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Towards Non-invasive Lung Tumor Tracking Based
on Patient Specific Model of Respiratory System

Hamid Ladjal, Michael Beuve, Philippe Giraud and Behzad Shariat (memberIEEE)

Abstract—The goal of this paper is to calculate a complex
internal respiratory and tumoral movements by measuring
respiratory air flows and thorax movements. In this context,
we present a new lung tumor tracking approach based on a
patient-specific biomechanical model of the respiratory system,
which takes into account the physiology of respiratory motion to
simulate the real non-reproducible motion. The behavior of the
lungs, is directly driven by the simulated actions of the breathing
muscles, i.e. the diaphragm and the intercostal muscles (the rib
cage). In this paper, the lung model is monitored and controlled
by a personalized lung pressure/volume relationship during a
whole respiratory cycle. The lung pressure and rib kinematics
are patient specific and obtained by surrogate measurement.
The rib displacement corresponding to the transformation
which was computed by finite helical axis method from the
end of exhalation (EE) to the end of inhalation (EI). The lung
pressure is calculated by an optimization framework based on
inverse finite element analysis, by minimizing the lung volume
errors, between the respiratory volume (respiratory airflow
exchange) and the simulated volume (calculated by biomechan-
ical simulation). We have evaluated the model accuracy on
five public datasets. We have also evaluated the lung tumor
motion identified in 4D CT scan images and compared it with
the trajectory that was obtained by finite element simulation.
The effects of rib kinematics on lung tumor trajectory were
investigated. Over all phases of respiration, our developed model
is able to predict the lung tumor motion with an average
landmark error of 2.0 ± 1.3mm. The results demonstrate the
effectiveness of our physics-based model. We believe that this
model can be potentially used in 4D dose computation, removal
of breathing motion artifacts in positron emission tomography
(PET) or gamma prompt image reconstruction.

Index Terms—Respiratory motion - Biomechanics modeling
- Finite Element Method, Radiation therapy

I. INTRODUCTION

One of the major difficulties in radiation therapy is the
treatment of moving tumours. The modern external beam
radiotherapy techniques are available for cancer treatment,
including Three-Dimensional Conformal Radiation Therapy
(3D-CRT), Intensity Modulated Radiation Therapy (IMRT),
Helical Tomotherapy (HT) and Hadron THerapy (HTH). The
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HTH has been the subject of growing interest, primarily due
to the favorable ballistic properties of ion-matter interactions,
which allow for a high degree of dose conformality in
the tumor while minimizing the dose in the healthy tissue.
Unfortunately, in many cases the advantage of the increased
dose conformity is severely compromised due to organ mo-
tion. The internal anatomy of the patient can undergo intra-
fractional and inter-fractional deformation and displacement
[1], [2]. Moreover, in the case of Hadron THerapy (HTH),
apart the ballistic problem caused by the target motion, the
organs density variations due to respiratory motion affect the
particle range which can lead to unwanted dose distributions
[3], [4], overshoot to critical organs or beam undershoot to tu-
mour. The error due to density changes depends the position
of the tumour and the beam direction and may exceed 1 or 2
cm [5]. The effects of density variations that occur along the
beam path on dose distribution are more important in the case
of HTH than in the case of conventional radiotherapy [40]. In
this paper we are going to focus on breathing-induced intra-
fractional motion. Respiration is the most important source
of intra-fractional motion in the patient’s body. Lung tumour
displacement can range up to more than 2 cm, while lung
volume was being varied by about 25% during respiration [7],
[8]. In this context, various intra-fractional motion mitigation
techniques have been developed. One solution is to reduce the
organ motion of the patient using abdominal compression or
partial/complete stop of the patient respiration [9]. However,
these techniques would substantially increase the patient
setup time as well as the associated clinical workload. More-
over, the abdominal compression methods can be hard to
reproduce. Breath hold level and breathing patterns can drift
between time of simulation and treatment or even within a
treatment session as the patient becomes more relaxed. Other
existing solutions consist on beam gating or beam tracking.
The beam gating refer to the irradiation during a selected
period of the breathing cycle known as the gating window
[10], [11]. This technique has the major disadvantage that the
treatment time is prolonged due to the frequent interruptions
of the beam delivery. Moreover, the beam gating, as well
as mitigation techniques, are based on previously acquired
images and therefore cannot take into consideration the
variations of the patient’s breathing pattern. An example of
a beam tracking system used in the clinical environment
is the robotic Cyberknife Synchrony system applied to x-
ray radiosurgery [12], [13]. This technique increases dose to
the patient from imaging and is an invasive procedure [8].
Furthermore, the density changes along the beam path cannot
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Fig. 1. Proposed methodology to estimate and to track the lung tumor motion by the diaphragm muscles and rib kinematics, from external surrogates
during External Beam Radiation Therapy (EBRT): the spirometer and the capture of thoracic motion.

be properly determined which is essential in the case of HTH.
Other existing solutions consist of tracking by implantation
of fiducial markers. These solutions are either intrusive or
invasive and there is a risk of infection and pneumothorax
[8], [14].
An ideal solution would continuously adapt the beam to the
variation of the tumour position. An alternative solution is to
use a motion model that is able to model the correspondence
between the internal displacement and deformations of the
organs and respiratory surrogate signals such as spirometry
and deformation of the skin surface. Moreover, in the case of
four dimensional radiotherapy treatment planning that aims
to estimate the evolution of the dose distribution during the
respiratory cycle on one hand the position of the organs,
on the other hand the displacements and the deformations
of the tissues throughout the respiratory cycle need to be
estimated. Breathing is a dynamic and a complex process
in which the respiratory motion is non-reproducible [8].
As shown by many studies, the breathing periodicity and
amplitude of patients can vary during a single imaging or
treatment session [15], [16]. Furthermore, lung tumors can
even present hysteresis in their trajectories [17], making them
more difficult to locate with precision. Methods to estimate
respiratory organ motions can be divided into 4 major
categories; deformable image registration[18], [19], biome-
chanical models [20], [21], [22], [23], [24], [19], hybrid
models with biomechanics and deformable image registration
[25], [26] and statistical models including or not the machine
learning techniques [27], [28], [29]. Currently, the existing
methods do not explicitly take into account the information
related to breathing physiology and physical properties of
organ tissues, and all those methods assume a reproducible
motion of the respiratory system and cannot fully take into
account the variability of the respiratory motion. Recently,
the authors in [22] have proposed a generative lung biome-

chanical model for half respiration cycle, where the motion is
not constrained by any fixed boundary condition. The authors
have used 4 and 16 pressure zones on the sub-diaphragm
and thoracic cavity, respectively. However, this method, could
hardly be correlated with respiratory surrogate signals during
treatment. In order to overcome these limitations, the aim
of this study is to propose a non-invasive approach for
lung tumor tracking based on a patient-specific model of
the respiratory system, which can be used during External
Beam Radiation Therapy (EBRT). Fig.1 illustrates our global
methodology to predict and track the internal motion (lung
tumor motion), from external measurable parameters, such
as spirometry and Real-time Position Management (RPM),
during treatment. In this study, we have developed a lung
tumor tracking approach based on a patient-specific biome-
chanical model of the respiratory system, which takes into
account the physiology of respiratory motion to simulate the
real non-reproducible breathing motion. The behavior of the
lungs, is driven directly by simulated actions of the breathing
muscles, i.e. the diaphragm and the intercostal muscles (the
rib cage). The lung model is monitored and controlled
by a personalized lung pressure/volume relationship (lung
compliance) during a whole respiratory cycle. The lung
pressure and diaphragmatic forces are patient-specific, and
calculated for different breathing states. However, as these
parameters are not directly measurable, we have used the
volume of the lungs, which is a measurable parameter, and
through a personalized compliance pressure/volume curve,
to estimate the lung pressure and to calculate diaphragmatic
forces at different respiratory states. In this order, we have
developed an optimization framework based on inverse finite
element analysis, by minimizing the lung volume errors,
between the respiratory volume (measured respiratory airflow
exchange) and the simulated volume (calculated by biome-
chanical simulation)[14]. Finally, our model is controlled by



two physiological parameters: the respiratory volume and the
ribs displacement. The respiratory volume can be replaced by
surrogate signal such as spirometry during treatment and the
ribs displacement by Real-time Position Management (RPM)
system. In the context of HTH, our model takes into account
the density variations due to breathing. However, in this
paper, we do not address the real time challenging issues but
we focus on modeling aspects. First, in section 2, we present
the patient-specific anatomical and biomechanical model,
as well as the lung-pressure/diaphragm-force optimization
algorithms based on inverse finite element. Then, in section
3, a qualitative and quantitative analysis and an experimental
validation of our approach are presented. Finally, we give
some concluding remarks and directions for future work.

II. MATERIALS AND METHODS

A. Anatomy and physiology of the respiratory system

The lung is a passive organ which is divided into two
halves, the right and left lung. It is situated in the thorax
on either side of the heart. The pleural cavity is surrounded
by the chest wall on the sides, and the diaphragm on the
bottom. This space contains pleural fluid which facilitates
near frictionless sliding at this boundary. The diaphragm is
a dome-shaped musculofibrous membrane concave toward
the lungs which separates the thorax from the abdominal
cavity. It is composed of a peripheral part (muscular fibre)
and a central part (tendon). Lungs are linked to the diaphragm
and to the ribs through the pleura. The mechanics of human
breathing involves two steps that alternate with each other:
inhalation (inspiration) and exhalation (expiration). Negative
pressure in the pleural cavity (natural breathing) initiates
when the diaphragm and chest wall move away from the
lung. The negative pressure expands lung volume, dropping
the internal lung pressure, allowing air to enter passively in
the lung. The ability of the lungs to expand is expressed
by using a measure known as the lung compliance (Fig.2).
Lung compliance (CL) is the relationship between how much
pressure is required to produce a degree of volume change
of the lungs. It is usually expressed in ml/cmH2O. The
ratio between the volume variation △V and the pressure △P
represents the compliance:

CL =
△V

△P
(1)

The lung compliance is affected by the elastic properties of
the lung. The pulmonary compliance therefore reflects the
lungs ability to develop in response to an increase in pressure.
The lung compliance can be written as:

K =
E

3(1− 2ν)
= −V0

dP

dV
= − V0

CL
(2)

where K, E, ν, V0 are the bulk modulus, the Young’s
modulus, Poissons ratio and the initial lung volume
respectively.
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Fig. 2. Theoretical lung compliance (pressure/volume curve) for the whole
respiratory cycle

B. Patient-specific anatomical model of respiratory system

One of the major difficulties of the finite element method
applied to computational biomechanics is the complexity
associated with the building of patient-specific geometrical
models. In this order, we have developed previously a global
strategy to generate patient-specific anatomical 3D models
of the respiratory system from medical images (CT scan
data) for finite element simulation [32], [36], [14]. For this,
after segmentation, a 3D surface mesh is created for each
volume, using the marching cubes algorithm. Due to the
excessive number of nodes and large number of bad quality
elements, which are common features in mesh-based models,
a CAD-based approach has been developed: the meshes are
rebuilt as a solid using a procedure of semi-automatic surface
creation with Non-Uniform Rational Basis Splines (NURBS).
Using the resulting smooth surface, a quality mesh with
four-node tetrahedral elements is generated using ABAQUS
packages. In this paper, we did not focus on the anatomical
geometry reconstruction that do not constitute the core of
this contribution.

C. Patient-specific biomechanical model of the respiratory
system

First, we describe the biomechanics of the respiratory
system including the mechanical behavior of the lung tissue,
the diaphragm muscles and rib kinematics, as well as the
boundary conditions which are used in our model. Then,
we present the developed automatic tuning and optimiza-
tion algorithm, to calculate the personalized physiological
parameters diaphragm forces and the lungs pressure during
the whole respiratory cycle.

1) Respiratory system and boundary conditions : Our
anatomical model of the respiratory system comprises the
lungs, tumor, thorax (rib kinematics), diaphragm behavior,
skin and mediastinum. The boundary conditions (BC) are
inferred from the anatomy and identified by medical experts.
For the diaphragm, we have considered the direction of
muscle forces to the direction of muscle fibers (Fig.5(a)).
The force is applied to the muscular part of the diaphragm



and simple homogeneous Dirichlet boundary condition is
applied to the lower part of the diaphragm and the Lagrange
multiplier method is used for the contact model. To simulate
the sliding of the lungs, a surface-to-surface contact model
is applied to the lung-chest cavity (Fig.5(b)). The friction-
less contact surfaces are used to simulate the pleural fluid
behavior. The rib cage kinematics have been applied as dis-
placement boundary conditions during the whole respiratory
cycle. Then, we have used the personalized compliance to
apply pressure boundary conditions to the surface of the lung
model. The lung model is monitored directly by simulated
actions of the breathing muscles: the diaphragm and the
intercostal muscles (the rib cage). In our work the amplitude
of the lung pressure and diaphragm force are patient-specific,
determined at different respiratory states by an optimization
framework based on inverse FE analysis methodology, using
lung volume variations. We have segmented the respiratory
system at end expiration (EE, the reference state). Also, we
have segmented lungs at all states for a full cycle (10 states
from DIR-Lab Dataset [30]). Based on personalized pressure-
volume curve (Fig 5(c)), we can estimate the lung pressure
for each patient as:

PLung(i) = −K
Vi − V0i

V0i

= − E

3(1− 2ν)

Vi − V0i

V0i

(3)

where PLung(i) presents the lung elastic pressure at each
intermediate respiratory state. The K, E and ν are bulk
modulus, Young Modulus and Poisson ratio respectively. V0i

is the initial lung volume at each intermediate respiratory
state and Vi represents the current lung volume.

2) Rib kinematics: In our study, the thoracic cage model
includes all skeletal structures: ribs and associated costal
cartilages, the sternum and the thoracic vertebrae (Fig.5(a)).
The ribs are considered as articulated rigid bodies. The
motion of a rigid body between two positions can be char-
acterized by an Euclidean transformation. Several authors
have investigated the ribs kinematics. In [37], human ribs
displacement were studied and the transformation parameters
have been defined using planes attached to the ribs. In our
previous works [39], [34], we have presented a methodology
to study rib kinematics, using the finite helical axis method.
The idea is to predict, from the transformation, the evolution
the ribs position and orientation parameters with time. Each
rib transformation parameters are automatically computed
between the initial and final state (Fig.5(b)). As the rotation
angle is small, a linear interpolation between the two states
is applied to predict the rib motion at any intermediate
breathing states. For more details about finite helical axis
method, one can refer to [38], [39].

3) Lung and diaphragm Behaviors: Based on the results
published [14], the Saint-Venant Kirchhoff (SVK) hyperelas-
tic model can describe the mechanical behavior of the lung
tissue. Then, we have used the personalized pressure-volume
curve to apply pressure boundary conditions to the surface
of the lung model based on our computational framework

presented in section II-C4.
The muscles of the diaphragm are skeletal muscle type,
and their action has the effect of shortening or lengthening
the muscles along their fiber direction. The muscles of the
diaphragm are considered as compressible isotropic hyper-
elastic materials (SVK) [34], [36] and the tendon part is
considered as linear elastic behavior (Fig.5(a)).
For an isotropic elastic material, the elastic energy, noted W ,
can be written as:

W (E) =
λ

2

(
trE
)2

+ µ tr
(
E2
)

(4)

where E is the Green-Lagrange strain tensor, λ and µ are
the Lame’s coefficients. For small deformations, the Green-
Lagrange strain tensor is linearized into the infinitesimal
strain tensor (ϵϵϵ):

ϵϵϵ =
1

2
(gradU + gradT U) (5)

where U is the displacement field. The Hooke’s law or
Hookean materials is the relation between the stress tensor
(σ) and the strain tensor (ϵϵϵ), can be written as:

ϵϵϵ =
1 + ν

E
σ − ν

E
tr(σ)I (6)

With E: Young’s modulus, ν: Poisson’s ratio, and I is the
identity matrix. Other expression can be written, introduce
Lame’s constants, where µ:shearing coefficient and λ: com-
pression coefficient.

µ =
E

2(1 + ν)
λ = ν

E

(1− 2ν)(1 + ν)
(7)

For the non-linear hyper elastic behavior, the Saint-Venant
Kirchhoff law extends the Hooke’s law for large displace-
ment. The relation between the second Piola-Kirchhoff stress
tensor, the Green-Lagrange strain tensor and the rate effect
leads to:

S = λ (tr E) I + 2µE (8)

S is the 2nd Piola-Kirchhoff stress tensor, can be derived
from the relation: S = ∂W

∂E .
For the dynamic simulation of the respiratory system, the
equation of motion of a vertex v of the model can be written:

Mv
{
üv

}
+ γv

{
u̇v

}
+
∑
τ∈Vv

(
F int
v

)
= F v

ext (9)

Where Mv , γv are respectively the mass and damping
coefficients of each vertex. The Vv is the neighborhood of
vertex v (i.e. the tetrahedra τ containing node v). The F int

v

are the internal forces calculated by FE method and the F v
ext

are the imposed forces calculated by our developed algorithm
based on inverse FE. To solve the dynamic system, and for
more stability, the implicit finite scheme has been chosen.
In our work, the mass density of each tissue is patient-
specific, calculated and determined directly from CT scan
images, based on density mapping algorithm defined and



developed in our last work [40]. First, organs tetrahedral
meshes are generated from segmented CT scanner images.
Next, the Hounsfield values issued from CT scanner images
are converted into density values that are mapped to these
mesh nodes, respecting the principles of mass conservation
(Fig.3). For more information related to density mapping
algorithm, one may refer to [6], [40].
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4) Automatic tuning and optimization: Physiological pa-
rameters of the respiratory system are patient-specific and
vary from one patient to another. Based on the planning 4D
CT, we calculate firstly the initial lung elastic pressure at
each intermediate respiratory state, using the equation (3) as
a function of the volume and mechanical properties (Young
modulus and Poisson ratio) of the lungs. Then, based on our
developed model using the inverse finite element analysis
methodology, we recalculate and optimize the personalized
lung pressure/volume curve by minimizing the lung volume
errors at each intermediate respiratory state, between the
segmented volume (from 4D CT) and the simulated volume
(calculated by biomechanical simulation). The schematic of
the computational framework developed for this study is

illustrated in (Fig.4). This framework is designed to calculate
automatically the personalized diaphragm forces and the
lungs pressure during the whole respiratory cycle and for
each intermediate respiratory state based on inverse finite
element optimization. The optimization loops were achieved
with a program coded in Python coupled within finite element
Abaqus solver. Besides data acquisition (4D scan images),
there are three successive steps involved in this framework.
The first step is the estimation of the initial parameters:

• the initial geometry is segmented and the organs tetra-
hedral meshes are generated from segmented CT images
at EE,

• through a personalized compliance (pressure/volume
curve), we have calculated and applied the negative lung
pressure (not directly measurable) at EE and at different
respiratory states,

• the material density values calculated from CT data are
mapped on the vertices of the tetrahedral meshes in such
a way that the mass of each organ is preserved.

• we apply the diaphragm forces, these forces are applied
on each node of the muscular part of the diaphragm,
parallel to muscle orientation.

• the kinematic model of the rib cage based on the finite
helical axis method (FHAM), which play a significant
role in the pleura outer-surface motion and therefore in
the lung motion.

The second step, the biomechanical simulation (simulation
loop) based on finite element analysis of the respiratory
system is generated using the current parameters. The outputs
in this step are:

• the simulated lung volume,
• the diaphragm forces,
• the displacement field of all organs,
• the 3D lung tumor position
Then, in the third step, based on an iterative algorithm

(the optimization loop), in which the diaphragm forces and
lung pressures are adapted and corrected for each phase
of respiration. The optimization algorithm starts with initial
diaphragm forces and updates them iteratively. Using the
estimated diaphragm force, the simulation loop calculates the
deformations of the respiratory system (lung motion) using
a finite element model. The simulation loop, then returns
the estimated parameters of the diaphragm forces and the
simulated lungs volume. The mean absolute error (MAE) was
used as cost function to minimize the the errors between the
simulated lung volume (Vsim) mesh and the segmented lung
volume (Vexp) mesh extracted from the CT scan images of
the same phase of respiration. If the cost function does not
converge, an estimation of the parameters are updated, and
the new parameters are fed back into the simulation loop.

III. RESULTS AND EXPERIMENTAL VALIDATION

In order to demonstrate the validity of our patient specific
biomechanical model, a quantitative and qualitative analysis
of simulations were conducted. We have compared the results
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TABLE I
MECHANICAL PROPERTIES OF BREATHING SYSTEM: E YOUNGS

MODULUS AND ν POISSON RATIO (FROM [25], [41], [36], [14]), ρ
VOLUMETRIC DENSITY (CALCULATED FROM CT IMAGES) .

Tissues Mechanical E ν ρ
behavior (MPa) (t/mm3)

Lungs HSVK 3.74x10−3 0.3 3.0x10−10

Lung tumor LE 49 0.4 1.5x10−9

Mediastinum LE 5.87x10−3 0.4 1.0x10−10

Diaphragm HSVK 5.32 0.33 1.0x10−9

muscle
Diaphragm LE 33 0.33 1.0x10−9

tendon
Ribs LE 5000 0.4 1.5x10−9

Cartilage LE 49 0.3 1.0x10−9

Sternum LE 11500 0.3 1.5x10−9

Vertebra LE 9860 0.4 1.5x10−9

Skin LE 5.32 0.4 1.0x10−6

TABLE II
FIVE SELECTED PATIENTS FROM DIR-LAB DATASET [30], WITH SMALL

AND LARGE BREATHING AMPLITUDES.

image Size of Amplitude
Patients dimension Voxels Diaphragm

(mm) (mm)
1 256x256x94 0.97x0.97x2.5 10.1
4 256x256x99 1.13x1.13x2.5 20.2
6 512x512x128 0.97x0.97x2.5 24.1
9 512x512x128 0.97x0.97x2.5 12.5
10 512x512x120 0.97x0.97x2.5 22.3

of a simulated motion with the experimental data provided
directly from the 4DCT scan images DirLab database [30].
Fig.6 illustrates the different specific compliances (pressure-
volume curve) for each patient, calculated and identified
at each state directly from 4D CT scan images. Then,
these compliances are used an input in our biomechanical
patient specific model to simulate the full breathing cycle.
In our FE simulation, we define the simulation time for the
inspiration phase is 2 seconds and for the expiration phase is
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Fig. 6. Patient specific compliances for five patients from DirLab database,
calculated and identified at each respiratory state directly from 4D CT scan
images.

TABLE III
AVERAGE SURFACE ERRORS FOR THE DIAPHRAGM AND LUNGS

SURFACES AT END INSPIRATION EI BETWEEN FEM SIMULATION
SURFACE AND SEGMENTED SURFACES EXTRACTED FROM CT IMAGES

FOR FIVE PATIENTS FROM DIRLAB DATABASE [30].

Patients Diaphragm Lungs
End Inspiration (EI) Mean ± SD (mm) Mean ± SD(mm)
Patient 1 1.8 ± 1.5 2.0± 1.5
Patient 4 2.0 ± 1.6 2.2 ± 1.7
Patient 6 1.9 ± 1.6 2.1 ± 1.5
Patient 9 2.1 ± 1.5 2.3 ± 1.6
Patient 10 2.2 ± 1.1 2.5 ± 1.8

3 seconds. The mechanical properties and behaviors of the
different organs used in our simulations are settled in the
Table.I. Fig.7 shows the total deformation and the maximum
displacement components of the lungs and diaphragm during
breathing. We can observe the maximum displacement of
the diaphragm on the right-posterior (RP) and left-posterior
(LP) sides. It is also possible to notice a slightly larger (RP)
side motion than (LP) side motion, in concordance with
the physiological anatomy. For the lungs deformation, the



TABLE IV
AVERAGE LANDMARKS LUNG ERROR (MM) DURING EXHALATION AT DIFFERENT RESPIRATORY STATES: THE FIRST STATE T00, THE END INSPIRATION

(T50), THE END EXPIRATION (T10).

Patients Volume Mean ± SD (mm) Mean
between EE and EI (%) T10 T20 T30 T40 T50 All states

Patient 1 12.8 2.1 ± 1.5 2.2 ± 1.2 2.1 ± 1.6 1.6 ± 1.4 1.1 ± 0.8 1.8± 1.3
Patient 4 14.6 2.3 ± 1.2 2.5 ± 1.3 2.1 ± 1.2 1.8 ± 1.2 1.5 ± 1.2 2.0±1.2
Patient 6 25.4 2.4 ± 1.5 2.3 ± 1.2 2.0 ± 1.6 1.9 ± 1.6 1.4 ± 1.1 2.0±1.3
Patient 9 13.4 2.3 ± 1.4 2.2 ± 1.1 2.1 ± 1.3 1.8 ± 1.4 1.3 ± 0.9 1.9± 1.2
Patient 10 16.7 2.1 ± 1.5 2.2 ± 1.2 2.1 ± 1.6 1.6 ± 1.5 1.1 ± 0.8 1.8±1.3

TABLE V
MEAN LANDMARK ERRORS IN THE 2 LOBES (INFERIOR (INF), SUPERIOR (SUP)) OF THE LEFT LUNG AND 3 LOBES ( (INFERIOR (INF), MIDDLE AND

SUPERIOR (SUP)) OF THE RIGHT LUNG, IN THE AP (ANTERIOR/POSTERIOR), RL (RIGHT/LEFT), AND SI (SUPERIOR/INFERIOR) DIRECTIONS
BETWEEN EE AND EI PHASES.

Patients Patient 1
Lobes SUP Middle INF
Directions L/R S/I A/P L/R S/I A/P L/R S/I A/P
Landmarks error (right lung)(mm) 1.3 1.3 1.72 1.5 1.6 1.8 1.8 2.2 1.9
Landmarks error (left lung)(mm) 1.1 1.1 1.5 − − − 1.3 1.6 2.3

Patients Patient 4
Lobes SUP Middle INF
Directions L/R S/I A/P L/R S/I A/P L/R S/I A/P
Landmarks error (right lung)(mm) 1.4 1.5 1.9 1.4 1.2 2.3 1.6 2.1 2.5
Landmarks error (left lung)(mm) 1.1 0.9 1.6 − − − 1.3 1.6 1.8

Patients Patient 6
Lobes SUP Middle INF
Directions L/R S/I A/P L/R S/I A/P L/R S/I A/P
Landmarks error (right lung)(mm) 0.77 0.11 1.72 0.23 0.55 1.04 1.35 0.60 1.15
Landmarks error (left lung)(mm) 0.84 0.95 1.38 − − − 0.69 0.65 1.03

Patients Patient 9
Lobes SUP Middle INF
Directions L/R S/I A/P L/R S/I A/P L/R S/I A/P
Landmarks error (right lung)(mm) 1.3 1.3 1.7 1.5 1.8 2.0 1.7 2.1 2.1
Landmarks error (left lung)(mm) 1.2 1.1 1.6 − − − 1.5 1.8 1.9

Patients Patient 10
Lobes SUP Middle INF
Directions L/R S/I A/P L/R S/I A/P L/R S/I A/P
Landmarks error (right lung)(mm) 1.9 1.8 1.7 1.9 2.1 2.4 2.1 2.3 2.6
Landmarks error (left lung)(mm) 1.6 1.8 1.8 − − − 1.9 1.9 2.3

maximum displacement occurs in the posterior region along
the superior-inferior (SI) direction (diaphragm direction).

A. Anatomical landmarks evaluation at end of inhalation
(EI) and the end of exhalation (EE)

To measure the precision of our biomechanical simulation,
we have evaluated the model accuracy on five selected
lung cancer patients, from DIRLab Dataset [30], where the
entire thorax was visible and with small and large breathing
amplitudes(Table.II). We have compared the finite element
simulation results on 300 landmarks, at end inspiration (EI),
end expiration (EE) states, and 75 landmarks at each interme-
diate respiratory state, obtained by manual delineations[30].
Table.IV illustrates the comparative study between our FE
simulation results and the anatomical landmarks displace-
ment vectors for five patients. The average error for anatom-
ical landmarks inside the lung at end inspiration (EI) and
end expiration (EE) states for five patients is less than
2.5± 1.5mm. In addition to the need for accuracy, we were

also evaluated the % errors distribution on the 300 landmarks
for the same five lung cancer patients, and the mean errors
for anatomical landmarks in the 2 lobes of the left lung and
3 lobes of the right lung, along the AP (Anterior/Posterior),
RL (Right/Left), and SI (Superior/Inferior) directions. Fig.8
and Table.V summarize the histogram of landmark errors
distribution and the mean landmark errors in the 2 lobes of
the left lung and the 3 lobes of the right lung in the LR, AP
and SI directions between EE and EI phases, respectively.
The results show that more than 95% of mean landmark error
values are less than 3mm for each lobe in the LR, AP and
SI directions.

B. Anatomical landmarks evaluation at intermediate states
between EI and EE

The performance of the proposed biomechanical model
has been evaluated by comparing the simulation results
with ground truth (CT images) on 75 landmarks at five
intermediate states between EI and EE. Table.VI shows the



TABLE VI
COMPARISON BETWEEN OUR BIOMECHANICAL PATIENT SPECIFIC MODEL RESULTS AND THE RESULTS FROM FUERST ET AL. [22] AND LI ET AL.

[21], ON PATIENT 6, PATIENT 9 AND PATIENT 10 ISSUED FROM DIRLAB DATASET [30].

References Cycle Organs Boundary P6 P9 P10
Modeled conditions (mm) (mm) (mm)

[22] half 4 pressure zones (sub diaphragm)
3.27 ±1.0 2.97 ±1.0 2.83 ±1.0

No ribs behavior 16 pressure zones (thoracic)

[21] half Only lungs organ One CT and uniform pressure - 3.2±1.4 4.4±2.9
-

All respiratory system personalized pressure-volume curve
Our model Full Thorax Rib kinematics 2.0±1.3 1.9± 1.2 1.8±1.3
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Fig. 7. Qualitative analysis of patient specific biomechanical simulation;
lungs and diaphragm deformations during the whole cycle of breathing for
two patient P1 and P6.

displacement vectors for five patients. In our simulation, we
have obtained an average mean error less than 2.0±1.3mm.
These results show that the developed physiological model
coupled with the personalized lung-pressure/diaphragm-force
optimization algorithm of the respiratory system is in a
good agreement with the experimental data, produces more
accurate predictions with lower errors compared to other
works ([22],[21]) that used the same datasets.We have also
evaluated the influence of the variation of lung tissue Young’s
modulus and Poisson’s ratio commonly used in the literature
[42], [25], [41], [43]. Young modulus can vary between
0.1kPa to 10kPa and Poisson’s ratio between 0.2 to 0.49. The
results show a very low sensitivity of simulation results to the
variation of Young’s modulus. Contrary to Young’s modulus
variation, the lung landmarks error obtained by Poisson’s
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Fig. 10. 3D lung tumor trajectory (in mm) issued from 4D CT images compared to the trajectory calculated by biomechanical finite element model
including or not the rib kinematics for patients P6 and P10 from DirLab data set [30].

ratio=0.49, is three times larger than the lung landmarks error
obtained by Poisson’s ratio=0.33.

C. Tumor tracking and impact of the rib kinematics on lung
tumor motion

In order to evaluate the impact of the rib kinematics on
lung tumor motion, we have evaluated the tumor motion
and 3D trajectory identified in 4D CT scan images on two
selected patients (6 and 10) from the same Dataset DIR-Lab
[30], where the tumor location is visible. These trajectory are
compared and evaluated with the trajectory obtained by FE
simulation, during the whole cycle of breathing (10 phases
between the EI and EE). To track the lung tumor movement
in 4D CT images, we have used the affine registration applied
to the segmented lung tumor volume at different respiratory
states (Fig.9). Then, the accuracy of the proposed tumor
tracking method is evaluated by comparing and calculating
the Hausdorff distance between the 3D mesh surface of the
segmented tumor and predicted FE lung tumor, including or
not the rib kinematics.

Fig.11 and Fig.10 show the mean errors ± standard deviation
of lung tumor position and comparison study between the 3D
hysteresis trajectories of the lung tumor during the whole
cycle of the breathing without and within the rib kinematics
compared to the trajectory calculated directly from 4D CT
images. The figures demonstrate that our patient specific
biomechanical model for lung tumor position estimation is
accurate (less than 3 mm). However, it is important to note
that the results for these two patients are slightly better with
the rib kinematics but the difference is not significant during
the whole cycle (for patient 6 and 10). This is because the
respiration for these patients is mainly diaphragmatic. In
addition, another investigation conducted to study the impact
of rib kinematics on the lung tumor motion prediction. This
investigation was conducted by varying the ribs displacement
by 10%, 25% and 50% during the whole breathing cycle.
Fig.12 illustrates the impact of the rib kinematics on lung
tumor trajectory for the patient 6 and patient 10, and the
robustness of the proposed approach based on biomechanical
patient specific model of the respiratory system.
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Fig. 11. Mean errors ± standard deviation of lung tumor position
during the whole cycle of breathing (10 phases between the EI and EE)
between the trajectory issued from 4D CT images compared to the trajectory
calculated by biomechanical finite element simulation coupled with the lung-
pressure/diaphragm-force optimization for two patients P6 and P10. The
error bars are always higher or same for the without ribs results.

IV. CONCLUSION AND FUTURE WORK

In this paper, a patient specific biomechanical model
of the respiratory system was proposed for lung tumor
tracking for the whole respiratory cycle. Our results are
quite realistic compared to the 4D CT scan images. We
can observe that the proposed physically-based FE model
is able to predict correctly at high precision the lung tumor
displacements including the personalized and physiological
lung-pressure/diaphragm-force and boundary conditions of
the organs. This could be a potential tool to provide valu-
able location-specific tumor motion information for medical
physicians to reduce the margins between clinical target
volume (CTV) and planning target volume (PTV). One of the
limitations of our work is the 3D reconstruction organs delin-
eation and treatment of the multiple organs mesh, requiring
time consuming, manual operations for each patient. In order
to avoid manual contouring and 3D geometry segmentation
for different organs, and to reduce the computational costs
without lowering the quality, we plan to develop and use a
realistic atlas-based 3D shape reconstruction of the respira-
tory system based on statistical training or machine learning,
to get a fast and automatic patient-specific model adaptable
taking into account complexities such as geometrical irregu-
larities and organs contacts.
Currently, we are working on real time computation of our
patient-specific model. The model should be controlled by
external non-invasive surrogates, to predict patient’s lung tu-
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Fig. 12. 3D lung tumor trajectory (in mm) issued from 4D CT images
compared to the trajectory calculated by biomechanical finite element model
including rib kinematics displacement changed by 10%, 25% and 50% of
the rib displacement calculated from CT scan images.

mor motion, during treatment. In this context, it is important
to investigate the accuracy and reproducibility of RPM versus
surface imaging to find an appropriate surrogate for 3D rib
motion. In the future, the model should also be validated
pre-clinically on a realistic deformable anthropomorphic lung
phantom (LuCa). The results of our model can greatly
contribute to motion compensation algorithms for diagnosis,
beam therapy, dose calculation or online imaging systems.
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