the risk management loop to build our risk-based monitoring loop, as depicted in
Figure 1. Indeed, this risk-based monitoring solution can be summarized by the following objectives:

1. Identification of system assets
2. Risk analysis to categorize threats that can exploit system vulnerabilities and result in different

levels of risks
3. Threat modeling,
4. System monitoring to detect potential occurrences of attacks
5. Remediation strategies to apply corrective actions for mitigating the impact of the attack on the

target system

Steps 1–5 are described in detail below.
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Figure 1. Risk-based monitoring loop.

3.1. Identifying Assets

Assets are defined as proprietary resources of value and necessary for its proper functioning.
We distinguish business-level assets from system assets. In terms of business assets, we mainly
find information (e.g., credit card numbers) and processes (e.g., transaction management or account
administration). The business assets of the organization are often entirely managed through the
information system. System assets include technical elements, such as hardware, business-critical
applications, and their corresponding databases and networks, as well as the computer system
environment, such as users or buildings. System assets can also represent some attributes or properties
of the system such as the data integrity and availability. This is particularly true for cloud services
consumers. As such, no company can afford to lose these assets.

3.2. Risk and Vulnerability Analysis

Risk is the possibility or likelihood that a threat will exploit a vulnerability resulting in a loss,
unauthorized access, or deterioration of an asset. A threat is a potential occurrence that can be caused
by anything or anyone and can result in an undesirable outcome. Natural occurrences, such as floods or
earthquakes, accidental acts by an employee, or intentional attacks can all be threats to an organization.
A vulnerability is any type of weakness that can be exploited. The weakness can be due to, for example,
a flaw, limitation, or the absence of a security control.

Thus, after identifying valuable assets, it is necessary to perform vulnerability analysis. This
type of analysis attempts to discover weaknesses in the systems with respect to potential threats. For
example, in the context of access control, vulnerability analysis attempts to identify the strengths and
weaknesses of the different access control mechanisms and the potential of a threat to exploit these
weaknesses.

Common Attack Pattern Enumeration and Classification (CAPEC) [33] provides a database
of known patterns of attacks that have been employed to exploit known weaknesses in cyber
systems. It represents attack patterns in three different ways: hierarchical representation via attack
mechanisms or attack domains, representation according to the relations to the external factors, and
representation according to the relations to the specific attributes. It can help to advance community
understanding and enhance defenses. In the scope of our framework, for example, the known
attack patterns in CAPEC may help to identify easily and quickly the weaknesses as well as their
possible exploitation when analyzing the risk and vulnerability of target systems. Penetration Testing
Execution Standard (PTES) [34] defines a methodology based on penetration testing to check the
robustness of a given system or application. There are many certifications designed for penetration
testing: EC-Certified Ethical Hacker, GIAC Web Application Penetration Test (GWAPT), Certified
Penetration Tester, etc. In the same way, the OWASP [35] Benchmark Project attempts to establish a
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universal security benchmark by providing a suite of thousands of small Java programs containing
security threats. In addition, our approach could be part of a global framework such as the NIST
Framework for Improving Critical Infrastructure Cybersecurity (NIST Cybersecurity Framework
or CSF) (https://www.nist.gov/cyberframework). Indeed, this framework leverages a risk-based
approach and the core part of this framework is divided into five functions: identify, protect, detect,
respond, and recover. These are similar to the five steps of our approach. In our research work, we do
not consider these methodologies but we recognize that they are complementary to our approach, in
particular to test tolerance to attacks.

3.3. Threats Modeling

The first step to avoid or repel the different threats that can affect an asset is to model them
by identifying: affected modules/components, actions/behavior to trigger the threat, and potential
objective of the threat. The formal model of a threat helps to understand the operation of the attacks
and allows the creation of security mechanisms to protect, not only the assets, but also the software
mechanisms that support them. Once the threats are modeled, we can identify the vulnerabilities that
can affect the system and define monitoring and remediation mechanisms to minimize the damages
that might occur. Again, consider the access control example. An access control process has two main
steps: authentication and authorization. The latter usually comes after the former in a normal workflow.
The authentication step is the more critical part of the access control process. The following description
illustrates this assertion: Indeed, the attacker that may be inside the organization already knows or
can easily find weak points in the organization’s defenses (inadequate security controls, failure of the
principle of least privilege, software vulnerabilities, etc.). He can then attempt a privilege escalation to
gain more permissions, to overcome an operating system’s permission, and to impersonate the root
user so that he can create the fake user with root privilege and grant himself all the necessary privileges
for further attacks or directly steal sensitive information with the administrator’s capabilities.

3.4. System Security Monitoring

The monitoring mechanism we propose allows constantly monitoring activities or events
occurring in the network, in the applications, and in the systems. This information will be analyzed in
near real-time to early detect any potential issue that may compromise the security or data privacy.
If any anomalous situation is detected, the monitoring module will trigger a series of remediation
mechanisms (countermeasures) oriented to notify, repel, or mitigate attacks and their effects.

3.5. Remediation

Once the risks of any system are established and the means of detection identified, it is essential to
think about how to set up mechanisms that will allow to complete the risk-based monitoring loop i.e.,
to tolerate and mitigate the effects of the potential detected attacks. An efficient remediation technique
should thwart as many attacks as possible. We explain below the proposed new approaches. They are
based on diversity and meta-programming methods called software reflection.

3.5.1. Diversity-Based Attack Tolerance

Recall that diversity is the quality or state of having many different forms, types, ideas, etc. As
our work targets attacks tolerance, we concentrate on the use of diversity as a mean for achieving it.
At runtime, in the case an attack has been detected, the implementation of the running software is
dynamically replaced by an implementation which is more robust. This idea is implemented through
two complementary approaches. First, we present model-oriented diversity. This contribution is
based on formal models. Then, we present the second approach, implementation-oriented diversity
that reduces the shortcomings of the first approach and extends it. This second approach leverages
Software Product lines (SPL) for devising a fine-grained attack tolerance system.

https://www.nist.gov/cyberframework


Electronics 2020, 1, 5 9 of 29

Model-based diversity for attack tolerance. It consists in investigating attack-tolerance at the
design and specification phase. This model-based approach tries to obtain a balance between security
and a good quality of experience. One can argue that the more secure model has to be implemented
first. In that case, the user experience is lowered. For many applications, it is clear that the choice is not
the more constrained model [36]. The centerpiece of that approach is the usage of monitoring methods
and formal models:

• A running system is monitored to observe its run-time behavior with our Monitoring Tool (MMT).
A formal model of the module that is susceptible to be suffering an attack is designed. This model
is expressed as a Finite State Machine (FSM). The monitored values are abstracted and related to
security properties we defined. These properties are written in linear temporal logic (LTL).

• From this first model, other modified models are obtained. They have the same functionality but
can have more mechanisms to impeach attacks; these models are more secure and robust.

• Associated to each model, implementations are produced.
• Violations of the properties described are thus detected by the monitoring tool. This detection

triggers the adaptation process. The model is replaced with another model that is more robust
and the implementation as well.

This approach is illustrated in Figure 2. The principal difficulty of this method lies in the derivation
of models. How should the models and implementations from the first model and implementation be
derived? Implementation-based diversity for attack tolerance.

Figure 2. Model-based diversity overview.

This approach aims at extending and solving the issues raised by the former approach by
leveraging diversity [37]. The idea is still the same as in the previous approach but here there is
only one model and several implementations. To this end, we base our work on the concept of
diversification. The more diversification there is, the more security is ensured. The model chosen is
Feature Model (FM). A FM is used in the area of software product lines to model a particular product
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line. It specifies the common as well as the variable features of a family. A variable feature is called
variability. Three patterns of variability were used in the FM: encoding style (document and RPC),
encoding (literal and encoded) types, and languages (C and C ++). After implementing the WSDL of
the diversified service, the skeletons of these services are generated. Then, the code of the latter are
obfuscated by adding instructions that modify their normal control flow, just to have a source level
diversification. Finally, a new layer of diversification at the binary level is added. This ensures that
the implementations are not vulnerable to the same attacks leveraging the computation flow (code
reuse attack). The services are then highly diversified and redundant. There are in total three levels of
diversification.

To ensure the continuous availability of our system, it is configured in two ways: normal mode
and attack mode. In normal mode, time is divided into epochs. In each epoch, only a unique variant is
chosen. When the epoch of time elapses, another implementation is deployed to ensure continuity of
the service. In abnormal mode, it is the case where the defense mechanism has successfully detected
an attack. The system reacts by switching to another more resistant implementation before even the
epoch has elapsed. The main design of the solution is depicted in Figure 3.

Figure 3. Layered implementation-based diversity overview.

Let us take another example of an organization. The asset in this case is the intellectual property
of the company or the organization. This company has deployed an information system through
which employees can communicate and exchange information. This information system may leverage
web services. This information system is also connected to the Internet to allow the company to
communicate with the outside. We assume that there is an unsuspecting employee in this company.
This employee receives a malicious email containing malicious content and clicks on it. The threat
to the company and its information system is the malicious email (sent by the hacker). The naive
employee is therefore a vulnerability for the system. The hacker could therefore take advantage of this
vulnerability. This vulnerability, once successful, may pose a risk for the company and its asset.

If the company anticipated this risk by ensuring remediation by construction that consists in
diversifying the different parts of its information system and set up monitoring points at the level of
the network and the applications, the risk is then mitigated, the asset is protected, and the continuity
of the service is ensured.

3.5.2. Reflection-Based Attack Tolerance

The aim of this technique is to approach attack tolerance in a manner different from the methods
mentioned above [38]. In fact, the latter has the ability to detect attacks coming from the outside
(DDoS, Brute-force, etc.). In addition, their tolerance features are designed before the deployment of the
application(e.g., diversification of web services). That is why we consider finding a solution that would
tolerate internal attacks. Meta-programming techniques in particular software reflection is investigated.
Reflection is the possibility for a program of monitoring and/or modifying its behavior dynamically.
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The basic idea is therefore the following. It is assumed that the software of the client is located in a
safe environment. Some potential attacks that can take place are internal ones, i.e. coming from internal
hackers. The goal of the intruder is to usurp the actions, i.e., to modify the methods of the API of the
platform. By reflection, all the hash of the source code of any methods of the API are processed (Figure
4). Any deviation at runtime of that hash value means the presence of a misbehavior. Such misbehavior
could be an insider attack or a virus attack. Information such as date, hour, operation, hash, and host
are stored in the log file. Any request has then two traces in the logs: outbound (request) and inbound
(response). Let us describe the situation when an attack occurs, i.e., someone has modified the API
and overridden one or several methods. First, this is the case where we see some information of the
methods but there is no Hash. It is also possible to get only one hash for the outbound operation and
nothing for the inbound operation. If there is an attack, the hashes of both Outbound and Inbound
could not correspond in the log files. Finally, we can get some inconsistencies in the logs: timestamps
incoherence, method inconsistencies (answer before request), or combination of inconsistencies.
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employee is therefore a vulnerability for the system. The hacker could therefore take advantage of this
vulnerability. This vulnerability, once successful, may pose a risk for the company and its asset.

If the company anticipated this risk by ensuring remediation by construction that consists in
diversifying the different parts of its information system and set up monitoring points at the level of
the network and the applications, the risk is then mitigated, the asset is protected and the continuity of
the service is ensured.

3.5.2. Reflection Based Attack Tolerance

The aim of this technique is to approach attack tolerance in a manner different from the methods
mentioned above [38]. In fact, the latter had the capability to detect attacks coming from the outside
(DDoS, Brute-force,...). In addition, their tolerance features are designed before the deployment of
the application(e.g., diversification of Web services). That’s why we thought about finding a solution
that would tolerate internal attacks. Meta-programming techniques in particular software reflection
was investigated. Reflection is the possibility for a program of monitoring and/or modifying its
behavior dynamically.

The basic idea is therefore the following. It is assumed that the software of the client is located in
a safe environment. Some potential attacks that can take place are internal ones. That is, coming from
internal hackers. The goal of the intruder is to usurp the actions, i.e., to modify the methods of the
API of the platform. By reflection all the hash of the source code of any methods of the API are
processed (Figure 4). Any deviation at runtime of that hash value means the presence of a misbehavior.
Such misbehavior could be whether an insider attack or a virus attack. Information such as Date,
Hour, Operation, hash, host are stored in the log file. Any request has then two traces in the logs:
outbound (request) and inbound (response). Let’s describe the situation when an attack occurs i.e.,
someone has modified the API and overridden one or several methods. First, this is the case where we
see some information of the methods but there is no Hash. It is also possible to get only one hash for
the outbound operation and nothing for the inbound operation. If there is an attack, the hashes of both
Outbound and Inbound could not correspond in the log files. Finally, we can get some inconsistencies
in the logs: timestamps incoherence, method inconsistencies (answer before request), or combination
of inconsistencies.

def show_stack ():
stack = inspect.stack ()
’’’ Inspect the stack ’’’

for s in stack:
a=inspect.getsource(s[0])
’’’ Get the source ’’’

m=hashlib.md5()
’’’ hash that source code ’’’

Figure 4. An example of using reflection in python language.

For the monitoring part of the framework, the programs are checked at runtime using reflection
as we mentioned earlier. For detecting attacks, logs located on the two endpoints: on premises and on
the server are leveraged. We developed a new plugin for this kind of detection in the monitoring tool
MMT. Some security policies (rules) are then applied. If the threat detected was a modification of one
of the methods of the API, the system reacts using reflection by replacing this method with the original
method in the API. If the attack is not known in the vulnerability DB, the system checks in the own DB
(M-DB). If the attack exists, countermeasures are launched else the hash is stored in the M-DB.

Figure 4. An example of using reflection in python language.

For the monitoring part of the framework, the programs are checked at runtime using reflection,
as mentioned above. For detecting attacks, logs located on the two endpoints, the premises and server,
are leveraged. We developed a new plugin for this kind of detection in the monitoring tool MMT. Some
security policies (rules) are then applied. If the threat detected is a modification of one of the methods
of the API, the system reacts using reflection by replacing this method with the original method in the
API. If the attack is not known in the vulnerability DB, the system checks its own DB (M-DB). If the
attack exists, countermeasures are launched, else the hash is stored in the M-DB.

4. Attack Tolerance for Cloud Applications Based on Web Services

This section presents how we instantiate the risk-based methodology for cloud applications based
on web services. As the first stages of the risk-based monitoring loop are specific to the type of the
application, we focus on the last two phases of that loop: monitoring and remediation. Two main
approaches of remediation can be described:

• Anticipate the ability to tolerate attacks. This consists in introducing mechanisms allowing the
tolerance to the attacks during the modeling of the system. The system is called tolerant-by-design
or offline tolerant to attacks.

• Considering tolerance by a constant monitoring. In this type of approach, the tolerance capacity
is entirely managed by the monitoring tool. The system is actively monitored for detecting
malicious behaviors. The system is called online tolerant to attacks.

We believe that, to have an effective attack tolerance (offline and online), it is appropriate to use
these two approaches in a complementary way. We therefore propose both online and offline attack
tolerance. The resulting framework consists of two main parts (Figure 5). The first part presents how
we model web service applications deployed in the cloud to make them attack tolerant. The second
part presents how we monitor the system to detect the attacks and how we mitigate these attacks.
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Figure 5. Architecture and components of the framework.

4.1. Modeling of Cloud Applications

Buyya et al. [39] gave a definition of the cloud: “A Cloud is a type of parallel and distributed
system consisting of a collection of inter-connected and virtualized computers that are dynamically
provisioned and presented as one or more unified computing resources based on service level
agreements established through negotiation between the service provider and consumer”.

Different cloud models and architectures of different existing providers are presented in [40].
In [41], the authors aimed at defining the steps involved in the requirements engineering phase for
cloud application adoption by providing systematic guidance for an organization to evaluate its
choice and risks when moving and adopting a cloud. A cloud application can be deployed as a
composed collection of services. According to Cloud Technology Partners (CTP) [42], the benefits of
this composition deployment are manifold. First, since the services are loosely coupled, it is easier to
track and maintain the application. Additional benefits may include re-usability. Applications can
been broken up into hundreds of underlying services that have value when used by other applications.
To fully benefit from these advantage, we consider our applications as a composition of web services
deployed in the cloud.

In addition, in [43], cloud applications are considered as distributed applications composed of
several virtual machines running a set of interconnected execution units called software elements. It
should be noted that there are two main models of deployment of distributed applications in the cloud
[43]:

• Infrastructure-oriented solutions envision the deployment of an application in the cloud through
the implementation of a set of virtualized hardware resources. They come in the form of a public
or private cloud. This type of cloud application can benefit from several services provided in the
cloud such as database storage, virtual machine cloning, or memory ballooning.

• Application-oriented solutions aim at combining the service-oriented approach, in which
a distributed application is defined as a composition of high-level services, and the
infrastructure-oriented approach, which explains how an application breaks down within a set of
virtual resources. Application-oriented solutions thus offer a high degree of parameterization for
the user to define the application to be implemented.

Generally service compositions are classified into two styles: orchestrations and choreographies.
Orchestration always represents control from one participant’s perspective, called the orchestrator.
Unlike the orchestration, there is no privileged entities in the choreography. Furtado et al. [44]
argued that web services composition, in particular choreography, is a suitable solution used to build
application and systems in the cloud. They built a middleware solution that is capable of automatically
deploying and executing web services in the cloud.
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We agree with them that choreography is a good approach for deploying cloud applications based
on web services. The applications in the cloud are deployed as service choreographies that integrate
attack tolerance features. However, before and when deploying such choreography, one should ensure
that this choreography is realizable. Realizability, a fundamental issue of choreography, is whether
a choreography specification can correctly be implemented. In a top-down service choreography
approach, the realizability issue results in verifying whether a choreography model can be correctly
projected onto role models that will be then implemented by services. For this goal, we leverage
SChorA [45], a verification and testing framework for choreographies.

4.1.1. SChorA Framework

SChorA ( http://SChorA.lri.fr ) was proposed by Nguyen [45]. This framework aims to solve the
key issues in choreography-based top-down development: (i) realizability, whether a choreography is
realizable, i.e., ensuring that a choreography can be practically implemented; and (ii) projection, the
ability to derive local models of a global choreography on peers. To easily express the choreographies, a
formal language, ChorD, which is an extension of the Chor language [46] with data, has been proposed.
Chor language is expressive and abstract enough to enable one to specify collaborations but lacks data
support, which ChorD covers.

The basic event in choreography is an interaction. An interaction represents a communication
between two roles. There are two kinds of interactions: free interactions and bound interactions. A free
interaction represents a communication of value of variable x realized through an operation o from
role a to b is denoted by o[a,b].x, while the bound one is denoted o[a,b].〈x〉. In free interaction, the data
exchange must be known before the interaction may occur. In bound interaction, the data exchange is
bounded at the moment the interaction occurs

ChorD is described as:

ChorD::= 1|α|A; A|A + A|A‖A|A[> A|[φ] . A|[φ] ? A

A basic activity is either an inaction (1) or a standard basic event (α ), presented above. There
are structuring operators that can be used to specify composite activities such as sequencing (;),
non-deterministic choice (+), parallel activities (||), and interruption ([>).

One should note that we distinguish the global specification of the choreography called global
model and the specification of this choreography on the different roles termed role model. In role models,
events are modeled as sending (!) or reception (?). For example, let us express a simple online shopping
choreography between two roles: b (buyer) and v (vendor). The buyer first requests an article by
providing an amount to be bought. If the amount is greater than 25, then the vendor aborts this
transaction. Otherwise, a confirmation will be issued from the vendor to the buyer. This can be
described as follows:

C : Request[b,v].〈x〉; ([x < 25] . Ack[v,b] + [x ≥ 25] . Abort[v,b])

For the Buyer: Request[b,v]!.〈y〉; (Ack[v,b]? + Abort[v,b]?)

For the Vendor: Request[b,v]?.〈z〉; ([z < 25] . Ack[v,b]! + [z ≥ 25] . Abort[v,b]!)

In fact, ChorD is a process algebra and its semantics is given by Symbolic Transition Graphs
(STGs) [47]. An STG is a transition system. Each transition of STG is labeled by a guard φ and a
basic event α. The guard φ is a boolean equation which has to hold for the transition to take place. A

symbolic transition from state s to state t with a guard φ and an event α is denoted as s
[φ]α−−→t.

√
is

added to denote activity termination. The representation of the simple shopping choreography using
STG is the following:

http://SChorA.lri.fr
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1 2 3 4
Request[b,v].〈x〉

[z < 25]Ack[v,b]

[z ≥ 25]Abort[v,b]

√

For the realizability and projection issues, STG are also used. By their formal richness, STGs are
perfectly suited for verification of choreographies. STGs can be expanded to describe more operations
since they support data, guard and free/bound variables. From the representation of the choreography
as STG, if there are non-realizable parts, some additional interactions are incorporated to the graph
to allow all the transitions to be realizable. Once the realizability is verified (i.e., it can be directly
implemented or some additional interactions are added), they are projected on the different roles
or peers. By doing so, we are sure that our local models projected can actually be implemented
concretely. In our case, local models are implemented as a web service. Once this step is over, it is
useful to implement these projected models on the peers. The process algebra, which represents the
choreography model, follows the requirements of the specification. We follow with this approach a
software development process. Interested readers are invited to refer to [45] for more details of the
translation from process algebra descriptions to STGA automaton. The next section presents how in
this framework skeletons of the services are made possible.

4.1.2. Code Generation

In top-down software development approaches, an important part of the process is to reduce the
costs of development by promoting modularity, reusability, and code generation. This is especially
true in modeling and designing choreographies. It is therefore essential to have automatic mechanisms
that perform code generation. This is why we propose a code generation strategy in this framework.

For this aim, we can leverage frameworks or tools in the literature [48] that take as input STGs
and produce source code. Moreover, we propose a new Domain Specific Language (DSL) for our
choreography called ChorGen.

The ChorGen language has the following grammar:
Electronics 2020, 1, 5 14 of 28

Model:
(choreographies+= Choreography)+;

Choreography:
’choreography ’ name=ID ’{’

(roles+=Roles)*
’}’

;
Roles:

’role’ name=ID ’{’
operations+=Operation

’}’
;
Operation:

’operations ’ ’{’
(methods+=Function)*

’}’
;
Function:

name=ID ’(’(params+=Param)* ’)’
;
Param:

name=ID type=ID ’,’ |name =ID type=ID
;

This means that a choreography contains several roles that expose some operations to interact
with the other roles. An example of a well defined implementation is presented in Figure 6.

choreography chor{
role client{

operations {
send(IP String)
receive(Data string)

}
}
role server{

operations {
verify(IP String)
ack(IP string)

}
}

}

Figure 6. Example of definition of a choreography with 2 roles

We used model-driven engineering technologies Xtext 1 for the semantics and Xtend2 for code
generation to the target languages: WSDL and Python.

The advantage of doing such code generation is the reduction of the development costs and
efforts. This allows us to be more efficient when implementing the services. This is useful, for example,
for choreographies containing a very large number of peers. Another advantage is that since all
interactions are taken into account, we are sure that developers will not forget to implement them
since their signatures are available.

Moreover, it should be noted that a single implementation is not sufficient to have a complete
tolerance. It is admitted that more diversification implies more security.

1 https://www.eclipse.org/Xtext/
2 https://www.eclipse.org/xtend/
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This means that a choreography contains several roles that expose some operations to interact
with the other roles. An example of a well defined implementation is presented in Figure 6.
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;
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We use model-driven engineering technologies Xtext ( https://www.eclipse.org/Xtext/ ) for the

semantics and Xtend ( https://www.eclipse.org/xtend/ ) for code generation to the target languages:
WSDL and Python.

The advantage of doing such code generation is the reduction of the development costs and
efforts. This allows us to be more efficient when implementing the services. This is useful, for example,
for choreographies containing a very large number of peers. Another advantage is that, since all
interactions are taken into account, we are sure that developers will not forget to implement them
since their signatures are available.

Moreover, it should be noted that a single implementation is not sufficient to have a complete
tolerance. It is admitted that more diversification implies more security.

4.2. Deployment, Monitoring and Reaction

4.2.1. Choreography Implementation and Deployment

We leverage diversity as well. For implementing choreography, we have the choice between two
methods. The first is to diversify for example at the level of programming languages, i.e., having the
implementations in different languages. This method has the advantage of generating few dependency
between the variants of these services. However, this can create significant costs and workload for
developers and can increase the time-to-market. The developer may not be able to master other
languages. Moreover, since one of the members of the service choreography can be changed on the
fly while the others remain intact, there could be some inconsistencies between the communication
between these services. Indeed, although based on the remote procedure call (RPC), the ways to deploy
web services are not the same.

The second way is to consider only one target programming language but have diversified
implementation. The variants differ for example at the control flow (AST) level and use different
data structures. The advantage of such an approach is that it is more flexible. The disadvantage is
that we have a low diversity rate. However, this rate may be improved by using different OS during
the deployment of the services. For such reasons, we choose the second method. Thus, from the
global choreography, the local models are projected taking into account the interactions added to the
specifications. This is the case for example when, in the verification phase, interactions are added to
the models to make the choreography realizable. After, there is a generation of the skeletons of the
services that implement the choreography. In particular, we generate the WSDL files (interface file of
the web services) as well as the skeletons of the implementations of these services in Python.

https://www.eclipse.org/Xtext/
https://www.eclipse.org/xtend/
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Recall that it has been claimed that more diversity implies more security. In accordance with
our attack tolerance methodology, one implementation at a time is chosen. The others are started but
inactive.

When the current implementation is attacked, it is replaced by one of the variants. We assume
that the communication channels between the choreography members are reliable. Thus, only the
different roles can emit false messages when they are attacked or compromised. Each member of the
choreography is deployed in a container on a public cloud platform. They are observation probes
(Algorithm 1) available for each role in the choreography. These agents are in charge of monitoring
and detecting attacks. They will also be given the ability to implement the replacement of the container
when the attack is detected.

These agents do not normally interact directly with the members of the choreography. They are
therefore not visible from the outside and are located in a safe environment. They are considered safe
and they do not crash.

When a member is attacked, with respect to the rules described (in the formalism of the monitoring
tool), the monitoring agent interrupts the connection of the attacked container while saving the last
non executed requests. It replaces the current damaged container with another container (Lines 5 and
6 in Algorithm 1). Afterwards, he notifies the other members of the choreography and send them the
information about the new active implementation (Line 7). He expects to receive acknowledgments
from the other members during a certain period of time (Lines 9–13). For example, it sends the new IP
address of the new deployed member to the other members of the choreography. Acknowledgments
should be received with the correct hash of the IP address to ensure that members have obtained
the correct address. After the end of the timer, if he does not receive the acknowledgments from all
members, he sends again the message to the members (Lines 15–19). Otherwise, if there is no detection
of attack, the manager keeps working. If he receives a message from a new member (Line 23), he
answers back (Line 24).

In the same way, in Algorithm 2, we describe how the members of the choreography act. They
are initially in the inactive state. Then, one of the members is chosen after a detection of attack or
misbehavior. This member becomes active (Line 6, Algorithm 1), launches the list of remaining non
executed instructions he receives from the manager (Line 4, Algorithm 2), and continues to perform his
normal tasks (Line 7, Algorithm 2). We see the value of using these applications in cloud computing
because you can deploy/disconnect containers quickly.

The next step is to ensure that, when these services are deployed, there are no other misbehaviors
such as attacks or viruses. The following section then presents the monitoring strategy.

Besides, it is undeniable that to better tolerate attacks, it is necessary to detect them. Our approach
of monitoring is also based on reflection, as presented in Section 3.

Software reflection makes it possible to dynamically retrieve the code and even the execution
trace of a method, a class, or a module. One can also modify the class at run time. In Python language
for example the inspect module provides functions for learning about modules, classes, instances,
functions, and methods. Using reflection, all the hashes of the source code of any methods of the
system are processed [38]. In fact, hash functions by their robustness are used to ensure the integrity of
messages or transactions in distributed systems. This is the case in modern protocols, for example ssh
and bitcoin. As such, the detection of attacks leveraging hash functions is legitimate.

Table 2 shows a situation where there is no attack. The hashes for the outbound and inbound
requests are the same.
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Algorithm 1 Observer or manager execution

1: detected← false
2: while true do
3: if detected then
4: setLocalCountermeasures()
5: chosenVariant← random(1, nvariants)
6: chosenVariant.state← active
7: notifyAllMembers(IP)
8: nextInstruction← buffer.pop()
9: setTimer(Timer)

10:
11: while Timer do
12: buffer← buffer

⋃
ack()

13: end while
14:
15: for i=0 to N do
16: if !ack[i] then
17: notifyMember(IP,i)
18: end if
19: end for
20: bind(chosenVariant)
21: sendInstr(chosenVariant, nextInstruction)
22: else
23: if receiveChange[IP,i] then
24: sendAck(mac(IP),i)
25: end if
26: end if
27: end while

Algorithm 2 Choreography member execution.

1: while True do
2: if receiveActivation then
3: if receive(instruction) then
4: execute(instruction)
5: end if
6:
7: continueExecution()
8: end if
9: end while

Table 2. Normal entries in the log of the client application.

Date Hour Method Hash Host

30 May 2020 11:00:00 AM ! updateFunction (Outbound) 365db5224a4... a
30 May 2020 11:15:00 AM ? updateFunction (Inbound) 365db5224a4... b

If an attack occurrs, the hashes of both outbound and inbound cannot correspond in the log files.
This is the case depicted in Table 3. One can also get some other inconsistencies in the logs: hashes not
equal, timestamps incoherence, method inconsistencies (answer before request), or combination of
inconsistencies.

Table 3. Bad entries in the log of the client application.

Date Hour Method Hash Host

30 May 2020 11:00:00 AM ! updateFunction (Outbound) 365db5224a4... a
30 May 2020 11:15:00 AM ? updateFunction (Inbound) 365db4567ab... b

4.2.2. Montimage Monitoring Tool

For detecting attacks, we developed a new plugin for this kind of detection in the Montimage
Monitoring Tool ( https://montimage.com/products/MMT_DPI.html ) (MMT) [49]. MMT is a solution

https://montimage.com/products/MMT_DPI.html
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for monitoring networks and applications. It consists of three main complementary modules, as shown in
Figure 7.

Figure 7. Component Architecture of Montimage Monitoring Tool.

• MMT-Extract is the core packet processing module. It is a C library. It captures and analyzes
network traffic using Deep Packet/Flow Inspection (DPI/DFI) techniques in order to identify
network and application based events by analyzing: protocols’ fields values, network and
application Quality of Service (QoS) parameters, and key performance indicators. In a similar
way, it also allows to analyze any structured information generated by applications, such as,
execution traces, logged messages. MMT-Extract incorporates a plugin architecture for the
addition of new network protocols or application messages. It disposes of a public API for easily
integrating into third party probes.

• MMT-Security is a security analysis engine written in C to analyze MMT-Security properties. The
properties are detailed in the next subsection. MMT-Security analyzes and correlates network
and application events to detect operational and security incidents. For each occurrence of a
security property, it allows detecting whether it was respected or violated. If the property contains
predefined embedded functions, MMT-Security triggers these functions, thus it allows users to
perform their counter measures corresponding to the detection results.

• MMT-Operator is a visualization web application. It allows collecting and aggregating network
statistics and security incidents to present them via a graphical user interface. It is conceived to be
customizable, i.e., the user can define new views or customize one from a large list of predefined
views. With its generic connector, it can be easily integrated with third party traffic probes.

4.2.3. Attack Detection

MMT’s security properties are written in XML format. This has the advantage of simple and
straightforward structure verification and processing by the tool. Any security property is written
in XML. Each property begins with a <property> tag and ends with </property>. A MMT-Security
property is an IF-THEN expression that describes constraints on network events captured in a trace T
= {p1, ..., pm}. It has the following syntax:

e1
W,n,t−−−→ e2

W ∈ { BEFORE, AFTER }, n ∈ N, t ∈ R>0 and e1 and e2 two events. This property expresses that,
if the event e1 is satisfied (by one or several packets pi , i ∈ {1, ..., m}, then event e2 must be satisfied (by
another set of packets pj , j ∈ {1, ..., m}) before or after (depending on the W value) at most n packets
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and t units of time. e1 is called triggering context and e2 is called clause verdict. When monitoring a
system to detect attacks, the non respect of the MMT-Security property indicates the detection of an
abnormal behavior that might imply the occurrence of an attack. For example, if we consider a vote
system (our use case deeply presented in Section 5), a rule in the MMT formalism is the following.

Figure 8 describes a property for detecting the insider attack according to the formalism of MMT
(Section 4). This means that in the log file any vote request should have hashes for its operations
(outbound and inbound) in the log files and these hashes must correspond; otherwise, an attack is
triggered. Event 1 (e1) expresses the reception of the inbound operation in the log file with a hash.
If event 2 (e2), the reception of the corresponding inbound operation in the log appears, there is a
comparison between the hash collected of that event and the hash obtained in the previous event e1

(the built-in C function strcmp is used for the comparison). If the hashes correspond, the system is
attack free. Otherwise, an alert is triggered.

Version December 7, 2020 submitted to Journal Not Specified 19 of 29

<beginning>
<property value="THEN" delay_units="s" property_id="10" type_property="ATTACK"

description="Detection of the insider attack: ">
<event value="COMPUTE" event_id="1" boolean_expression="((#strcmp(log.method, ’vote(inbound)’) != 0)

&amp;&amp; (#strcmp(log.hash,’’)!= 0))"/>

<event value="COMPUTE" event_id="2" boolean_expression="((#strcmp(log.hash, ’’)!= 0) &amp;&amp;
(#strcmp(log.method, ’vote(outbound)’) == 0) &amp;&amp; (#strcmp(log.hash, log.hash.1) != 0))"/>

</property>
</beginning>

Figure 8. Security rule of the insider attack of the vote example
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Figure 8. Security rule of the insider attack of the vote example.

Then, each module is monitored by extracting the program stack using reflection. If the attack
exists, countermeasures are launched, else the hash is stored in the M-DB. For the mitigation of the
attack, in the case of attacks the current source code is replaced with one of the other variants randomly.
The hash is also adapted. The whole monitoring and detection is depicted in Figure 9. To detect virus
attacks, we use the API VirusTotal site ( https://www.virustotal.com/fr/ ). VirusTotal is a free service
that analyzes suspicious and detects viruses or malware.

Monitoring
Layer i, i
∈ {1, ..., m}

S1

Extract program
execution
(reflection)

S2

Correct ?
Check against

VirusTotal
S3

Exist ?
Virus detected

S4

Contermeasures
S5

Check the M-DB
S6

Exist ?

Return to
monitoring

S7

yes

no

yes

no
yes

no

Figure 9. Detection and deaction model.

https://www.virustotal.com/fr/
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Here, when attacks are detected, we react differently. In Table 4, we define security levels of the
attacks according to the criticality levels as well as the reaction we provide. When an attack occurs
in one of these methods of a given API, the countermeasure corresponding to the criticality level of
this API is triggered. The new corresponding reaction is returned to mitigate the effect of the attack.
According to the security levels, if the threat detected was a modification of one of the methods of
the API, the system reacts by switching to another implementation of the system as described in the
deployment section. If the attack is a virus attack, in addition, the compromised implementation is
then quarantined and destroyed.

Table 4. The security levels.

Criticality Level Security Level Description Reaction

0 Normal
Correct functioning of the

system. Here, events in the logs
are noncritical.

Nothing to do.

1 Warning

These events indicate that a
component is not in an ideal

state and that other actions may
cause a critical error.

We stimulate the layer or
component in order to check its

response to some predefined
inputs. According to the

responses obtained, we can
locate and correct the

misbehavior.

2 Attack

The events indicate that a
component or a layer of the

system has been affected and
that layer failed or stopped
responding due to an attack.

The layer of the attack is then
identified

The layer or component is
automatically disconnected from

the network and the other
components/layers. It will be

quarantined and we will remove
the malicious code. Thus, the

removal is a very effective
mechanism for avoiding the

production of more viruses. This
is to prevent the virus from

spreading to other unaffected
layers. We replace the affected

component/layer with new
ones.

3 Critical Attack

The Events demand the
immediate attention of the

system administrator. They are
generally directed at the global
level. The events indicate that
one or several components or
layers of the system have been

affected at the same time due to
an attack. This also the case

where any critical part
(databases, storage) of the
system has been accessed.

We react the same as in the case
above. In the case a critical part

such as the storage has been
destroyed, there is a recovery

step in which the data are
restored with backup data.

However, it should be noted that classic hash functions can provide the same hash for two
different strings of characters. In practice, the probability of this happening is small. As a result, a
more robust hash is not foolproof either, but the probability of a collision is higher and/or the means
of generating it are more complex and inaccessible.
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In summary, the steps for implementing the approach are the following:

1. Specify the choreography in the ChorD language and verify the realizability, conformance, and
projection of that choreography using SChorA conformance tool.

2. Generate the WSDL files and the skeletons of the peers and implementing them.
3. Specify some properties in order to check the conformance of the implementation with respect to

the choreography and expressing them in the formalism of SChorA passive test engine. Specify
the remaining properties using the formalism of MMT.

4. In line with our risk-based monitoring approach, check the assets of the choreography in order to
anticipate potential vulnerabilities and attacks.

5. Specify some MMT properties for monitoring the peers and detecting attacks.
6. Deploy the peers on different cloud providers to enhance diversity.

Even though in this paper, we focus on web services, we believe that our approach may suit micro
services. Micro services are distributed by nature and a choreography architecture is close to a micro
service architecture, because choreographies can be decomposed into micro services that implement
specific business functions and can be deployed into containers. Moreover, in [50], the authors claimed
that a choreography of micro services is much faster than an orchestration of the same services. Finally,
the approach proposed in this paper, which makes it possible to ensure that the choreographies are
realizable and each member of the choreography is continuously monitored, will bring an additional
trust on the micro services since security is a major concern of the micro service architecture.

5. Use Case: Vote Application

In this section, we present the implementation of our attack tolerance approach on a concrete case
study. To illustrate its application, we propose an electronic voting choreography for the election of
the president in a certain country. This application allows citizens to register on the electoral lists and
to vote electronically. The application is formally described by the VoteElecService choreography. It is
composed of three basic members: Inscription, Vote, and Citizen. In the following, we describe the main
components of the attack tolerance framework associated to this use-case.

5.1. Identifying Assets and Attack Scenarios

In line with the approach proposed in this paper, the assets of the vote example are the votes of
the citizens and the availability of the vote platform. Citizens of the country must be able to vote for
their preferred candidate the election day at any time.

The main attacks we considered in the vote example are insider attacker or a not cautious user of
the vote system [51–54]. In [53], the authors argued that in practice the code of a vote system could be
leaked by dishonest insiders, or through a compromised developer workstation. This is also the case
in [54], where the authors considered that ballots could be compromised before their delivery to voters,
either by a dishonest insider who can alter the software or by remote attackers who may compromise
the computers used to build or distribute the vote system.

5.2. System Security Monitoring and Reaction

5.2.1. Modeling and Verification

Let us first describe the choreography. Once registered, the citizen can vote electronically after
verification of his registration by the member Vote. Subsequently, this service will provide the list of
associated candidates and their identification number (1, 2, ...) in addition to the number zero that is
associated with the blank ballot. A registered citizen will vote by selecting one or more voting numbers
(including the blank ballot) and submitting his/her choices. The choreography can be expressed in
ChorD as follows, in which the citizen member, the inscription member, the vote member, and the
result member correspond to, respectively, c, i and v.
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inscription[c,i].〈in f o〉; voteRequest[c,v].〈y〉; resultVeri f In f o[v,i].〈x〉;
([x = 0] . rejection[v,c] + [x! = 0] . (con f irmation[v,c]; liste[v,c]; vote[c,v])).

The results of the formal analysis of the choreography are depicted in Figure 11.
As one can observe, the choreography is fully realizable without the need of adding new

interactions. It is therefore generated on the different roles. We also describe some implementations
models in order to check the conformance of the locals models, with respect to to the choreography
(Figure 12). From these descriptions, we generate skeletons of the roles (Figure 13) that the developer
should complete later.

Figure 10. Projection of the choreography on the peers.

Figure 11. Verification of the vote choreography.



Electronics 2020, 1, 5 23 of 29

Figure 12. Conformance checking.

Figure 13. Generated skeletons.
Version December 7, 2020 submitted to Journal Not Specified 24 of 29

<beginning>
<property value="THEN" delay_units="s" delay_min="0+" delay_max="2"

property_id="1" type_property="SECURITY" description="
Any citizen should vote once ">
<event value="COMPUTE" event_id="1" description="reception

of the vote for one citizen" boolean_expression="
((#strcmp(log.method, ’vote’) == 0))"/>

<event value="COMPUTE" event_id="2" description="
reception of another vote for the same citizen in the log"
boolean_expression="(#strcmp(log.method, ’vote’ == 0)
&amp;&amp; (#strcmp(log.host, log.host.1)!= 0))"/>

</property>
</beginning>

Figure 14. Security rule Unique vote: A person should vote once. Here host refers to the concatenation
of the citizen id number, the vote and a string that means the result of the operation.

Table 5. Latency measurement

Number of requests On premises In the cloud
100 0.27 seconds 0.34
200 0.69 seconds 0.87
300 1.10 seconds 1.40
400 1.80 seconds 2.56
500 2.48 seconds 3.24
600 3.45 seconds 5.13
700 4.41 seconds 6.35
800 5.65 seconds 7.24
900 6.89 seconds 8.68
1000 8.41 seconds 9.17

you are going to go. Then, the flexibility and cost reduction offered by cloud computing make the764

overhead negligible. The following experiments were conducted for testing the detection capability of765

the framework. Here, we only focus on attacks consisting in modifying the source code of a method or766

a function deliberately (by a human being) or made by a virus. As we explained earlier, it has been767

proven in the literature that this kind of attacks may appear in voting systems.768

Experiment 2: We evaluated the time elapsed to detect the insider attacks coming from both a769

modification of the source code and a virus. For this proof of concept, the virus (or malware) considered770

modifies the code of the vote application so that several votes for some candidates are counted as votes771

of the hacker’s preferred candidate. A signature of this virus was incorporated to our virus database772

based on the virusshare’s7 database.773

The accuracy of the detection mechanism was discussed in [38]. In this section, we only evaluate774

the efficiency of the monitoring w.r.t the two attacks above.775

Table 6. Detection mean time

Virus Modification
0.053 seconds 0.031 seconds

In Table 6, the modification seems to be easily detectable than the virus. This was predictable776

since the database of virus may contain a larger number of rows in comparison with the database777

containing the hashes of the methods. To have a fair detection time, one can have a unique database.778

The drawback of this solution is that we loose readability and flexibility. Along with the detection779

of attacks, the system reacts as mentioned in Section 4. This reaction is transparent for the user.780

7 https://virusshare.com

Figure 14. Security rule of the unique vote: A person should vote once. Here, host refers to the
concatenation of the citizen id number, the vote, and a string that means the result of the operation.

5.2.2. Deployment, Experiments, and Results

The services were deployed on the Amazon Web Services (AWS) cloud platform. We used a
virtual machine for each member of the choreography.

For the monitoring, Figure 8 presents a property for detecting the insider attack. This means that
in the log file any vote request should have hashes for its operations (outbound and inbound) in the
log files and these hashes must correspond; otherwise, an attack is triggered.
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The same choreography was deployed on a local test-bed consisting of three Dell machines having
two micro processors, 3 GB RAM memory and all using the Ubuntu OS in its latest version. The same
choreography was deployed on an Amazon cloud. The three different virtual machines also have 3 GB
RAM memory and 2 vCPU. Some experiments were conducted to test the attack tolerance capability
of our approach.

Experiment 1: Since the approach of the framework consists of modeling and deploying
cloud-based applications as distributed service choreographies, we evaluated the latency of the
service to respond to some amounts of requests on premises and on the cloud.

As shown in Table 5, the response times to requests are substantially equal. The slight difference
can be explained by the latency of the network. One way to significantly reduce this latency is choosing
to deploy virtual machines in the cloud in regions that are very nearby. Then, the flexibility and cost
reduction offered by cloud computing make the overhead negligible. The following experiments
were conducted for testing the detection capability of the framework. Here, we only focus on attacks
consisting in modifying the source code of a method or a function deliberately (by a human being) or
made by a virus. As explained above, it has been previously that this kind of attacks may appear in
voting systems.

Table 5. Latency measurement.

Number of Requests On Premises In the Cloud

100 0.27 s 0.34
200 0.69 s 0.87
300 1.10 s 1.40
400 1.80 s 2.56
500 2.48 s 3.24
600 3.45 s 5.13
700 4.41 s 6.35
800 5.65 s 7.24
900 6.89 s 8.68

1000 8.41 s 9.17

Experiment 2: We evaluated the time elapsed to detect the insider attacks coming from both a
modification of the source code and a virus. For this proof of concept, the virus (or malware) considered
modifies the code of the vote application so that several votes for some candidates are counted as votes
of the hacker’s preferred candidate. A signature of this virus was incorporated to our virus database
based on the virusshare’s ( https://virusshare.com ) database.

The accuracy of the detection mechanism was discussed by Cavalli et al. [38]. In this section, we
only evaluate the efficiency of the monitoring with respect to the two attacks above.

In Table 6, the modification seems to be easily detectable than the virus. This was predictable
since the database of virus may contain a larger number of rows in comparison with the database
containing the hashes of the methods. To have a fair detection time, one can have a unique database.
The drawback of this solution is that we lose readability and flexibility. Along with the detection
of attacks, the system reacts, as mentioned in Section 4. This reaction is transparent for the user.
Although we can detect attacks with great granularity, it is also important to consider the impact of the
monitoring mechanism. That is why we measured the overhead of the new monitoring method in the
next experiment.

Table 6. Detection mean time.

Virus Modification

0.053 s 0.031 s

Experiment 3: Evaluation of the impact of the monitoring mechanism.

https://virusshare.com
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As shown in Table 7, the overhead of the monitoring is not too significant. In future works, we
will investigate how to reduce this overhead. The detection approach based on software reflection is
suitable for the monitoring of cloud applications deployed as choreographies of services. To a certain
extent, it can also be useful for detecting attacks such as buffer overflows and SQL injections. One
limitation of such approach is the fact that this detection is only appropriate for attacks targeting
the source code. However, the main limitation is that the approach cannot be applied in programs
developed in programming languages that do not allow reflection or do not provide a powerful
reflection API.

Table 7. Overhead of the monitoring mechanism.

Number of Requests Without Monitoring (s) With Monitoring (s)

100 0.38 0.46
200 0.88 0.91
300 1.39 1.4
400 2.50 2.57
500 3.26 3.27
600 5.22 5.30
700 6.31 6.35
800 7.21 7.45
900 8.89 9.12

1000 9.15 10.02

6. Conclusions and Perspectives

In this paper, we investigate the attack tolerance or resilience issue. We show that, to better tolerate
and limit the impact of these attacks, the monitoring of the information systems is of paramount
importance for any organization. However, the monitoring and detection of attacks require an
awareness of the risks that the system might be exposed to. As such, we propose a risk-based
monitoring approach. This methodology involves the following aspects: (i) assets identification to
define what is necessary to protect; (ii) threats and vulnerability analysis to evaluate the potential
flaws the system may suffer; (iii) risk analysis to categorize the threats that can exploit the system
vulnerabilities; (iv) system monitoring to detect potential occurrences of attacks; and (v) remediation
strategies to repel or mitigate the impact of the attacks. Leveraging this methodology, we develop
a new attack tolerance framework based on formal monitoring techniques as well as diversification
and reflection software techniques. We instantiate the risk-based methodology for services-based
applications deployed in the cloud and propose an offline and online attack tolerance framework for
web services-based application in the cloud. With this aim, we first express any application deployed in
the cloud as a choreography of services, which must be continuously monitored and tested. Then, we
extend a formal framework for choreography testing by incorporating the methods for detecting and
mitigating attacks presented in the previous sections. Adding mechanisms of detection and reaction
on the fly to these applications ensures optimal attack tolerance.

As such, the risk-based monitoring approach is compliant with cloud asset management strategies
of companies. In fact, this approach delivers visibility, control of all the assets of a cloud, and it is a
crucial first step towards a more secure cloud.

Now, let us discuss improvements and open directions. We define in this paper attack tolerance
as the ability of a system to continue to function properly with minimal degradation of performance,
despite intrusions. The aim is to detect the known and unknown attacks and if not possible to reduce
their impact on the system. Although we obtained satisfactory results, we believe that we can improve
the tolerance to attacks if we can somehow anticipate or predict these attacks. Thus, in addition to
detection and remediation, it would be necessary to be able to predict and anticipate future attacks.
We think that the following two axes would be interesting to investigate.
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Diagnosticability and predictability [55]. Diagnosis consists in designing and implementing
algorithms for verifying the formal properties of the system, ensuring that a model, which is known
in advance of observable events, allows the detection and discrimination of a set of possible failures.
Similarly, predictability is the ability to predict a future occurrence of a fault using the observable
events preceding. We think that, if we can predict the occurrence of a fault, it would be interesting to
prevent it from taking place and therefore to tolerate attacks effectively. However, an important step
for using diagnosticability and predictability for attack tolerance will therefore be the formalization of
faults that can occur from attacks.

Big data and machine learning. Recently, machine learning has emerged as a means to enhance
security [56]. The authors reviewed the literature of machine learning (ML) and data mining (DM)
methods for intrusion detection. This study evaluated the different existing algorithms. They pointed
out that the most effective methods for cyber detection must be established and adapted to the
specificity of the attacks. Furthermore, adding big data to machine learning [57] can improve cyber
security. The introduction of Big Data processing led to a new era in the design and development
of large-scale data processing systems. The idea is that data in raw format make it possible to create
statistical baselines to identify normality. Subsequently, it is possible to instantly determine when
the data deviate from this standard. These historical data also make it possible to create predictive
and statistical models. While some supervised and unsupervised learning algorithms are already
available for big data, there is much room for improvement. It has be recognized that the false-positive
rate of machine learning algorithms is too high and the alerts generated are not always sufficiently
interpretable to enable their exploitation. In summary, there is a research avenue for the application of
such techniques for attack tolerance [57].

The result of using predictability and/or ML and big data in conjunction with our attack tolerance
methods would be the design and the implementation of a framework for software systems that is
attack tolerant in the sense that is has the possibility to continue to deliver their services even after a
successful attack and is able to recover quickly and learn from the past.
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