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ABSTRACT

Wall pressure measurements may results from two con-
tributions: one coming from the acoustic sources and an-
other induced by the turbulent boundary layer (TBL) pres-
sure. An accurate separation of these two contributions
may be required for two purposes: first, the extraction of
the acoustic part is necessary for the quantification and the
localization of the acoustic sources and second, the extrac-
tion of the TBL part is needed for the characterization of
the vibro-acoustic excitation of the wall. In this paper, a
post-processing method is proposed to perform this sep-
aration through a decomposition of the measured cross-
spectral matrix using the statistical properties of the two
contributions, especially their different spatial correlation
structures. The approach is assessed on parietal pressure
measurements acquired in a wind-tunnel with controlled
sources and flow.

1. INTRODUCTION

When dealing with multichannel wall pressure measure-
ments, one challenge is to discriminate the contribu-
tion coming from the aeroacoustic sources and the pres-
sure fluctuations induced by the turbulent boundary layer
(TBL). An accurate separation of these two contributions
offers a twofold perspective. On the one hand, a correct es-
timation of the acoustic part is required for an appropriate
quantification and localization of the aeroacoustic sources.
On the other hand, the characterization of the TBL part
allows a better understanding of the vibro-acoustic excita-
tion, with applications such as the prediction of the vehicle
interior noise.

Many techniques are used to perform this separation.
When it is possible, the contribution of the TBL part can
be mitigated by the use of physical filtering such as wind
screens [1], microphone recession [2] or structural vibra-
tion measurements [3], but a residual TBL part might still
contaminate the acoustic measurements. Wavenumber fil-
tering is also widespread [4], but it requires a dense array
and a clear separation of the acoustical and TBL wavenum-
ber contents, which is not the case at low frequencies.

In this paper, a post-processing approach is proposed,
that relies on a decomposition of the measured cross-
spectral matrix (CSM) into acoustic and aerodynamic
CSMs by means of the prior knowledge about the inher-

ent correlation structure of each contribution. This ma-
trix decomposition is written as a constrained optimization
problem, solved within a Bayesian framework. The two
contributions are thus estimated jointly according to their
statistical model. Section 2 is dedicated to the presentation
of this method.

Then, in section 3, the proposed separation approach is
assessed on parietal pressure measurements performed in
a wind-tunnel with controlled acoustic sources and with an
array specifically designed for acoustic source localization.

2. SEPARATION USING STOCHASTIC
MODELING

The separation approach described in this section is an ex-
tension of the Probabilistic Factor Analysis model that has
been previously applied to the denoising of aeroacoustic
measurements [5, 6, 3, 7]. This extension integrates a cor-
related noise model for the identification of the TBL noise
contribution, and it is further called PFA-Corr.

2.1 Problem statement

In order to state the problem, let us first introduce the vec-
tor of measurements y ; that concatenates the Fourier coef-
ficients for each sensor at one frequency and one snapshot
J. As said previously, these measurements results from the
sum of a contribution coming from the acoustic sources
written a; and another major contribution induced by the
TBL noise, written n;. Adding also a minor contribution
that models the other sources of noise ¢, the sum of all the
contributions reads

yj:aj+nj+ej (1)

This measured field is supposed to be statistically sta-
tionary in time, and thus an estimate of the CSM is ob-
tained by averaging over N, snapshots at a given fre-
quency:

N
~ 1 S
Syy = N. Zyjyf @)
S J:1

where the superscript H is the conjugate transpose opera-
tor. Assuming that the three terms in the sum (1) are statis-
tically uncorrelated, the theoretical CSM (obtained at the
limit when the number of snapshots tends to infinity) can



be decomposed as follows:
Syy :Saa+Snn+See- (3)

The separation method proposed in this paper performs
jointly the identification of each CSM of this sum. In order
to make this inverse problem identifiable, some constraints
must be added to the model, by using the statistical prop-
erties of each CSM.

First, dealing with classical microphone arrays, the
number of sources is supposed to be small compared to
the number of sensors, and the acoustic field to have a
high correlation length compared to the microphone inter-
spacing. Therefore, the measured acoustical field can be
described by a few unobserved latent variables, which
reads

a; = LC]‘, (4)

with ¢; the complex vector of K < M latent variables
and L € CM>*X an unknown mixing matrix, and using the
CSM notation:

Saa = LS L. )

Then, another constrain that can be added to the model
concerns the CSM of the TBL contribution. Several phys-
ical models in the frequency-space domain exist among
which the Corcos’ one [8] is chosen for our application
because it has a low number of empirical parameters to
set. Therefore, the statistical model for the covariance of
the TBL noise for a pair of microphones (k, 1) with coor-
dinates (z;,y;) and (zk, yx ), at a frequency f is

2nf

Snnkz = p2 e Te (am|mk—$l|+ay|yk—yl\—l(zk—m))’ (6)

with k,0 = 1,..., M. In this model, the flow is supposed
to be oriented along the x direction. The amplitude term p?
is a real positive scalar. The parameters «,, and «, stand
for the longitudinal and transverse coherence decay rates
and U, is the vortex convection velocity. These three Cor-
cos parameters v, o, and U, are determined from the
measurements. To do so, the procedure proposed by Ar-
guillat er al. [2] is followed: a Non-Linear Least Squares
(NLLS) data-fitting is performed, providing a different pa-
rameter set at each frequency.

Finally, the third contribution to the measurements
modeled in Eq. (1) is the additive random noise, that is
supposed uncorrelated over the microphones. This can be
statistically modeled by a diagonal CSM:

S €e — |—0'2J (7)

€

where the notation [u | refers to a diagonal matrix with the
vector u as diagonal elements.

2.2 Bayesian inference

Seeing all the unknown parameters of the fitting model as
random variables, the problem can be solved by a Bayesian
inference approach. Especially, the optimal parameters can
be found through a maximization of the posterior Probabil-
ity Density Function (PDF), which reads

®” = argmax {@ | S'yy} ®

with © the set of the parameters to be inferred. The no-
tation [z | y] stands for the conditional PDF of x given y.
In Bayesian approaches, all the parameters are assigned a
prior PDF that accounts for all the prior knowledge about
them. In Table 1 are given all the priors used for the ap-
plication of the present paper. The choice of these priors
is classical, with Gaussian priors on all the parameters ex-
cept for variance parameters that are assigned an Inverse-
Gamma prior (see Ref. [9], p.42-43 for more details). In
this Table, the prior variance of the TBL. CSM is

2 e—%(am\Ik—wz\+aa/|yk—yz|—l(f6k—mz)), 9)

as described in Eq. (6).

Note that it is expected that the inferred TBL CSM
S..n does not exactly follow a classical Corcos’ model,
but has rather a correlation structure derived from a Cor-
cos’ model, corrected through 2 mechanisms. First, unlike
the classical model, the Corcos’ parameters are allowed to
vary with frequency, which is known to be more consistent
with real measurements [10]. Then, a second correction
mechanism is induced by the fact that the Corcos model
is only implied in the prior covariance of the TBL CSM.
However, this CSM is inferred entirely from its posterior,
which is itself proportional to the prior times the likeli-
hood: A A A

[Snn | 00] o< [Snn][Syy | o] 10)

where oo indicates all the other variables of the model.
Therefore, the Corcos model is only a prior, and the in-
ferred TBL CSM is also driven by the data through the
likelihood [S,,, | oc]. In other words, the inferred CSM is
expected to be inspired by a Corcos’ model, but corrected
to best fit the data.

As the posterior PDF to maximize in Eq. (8) has no
closed-form, it is estimated through a Monte Carlo Markov
Chain algorithm [11, 7].

2.3 Assessment of the separation using wavenumber
beamforming

In the following, an applications of the separation method
is presented. In order to evaluate the performance of
the separation, a wavenumber beamforming is performed
on each identified CSM. The beamforming output corre-
sponds to the projection of the measurements on the con-
tribution of a given wave. Here, plane waves are used.
Therefore, the output of the beamformer, at a point of co-
ordinate (k,, k,,) and at one frequency, can be written in
a quadratic and vectorized form as follows:

A = vec('wiw,f{)Hvec(S) (11
with S the CSM of interest and

w;

In the following, this beamforming is only applied on the
cross-spectra of S.

The wavenumber content of the acoustic contribution is
expected to be located inside the acoustic circle, distorted



Priors

Hyper-priors

| Inputs

[c] = Ne(0, [oc?))

[p] = Nc(ap, by)

[n] = Nc (0,%2)

l02] = ZG(ac, be)

[0?] = ZG(ac, b.)

ac, b, =103

ap = (Trace(gyy)/M)% and b, = ap/2
U, o, oy from NLLS

ac, b =103

Table 1: Prior PDFs assigned to each parameter and hyperparameter of the PFA-Corr model. N stands for the multivariate
complex normal distribution and ZG is the inverse-gamma distribution. The input parameters U,, o, and «, are given by a

least mean squares procedure.

by the convection effects. The acoustic domain is bounded
as follows [12]:

27 f cos 6
co + Uz cos b

27 fsin 6
= 1
and co+ U cos b (13)

. =
with 0 < 6 < 27 and ¢g the speed of sound in the ambient
air at rest.

Concerning the TBL wavenumber content, it is ex-
pected to be centered on the convection wavenumber, at
k, = 2{;—f Depending on the frequency and the width of
the TBL ‘domain (given by the coherence-loss), the acous-

tic and TBL domains may overlap.

3. APPLICATION TO WIND-TUNNEL
MEASUREMENTS

3.1 Experimental setup

The measurements are performed in a closed-section wind-
tunnel at Ecole Centrale de Lyon (LMFA laboratory),
shown in Fig. (1a). As shown on the sketch in Fig. 1b,
two sources are mounted in the ceiling of the test-section,
excited by two uncorrelated white noises. An array com-
posed of 73 MEMS microphones is mounted in the floor of
the section, arranged as shown on Fig. 1c. The microphone
inter-spacings vary from 0.2 cm to 27.4 cm. The acquisi-
tions are performed synchronously, during 30 s, and the
CSM are computed with a frequency resolution of 16 Hz,
and 66 % overlapping rate.
Three measurements are performed with the MEMS ar-
ray:
e configuration A: with the sources switched on and
without flow,
e configuration T30: without sources and with a flow
at 30 m/s,
e configuration AT30: with the sources switched on
and the flow at 30 m/s.
The objective is to separate the acoustic and TBL contribu-
tions from the measurements AT30 and compare with the
baseline measurements A and T30. Note that the proposed
separation process does not compensate for the convection
effect on the acoustic part. Therefore, the identified acous-
tic part cannot be similar to the non-convected measure-
ment A.
Another measurement is also performed in the same
wind-tunnel using a dense rotating linear array in place of

(a) Picture of the facility

Porous liner [] [
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25cm -~
!
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(b) Sketch of the test
section (side view)

(c) Array design

Figure 1: Description of the experimental setup for the
wind-tunnel measurements.

the MEMS array. This array is made of 63 remote micro-
phones spaced by 1 mm. The measurement is performed
only in the T30 configuration and for three angular posi-
tions: parallel, normal and at 7/2 rad from the flow axis.
The records last 60 s, and the CSM are computed with a 4
Hz resolution, and 66% overlapping rate. As this type of
array is much denser than the MEMS one, it is supposed to
be more appropriate to characterize the TBL.

3.2 Beamforming maps of the measurements

The wavenumber content of the measurements is shown in
the form of a k,-k, map at 2096 Hz in Fig 2. On these
maps is plotted in black the convected acoustic circle. At
this frequency, the acoustic and TBL domains are clearly
visible, without overlapping. The wavenumber content is
also shown in the form of a k- f map, at k, = 0, in Fig. 3.
On these maps is also plotted the acoustic circle, that ap-
pears as a cone nearly centered on k, = 0. These maps
show that the two domains overlap below 500 Hz. At low
frequencies, the convective ridge is duplicated along the
k. axis because of aliasing effects. This aliasing is also
visible around 2500 Hz, on the map of the configuration
A, leading to some duplications of the acoustic spot. It is
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Figure 2: Beamforming maps obtained at 2096 Hz from the measurement configurations AT30 (left), A (center), T30
(right), using the MEMS array. The 3 maps are scaled with the same color bar (in dB). The circle indicates the convected

acoustic domain.
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Figure 3: Beamforming maps, as a function of the frequency at k, = 0, from the measurement configurations AT30
(left), A (center), T30 (right), using the MEMS array. The 3 maps are scaled with the same color bar (in dB). The two

dashed lines indicate the acoustic domain.

also clear that the order of magnitude of each component
is very different depending on the frequency.

3.3 Estimation of the TBL parameters

In order to estimate the Corcos parameters required to ap-
ply the separation process, the NLLS regression is per-
formed on the measurements. First, the measurement from
the rotating array, at configuration T30, is used, because
this array is supposed to be reliable for the characteriza-
tion of the TBL. Then, NLLS is also applied on the MEMS
measurements, at configuration AT30 to see if the strategy
can be applied on measurements acquired with a less dense
array and the in presence of an acoustic field.

In Fig. 4 are plotted the estimated parameters from the
two datasets, as a function of the frequency. The longitudi-
nal (along the stream direction, following the x-direction)
and transverse (normal to the stream, along y-direction)

correlation lengths are calculating as:

U.

h 27rfozm7y'

(14)
The two arrays and configurations give very similar results
at low frequency, but above 5 kHz, the inter-spacing of the
MEMS microphones is to high to provide an accurate es-
timate. The estimated convection speed follows a classical
decrease, as described in the literature [2, 10]. Similarly,
the evolution of the correlations lengths with frequency is
well known [13].

3.4 PFA-Corr separation results

Now that the Corcos parameters are estimated, the separa-
tion using PFA-Corr can be applied to the AT30 measure-
ments. The beamforming maps of the inferred acoustic and
TBL contribution are shown in Fig. 5.

On the inferred acoustic part, the convected ridge is to-
tally absent, except below 220 Hz, where the TBL noise
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Figure 5: Beamforming maps obtained at k, = 0 from the PFA-Corr denoising applied to the AT30 measurements.
Identification of the acoustic part (left) and the TBL contribution (right). The 2 maps are scaled with the same color bar (in

dB). The two dashed lines indicate the acoustic domain.

is highly correlated over the microphones and where the
sources emit at very low amplitudes. Below 1500 Hz, the
acoustic contribution seams to be not well reconstructed,
but this should be confirmed by advanced acoustic imag-
ing (in space). Similarly, the acoustic contribution appears
to be fully separated from the TBL on Fig. 5b, which could
also be verified by an imaging processing.

4. CONCLUSION

The separation of the TBL and acoustic contributions can
be performed by a matrix decomposition, regularized by
a Bayesian approach. In this inverse problem, a low rank
model is assumed for the acoustic contribution, whereas a
Corcos model is used to account for the prior TBL spatial
correlation.

The Corcos model requires three empirical parameters
that can be estimated experimentally, or by a simple least
squares regression on the measurements, even with an ar-
ray designed for the acoustic localization (i.e. not very

dense) and in the presence of an acoustic field.
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