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Energy storage systems are key elements for enabling the design of MicroGrids in buildings, specially to deal with stochastic renewable energy resources and to promote peak shifting. However, inaccuracies in the batteries' mathematical models due to temperature and ageing effects can reduce the performance of a MicroGrid system. To tackle these uncertainties, this article presents a two-level hierarchical model predictive controller empowered with a data-driven algorithm for real-time model identification of Lithium-ion batteries. The objective is to enhance their state of charge estimation and to make their maximum use without damaging them. The results demonstrate that it improves up to three times the accuracy of state-of-charge estimation and increases about 3% the annual building MicroGrid selfconsumption rate. Furthermore, the division of the building MicroGrid energy management system into two hierarchical levels soften the drawbacks arise from the inaccuracies of day-ahead data prediction while reducing the computational cost. The proposed architecture guarantees higher energetic autonomy indexes than a conventional rule-based controller in all scenarios under study.
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Introduction

Building MicroGrids (BMGs) are an attractive alternative to foster the integration of renewable energy sources (RESs) into the electrical grid [START_REF] Lawrence | Ten questions concerning integrating smart buildings into the smart grid[END_REF]. However, their wide implementation is restrained by the difficulty of designing a generic Energy Management System (EMS) capable of operating under stochastic variations in the power plant. Unpredictability in power generation and power consumption, along with inaccuracy of mathematical models of BMG components lead to the under exploitation of BMG resources or equipment damaging [START_REF] Cardoso | Battery aging in multi-energy microgrid design using mixed integer linear programming[END_REF].

In the literature, there are various strategies to implement a reliable and efficient EMS [START_REF] Zia | Microgrids energy management systems: A critical review on methods, solutions, and prospects[END_REF]. Among the existent strategies, the hierarchical control structure enables to embed algorithms with different complexities at the same time, thanks to the parallel coordination of multiple control layers deployed at different sample time [START_REF] Cheng | To Centralize or to Distribute: That Is the Question: A Comparison of Advanced Microgrid Management Systems[END_REF]. Concerning the EMS algorithms, those based on model predictive control (MPC) have proved their robustness against environmental disturbances, even with simplified plant model [START_REF] Mendes | Energy management of an experimental microgrid coupled to a V2G system[END_REF]. Nonetheless, there is a lack in evaluating the MPC performance under environmental changes, such as temperature, electric devices ageing and batteries model parameters inaccuracy.

In order to face these uncertainties, there are several techniques to estimate better the intrinsic parameters of batteries, such as the Arrhenius equation [START_REF] Su | Path dependence of lithium ion cells aging under storage conditions[END_REF], or models devised from technical specifications [START_REF] Cardoso | Battery aging in multi-energy microgrid design using mixed integer linear programming[END_REF]. However, they require beforehand model calibration, which can lead to uncertainties throughout the batteries' life. In this context, strategies based on data analysis are increasingly implemented. The most pertinent algorithms are incremental analysis of the voltage and capacity to estimate the batteries' state of health [START_REF] Li | State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression[END_REF], Kalman filter estimator [START_REF] Song | The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection[END_REF] and other machine learning methods [START_REF] Li | Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[END_REF]. Therefore, this article proposes a two-level Hierarchical MPC (HMPC) with a Real-Time Model Identification (RTMI) module to deal with batteries' parameter inaccuracy. Equipped with photovoltaic (PV) panels and Li-ion batteries, the purpose of the proposed HMPC is to maximise the MicroGrid selfconsumption rate (𝜏 𝑎 ) [START_REF] Luthander | Photovoltaic self-consumption in buildings: A review[END_REF]. Relying on continuous data measurement and forecast data, the strategy is to optimise its internal power flow by promoting the use of renewables and reducing the energy dependency on the external grid. The results show that the RTMI enhances the State-of-Charge (SoC) estimation, leveraging 𝜏 𝑎 and leading HMPC to outperform the traditional rule-based strategy.

The remaining of this paper is organised as follows. In the second section, the overview of the underlying hierarchical control structure associated with the proposed algorithm for identifying the battery parameters is described. The third section details the new model developed for the estimation of the SoC and the RTMI algorithm. The fourth section presents the performance of the proposed control strategy, by comparing the HMPC with RTMI module with both the conventional MPC under hierarchical and non-hierarchical architecture and a traditional rule-based controller. In the last section, the conclusions on the advantages and disadvantages of the proposed approach are summarized.

Overview of the hierarchical energy management system

The designed hierarchical EMS is a centralised controller for optimising the power flow of a gridconnected BMG that interacts with the external grid throughout a community aggregator, as illustrated in Fig. 1. Composed mainly by three control units, the objective of the proposed control architecture is to assure the building internal power balance with minimum dependency on the main grid. The following two subsections describe the hierarchical MPC and the RTMI module, respectively.
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Fig. 1: Two-level hierarchical model predictive control architecture empowered with the batteries' realtime model identification module for energy management of a grid-connected building MicroGrid.

Hierarchical model predictive controller

The proposed HMPC disposes of two control levels, namely Economic MPC (EMPC) and Tracking MPC (TMPC). The upper control level performs the economic power dispatch through an EMPC and determines both the day-ahead electricity trading planning to be sent toward the community aggregator and the batteries' State-of-Charge references (𝑆𝑜𝐶 𝑟𝑒𝑓 ) to be forward to the TMPC. Simultaneously, the lower level determines the batteries' power references (𝑃 𝑏𝑎𝑡 ) based on the updated prediction data and measurements, by performing a TMPC to follow 𝑆𝑜𝐶 𝑟𝑒𝑓 .

Considering the fluctuations of the data prediction of both PV power generation and building power consumption (𝑃 𝑐𝑜𝑛𝑠 𝑝𝑟𝑒𝑑 ), the EMPC determines 𝑆𝑜𝐶 𝑟𝑒𝑓 that, within a horizon of 𝑁 ℎ 𝐸𝑀𝑃𝐶 48ℎ, minimises the external grid energy dependency. Therefore, the EMPC maximises 𝜏 𝑎 defined by (1) and minimises additional energy imports to reduce the cost of purchasing electricity. For this, the cost function defined by ( 2) is optimised daily (𝑇 𝑠 𝐸𝑀𝑃𝐶 24ℎ), in which the total power injected (𝑃 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 ) and the total power purchased (𝑃 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 ) are minimised. It is noteworthy that the horizon (𝑁 ℎ 𝐸𝑀𝑃𝐶 ) twice bigger than the updating time (𝑇 𝑠 𝐸𝑀𝑃𝐶 ) is to guarantee the most suitable 𝑆𝑜𝐶 at the end of the day. Doubling the horizon avoids unnecessary completely discharge of batteries at the end of the day since the last half of control variables determined by the EMPC is not implemented. 

Parallelly to the EMPC, the TMPC is triggered at each 𝑇 𝑠 𝑇𝑀𝑃𝐶 1ℎ to follow the 𝑆𝑜𝐶 𝑟𝑒𝑓 as much as possible, considering the updated data prediction and the 𝑆𝑜𝐶 ̂ estimated from the last measurements. To achieve this, the TMPC minimises hourly the cost function defined by [START_REF] Zia | Microgrids energy management systems: A critical review on methods, solutions, and prospects[END_REF]. The purpose of the TMPC is to reduce the stochastic variation of the day-ahead power imbalance and battery model inaccuracies, by using a shorten horizon, simplifying the optimisation process.

𝑃 𝑏𝑎𝑡 arg (min 𝑃 𝑏𝑎𝑡 ∑ (𝑆𝑜𝐶 𝑟𝑒𝑓 𝑘 -𝑆𝑜𝐶 ̂𝑘) 2 𝑁 ℎ 𝑇𝑀𝑃𝐶 =6 𝑘=1 ) (3) 
Meanwhile, in the background, the EMPC supervises the performance of the TMPC. Every hour, the EMPC compares the accuracy of day-ahead power planning sent to the aggregator (𝑃 𝑔𝑟𝑖𝑑 𝑟𝑒𝑓 ) and 𝑆𝑜𝐶 𝑟𝑒𝑓 with real measurements. As soon as the absolute difference between them is higher than a predefined thresholdnamed Δ 𝑆𝑜𝐶 𝑡ℎ𝑟 or Δ 𝑃 𝑔𝑟𝑖𝑑 𝑡ℎ𝑟 at time 𝑡 𝑟𝑒𝑂𝑝𝑡the EMPC determines new 𝑆𝑜𝐶 𝑟𝑒𝑓 using the updated prediction data, but with a reduced horizon, as illustrated in Fig. 2. The reduced horizon comprehends the data prediction of the remaining period of the first EMPC optimisation and is equal to 𝑁 ℎ -𝑡 𝑟𝑒𝑂𝑝𝑡 . The main constraints embedded in both EMPC and TMPC are those to respect the recommendations of the French Energy Regulation Commission (ERC) for grid-connected BMGs with PV capacity over 100 kWc [START_REF]Enedis l'électricité en réseau[END_REF]. To prevent energy speculation with the local energy storage systems (ESSs) when trading electricity, the ERC allows charging the ESSs only from renewable power generated locally.

Additionally, it imposes that 𝜏 𝑎 ≥ 50% at the end of the year [START_REF]la réalisation et l'exploitation d'Installations de production d'électricité à partir d'énergies renouvelables en autoconsommation et situées en métropole continentale[END_REF]. As a result, batteries can be charged (𝑃 𝑏𝑎𝑡 𝑐ℎ ) as soon as there is an internal energy surplus, while they can be discharged (𝑃 𝑏𝑎𝑡 𝑑𝑖𝑠 ) when there is an energy deficit, as detailed in [START_REF] Cheng | To Centralize or to Distribute: That Is the Question: A Comparison of Advanced Microgrid Management Systems[END_REF]. Moreover, aiming to extend the life of batteries, the maximum power rate (𝑃 𝑏𝑎𝑡 𝑚𝑎𝑥 ) and the SoC limits defined by their manufacturer must be supervised [START_REF] Cardoso | Battery aging in multi-energy microgrid design using mixed integer linear programming[END_REF], [START_REF] Tremblay | Experimental Validation of a Battery Dynamic Model for EV Applications[END_REF]. Consequently, it is important to well estimate future SoC (𝑆𝑜𝐶 𝑘+1 ) and to limit them. Similarly, to maximize 𝜏 𝑎 beyond the MPC horizon, the SoC at 𝑘 48ℎ is forced to be higher than 40%.

-|max(𝑃 𝑏𝑎𝑡 𝑀𝐴𝑋 𝑃 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 )| ≤ 𝑃 𝑏𝑎𝑡 𝑘 𝑐ℎ ≤ 0 ; 0 ≤ 𝑃 𝑏𝑎𝑡 𝑘 𝑑𝑖𝑠 ≤ |max(𝑃 𝑏𝑎𝑡 𝑀𝐴𝑋 𝑃 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 )| (4) 

Real-time model identification algorithm

Most of the scientific studies [START_REF] Mendes | Energy management of an experimental microgrid coupled to a V2G system[END_REF] estimate 𝑆𝑜𝐶 𝑘+1 through a model composed of time-invariant parameters derived from batteries' technical specification, as formulated in [START_REF] Mendes | Energy management of an experimental microgrid coupled to a V2G system[END_REF]. However, based on more realistic models of Li-ion batteries [START_REF] Tremblay | Experimental Validation of a Battery Dynamic Model for EV Applications[END_REF], the efficiency during its charge (𝜂 𝑐ℎ ) or discharge (𝜂 𝑑𝑖𝑠 ), the nominal capacity (𝑄 𝑛𝑜𝑚 ) and the nominal voltage (𝑣 𝑛𝑜𝑚 ) change according to the intensity of current, battery age and cell temperature (𝑇 𝑐𝑒𝑙𝑙 ). According to [START_REF] Li | State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression[END_REF], [START_REF] Li | Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[END_REF] the voltage variation can be around 10% of the nominal voltage when they are fully charged and discharged. Moreover, the nominal capacity can reach, at the end of their life, up to 80% of its initial value [START_REF] Li | Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[END_REF]. Consequently, additional uncertainties on 𝑆𝑜𝐶 𝑘+1 estimation arise, which may result in under or overuse of the batteries. To tackle this issue, the authors designed the algorithm RTMI to improve the estimation of both 𝑆𝑜𝐶 𝑘+1 and their upper (𝑆𝑜𝐶 𝑚𝑎𝑥 𝑘+1 ) and lower boundaries (𝑆𝑜𝐶 𝑚𝑖𝑛 𝑘+1 ). The main objective of this new algorithm is to reduce human intervention for model calibration and BMG maintenance while taking full advantages of batteries. Therefore, the RTMI module updates the parameters of 𝑆𝑜𝐶 𝑘+1 , as illustrated in Fig. 3. The limits 𝑆𝑜𝐶 𝑚𝑎𝑥 𝑘+1 and 𝑆𝑜𝐶 𝑚𝑖𝑛 𝑘+1 are determined to guarantee the operation of the batteries in the linear region, as shown in Fig. 4a. The RTMI module determines the parameters , and of the 𝑆𝑜𝐶 model defined by ( 6) and ( 7) by implementing an unconventional linear regression based on previous data measurements. The variable 𝛿 𝑘 is a Boolean variable which is worth 1 when the battery is active and 0 otherwise. Remarkably, equation [START_REF] Li | State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression[END_REF] 

𝑆𝑜𝐶 𝑘+1 𝑆𝑜𝐶 𝑘 + 𝜂 𝑐ℎ 𝑇 𝑠 𝑣 𝑛𝑜𝑚 • 𝑄 𝑛𝑜𝑚 • 𝑃 𝑐ℎ 𝑘 + 𝑇 𝑠 𝑣 𝑛𝑜𝑚 • 𝑄 𝑛𝑜𝑚 𝜂 𝑑𝑖𝑠 • 𝑃 𝑑𝑖𝑠 𝑘 (5) 

Details of the RTMI algorithm

Synchronized with both EMPC and TMPC, the RTMI module acquires a new measurement point 𝑀, composed by the integral of the current (𝑖 𝑡 ), the reference power (𝑃 𝑏𝑎𝑡 ) and the battery voltage (𝑣) at each TMPC sampling time (i.e. 𝑇 𝑠 𝑇𝑀𝑃𝐶 ). As detailed in the following sub-sections, the RTMI algorithm is divided into three steps, namely: classification, updating and identification of the limits for charging and discharging the batteries.

Step 1: Classification of data measurements by temperature interval As depicted in Fig. 4a, 𝑣 is directly correlated to the 𝑇 𝑐𝑒𝑙𝑙 . This effect in the battery voltage impacts the batteries round-trip efficiency, reducing the accuracy of the classical model defined by [START_REF] Li | State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression[END_REF]. Higher voltage when charging the batteries or lower voltages when discharging them implies a loss of efficiency, once the storage energy variation is mainly dependent on the current flowing through the batterie cells. Therefore, aiming to improve the robustness against 𝑇 𝑐𝑒𝑙𝑙 disturbance, the RTMI fits a linear model for each temperature ranges using classified measurements points. Without using any temperature sensor, the RTMI algorithm estimates the temperature interval from 𝑣 measurements. The Fig. 4a and Fig. 5a show that the 𝑇 𝑐𝑒𝑙𝑙 mainly involves a vertical offset in the batteries discharge curve, but almost does not affect the slope of 𝑣 with respect to 𝑖 𝑡 . In this way, the maximum amplitude of 𝑣 (𝛥𝑣 𝑀𝐴𝑋 ) due to the full charges and discharges of the batteries is almost unchanged, resulting in a quasiconstant slope along with different 𝑇 𝑐𝑒𝑙𝑙 , as depicted in Fig. 5b and Fig. 5c.

Consequently, when the BMG operates for the first time, the EMS will force two full charges and discharges of the batteries to determine 𝛥𝑣 𝑀𝐴𝑋 , and therefore, the absolute value of the slope of the discharge curve (|Δ𝑣/𝑖 𝑡 |). After this preliminary step, the temperature intervals are defined by identifying the lines 𝑠 ⃗ 𝑇 𝑐𝑙𝑎𝑠𝑠 , as shown in Fig. 5c, where 𝑇 𝑐𝑙𝑎𝑠𝑠 is the identification number for a specific temperature class. The lines 𝑠 ⃗ 𝑇 𝑐𝑙𝑎𝑠𝑠 are outspread from a voltage interval which is chosen a priori regarding the desired precision, the computing resources and the RTMI convergence time. Typically, this voltage offset can be set as 1% of 𝑣 𝑛𝑜𝑚 . As a result, a measurement 𝑀 belongs to 𝑇 𝑐𝑙𝑎𝑠𝑠 , if and only if, the point 𝑀 is between the lines 𝑠 ⃗ 𝑇 𝑐𝑙𝑎𝑠𝑠 and 𝑠 ⃗ 𝑇 𝑐𝑙𝑎𝑠𝑠 +1 . 

Step 2: Updating the values of , and

Once determined which class of temperature the measurement 𝑀 belongs to, it is possible to adjust the values of and of these respective 𝑇 𝑐𝑙𝑎𝑠𝑠 . The determination of and is implemented based on an iterative and real-time process. As soon as a new measurement 𝑀 is acquired, the parameters of and are updated. Remarkably, and are vectors of size equals to the number of 𝑇 𝑐𝑙𝑎𝑠𝑠 , where each element of these vectors is the fitted values of the model defined by ( 8) over all measurements 𝑀. The upmost advantage of the RTMI algorithm is the non-dependency on storage of the past measurements. The knowledge of the previous measures is stored in dynamic confidence weights, named 𝜔 𝐴 𝑘 , 𝜔 𝐵 𝑘 and 𝜔 𝐶 𝑘 .

Starting from minimal valuestypically between 0.1 and 1.0these confidence weights grow with the acquisition of new measurements. Since the pivot points possess fixed values in the plan 𝑥𝑦 [𝑃 𝑖 𝑡 ], the fitting process only consists of calculating the values of z-axis (i.e. 𝛥𝑖 𝑡 𝑘 𝐴 , 𝛥𝑖 𝑡 𝑘 𝐵 and 𝛥𝑖 𝑡 𝑘 𝐶 ). For the first iteration, the pivot points are initialized according to [START_REF] Song | The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection[END_REF], where it is used the parameters given by the technical specification of the batteries and using the classical model defined in [START_REF] Li | State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression[END_REF]. 9) are calculated with regard the normalized distance between the measure 𝑀 and the respective intermediate pivot point projected on the plan 𝑥𝑦 (i.e. operator ‖•‖ 𝑥𝑦 ), as defined in [START_REF] Luthander | Photovoltaic self-consumption in buildings: A review[END_REF] for the pivot point 𝐴 ′ .

𝛥𝑖
𝑛 𝐴 𝑘 ‖𝑀𝐴 ̅̅̅̅̅ ‖ 𝑥𝑦 ‖𝑀𝐴 ̅̅̅̅̅ ‖ 𝑥𝑦 + ‖𝑀𝐵 ̅̅̅̅̅ ‖ 𝑥𝑦 + ‖𝑀𝐶 ̅̅̅̅̅ ‖ 𝑥𝑦 (10) 
Once determined the intermediary plan 𝜙 , Δ𝑖 𝑡 𝑘 𝐴 , Δ𝑖 𝑡 𝑘 𝐵 and Δ𝑖 𝑡 𝑘 𝐶 and the confidence weights 𝜔 𝐴 𝑘 , 𝜔 𝐵 𝑘 and 𝜔 𝐶 𝑘 are updated following equations ( 11) -( 14), in the order of compilation. For the sake of simplicity, in this paper, it will only be detailed the updating process of the pivot point 𝐴 , but it is important to highlight that similar equations are used for 𝐵 ′ and 𝐶 ′ . 

𝜔 𝐴 𝑘+1 𝜔 𝐴 𝑘+1 -𝜏 𝑑𝑒𝑐𝑎𝑦 • (𝜔 𝐴 𝑘+1 -𝜔 𝑚𝑖𝑛 ) (13) 
Firstly, the confidence weight 𝜔 𝐴 𝑘 is updated using [START_REF]Enedis l'électricité en réseau[END_REF]. The closer 𝑀 is to the 𝐴 , the more reliable the value of 𝑧 𝐴 calculated from ( 9) is. Consequently, 𝜔 𝐴 𝑘+1 is inversely proportional to the distance between the pivot point 𝐴 and the measurement 𝑀, and it is normalised according to the distance from other pivot points (i.e. 𝐵 and 𝐶 ). To improve the robustness against measurement noise, the updated Δ𝑖 𝑡 𝑘+1 𝐴 is a weighted value between the previous Δ𝑖 𝑡 𝑘 𝐴 and the new fitted 𝑧 𝐴 . The inertial factor handles the ponderation among these two variables 𝜔 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑘 𝐴 and the confidence weight 𝜔 𝐴 𝑘+1 as defined in [START_REF] Tremblay | Experimental Validation of a Battery Dynamic Model for EV Applications[END_REF]. The equilibrium amongst 𝜔 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑘 𝐴 and 𝜔 𝐴 𝑘+1 control the convergence time of Δ𝑖 𝑡 𝑘+1 𝐴 to z A . This balance can be manually set by tuning the value of 𝜎, which indicates the importance of the new measurement regarding the previous value. Notably, 𝜔 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑘 𝐴 is upper limited by 𝜔 𝐴 𝑘+1 , to restrict the convergence time to a scale of two. Since the charge/discharge curve of batteries changes with age, the confidence weight 𝜔 𝐴 𝑘 + 1 gradually decreases with a time constant 𝜏 𝑑𝑒𝑐𝑎𝑦 until a minimum value 𝜔 𝑚𝑖𝑛 which is equal to the starting value, as specified in [START_REF]JRC Photovoltaic Geographical Information System (PVGIS) -European Commission[END_REF].

After updating the plan Σ , the coefficients , and are calculated using the principles of analytical geometry. As the last step, it is still necessary to refine the developed model, because according to [START_REF] Li | State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression[END_REF] and Fig. 4b, the plan Σ does not cross the 𝑖 ⃗ 𝑡 axis, which makes batteries model inaccurate for low powers. Therefore, the model polishing consists of forcing the plan Σ cross the 𝑖 ⃗ 𝑡 axis by using [START_REF] Yu | An integrated and reconfigurable hybrid AC/DC microgrid architecture with autonomous power flow control for nearly/net zero energy buildings[END_REF].

∆𝑖 𝑡 𝑘 ∑ 𝜃 𝑃 𝑘 ={𝑐𝑑 𝑑𝑑 𝑐𝑐 𝑑𝑐} ∑ 𝑃 𝑘 ( + 1 𝑃′ 𝑏𝑎𝑡 𝑀𝐴𝑋 • ( + (𝑖′ 𝑡 𝑀𝐴𝑋 + 𝑖′ 𝑡 𝑀𝐼𝑁 ) • 2 )) ={𝑐𝑑 𝑑𝑑 𝑐𝑐 𝑑𝑐} (15) 
Step 3: Identification of the limits for charging and discharging the batteries

As mentioned before and illustrated in Fig. 6a, the batteries must operate between points 𝑄(𝑣 𝑒𝑥𝑝 ) and 𝑄(𝑣 𝑛𝑜𝑚 ). The strategy consists in adjusting 𝑖 𝑡 𝑚𝑎𝑥 and 𝑖 𝑡 𝑚𝑖𝑛 to reduce the variations of the slope |Δ𝑣/Δ𝑖 𝑡 |. According to Fig. 6a, while 𝑖 𝑡 is inside the linear zone (zone 1), the slope |Δ𝑣/Δ𝑖 𝑡 | is quasiconstant, because 𝑣 is linearly dependent on 𝑖 𝑡 . However, when operating outside this zone (zone 2), Based on this phenomenon, the developed algorithm for identifying the actual boundaries of 𝑖 𝑡 divides the temporal graphs into two zones, named 𝑧𝑜𝑛𝑒 𝐴 and 𝑧𝑜𝑛𝑒 𝐵, as illustrated in Fig. 6b and Fig. 6c. The 𝑧𝑜𝑛𝑒 𝐴, indicated by the red dots, represents the range where the batteries certainly operates in the linear zone. On the other hand, the 𝑧𝑜𝑛𝑒 𝐵, outlined by the blue dots, is the zone for which the battery can be either in the linear or non-linear region. Therefore, 𝑧𝑜𝑛𝑒 𝐴 comprehends the range of 20% to 80% of the predefined limits of 𝑖 𝑡 𝑚𝑖𝑛 and 𝑖 𝑡 𝑚𝑎𝑥 , whereas 𝑧𝑜𝑛𝑒 𝐵 is its complementary region.

|Δ𝑣/Δ𝑖 𝑡 | is not constant because 𝑣 is non-linear regarding 𝑖 𝑡 . (a) (b) (c) 
Remarkably, the oscillation of the slope is more intense when zone B is in the non-linear zone (Fig. 6c) than when it is inside the linear range (Fig. 6b). As a result, to determine whether zone B corresponds to the linear or non-linear range, the average of the absolute difference between each |Δ𝑣/Δ𝑖 𝑡 | measured inside 𝑧𝑜𝑛𝑒 𝐵 (𝑚 𝑢𝑝 ) and those measured inside 𝑧𝑜𝑛𝑒 𝐴 (𝑚 𝑑𝑜𝑤𝑛 ) are constant compared, through the mean deviations 𝜗 𝑢𝑝 and 𝜗 𝑑𝑜𝑤𝑛 calculated as detailed in Fig. 7. These deviations 𝜗 𝑢𝑝 and 𝜗 𝑑𝑜𝑤𝑛 are monitored by means of a proportional controller with a hysteresis at its input to maintain them within the range 𝜗 𝑢𝑝 𝑑𝑜𝑤𝑛 𝑟𝑒𝑓 ± 𝑇𝑜𝑙. The values of 𝑇𝑜𝑙 ≅ 2% and 𝜗 𝑢𝑝 𝑑𝑜𝑤𝑛 𝑟𝑒𝑓 ≅ 10% were manually regulated, but they can be re-adjusted to reduce the oscillations or increase the response time of 𝑖 𝑡 𝑚𝑖𝑛 and 𝑖 𝑡 𝑚𝑎𝑥 . If the 𝑖 𝑡 boundaries are modified more than 10% of the previous values, the feasibility zone of Fig. 4b is readjusted accordingly and the confidence values 𝜔 𝐴 , 𝜔 𝐵 , 𝜔 𝐶 are reset to 𝜔 𝑚𝑖𝑛 . Fig. 7: Algorithm for identifying the 𝑖 𝑡 limits to guarantee the batteries' operation inside the linear zone.

Simulation results

Aiming to evaluate the performance of the proposed control architecture, a BMG equipped with PV arrays with 107kWc and Li-ion batteries with nominal voltage of 700V and nominal capacity of 167Ah was simulated for 365 days in MATLAB Simulink ® under several scenarios. The simulations were carried out using real solar radiation data [START_REF]JRC Photovoltaic Geographical Information System (PVGIS) -European Commission[END_REF] and the estimated annual building energy consumption, resulting in 135.95 MWh energy generation and 241.85 MWh energy consumption per year. The 𝜏 𝑎 and the total power exchanged with the main grid was used for assessing the proposed HMPC with RTMI module, a non-hierarchical MPC, and a conventional rule-based (RB) strategy with and without data prediction inaccuracy.

The RB was adapted from [START_REF] Yu | An integrated and reconfigurable hybrid AC/DC microgrid architecture with autonomous power flow control for nearly/net zero energy buildings[END_REF], where, using no data prediction, the batteries are charged when there is an energy surplus and discharged when there is an energy deficit. The simulation results are divided into two subsections. The first one is to validate the RTMI algorithm for SoC and batteries' capacity estimation, while the second one is for assessing the benefits of dividing the EMS hierarchically.

Performance of the algorithm for batteries' parameter identification

To show the robustness of the RTMI algorithm against inaccuracies of the parameters coming from the technical specifications, three initial values of 𝑄 were considered, namely 𝑄 80 , 𝑄 100 and 𝑄 120 , corresponding to 80%, 100% and 120% of the actual capacity (167 Ah), respectively. To verify the error between the day-ahead 𝑆𝑜𝐶 𝑟𝑒𝑓 calculated by the EMPC and the real one, the TMPC in these scenarios was considered as a perfect router. Consequently, instead of optimising (3), it does implement the control variables determined by EMPC. In this manner, it is possible to decouple the effect of TMPC and highlight only the impact of the errors in EMPC state of charge estimation on the BMG performance. The graph in Fig. 8a shows that, in all study cases, the cumulative error in predicting 𝑆𝑜𝐶 𝑘+1 using the RTMI module is about 3 times lower than using the conventional model with static parameters. Furthermore, the graphs in Fig. 8b shows that the EMPC empowered by RTMI module assures 𝜏 𝑎 about 3% higher than the EMPC without RTMI module with 𝑄 80 and between 2% and 4% higher than RB controller. The increase in 𝜏 𝑎 is mainly due to the enlargement of the 𝑖 𝑡 boundaries closed to the real frontiers (𝑄 𝑒𝑥𝑝 and 𝑄 𝑛𝑜𝑚 ), as shown in Fig. 8c. Accurately estimating the battery capacity reinforces the potential of batteries of shifting the load toward the periods of energy surplus, resulting in an enhanced internal load matching and lower grid dependency. For this reason, the relative difference between 𝜏 𝑎 is more remarkable when the batteries' capacity is underestimated (i.e. 𝑄 80 ). Nonetheless, there is a tradeoff between fostering 𝜏 𝑎 and the batteries' state of heathy. Fig. 8c shows that expanding 𝑖 𝑡 boundaries, the attained depth of discharge (DoD) is higher when employing RTMI module than not using it (at the beginning of the simulation), accelerating the batteries' degradation [START_REF] Li | State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression[END_REF]. In addition, as shown in Fig. 8d employing the RTMI module and processing of 𝑣 and 𝑖 𝑡 measurements, 𝑇 𝑐𝑒𝑙𝑙 can be supervised without needing any thermal sensor, because 𝑇 𝑐𝑙𝑎𝑠𝑠 is an image of the temperature variation. This can provide further information to the HMPC for preserving the batteries state of healthy [START_REF] Cardoso | Battery aging in multi-energy microgrid design using mixed integer linear programming[END_REF], [START_REF] Song | The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection[END_REF].

Performance of the proposed two-level hierarchical control structure

Since the purpose of the hierarchical EMS is to soften the drawbacks provoked by stochastic variations in the internal power imbalance, the prediction data were multiplied by a random time-dependent factor (𝜌), as detailed in Fig. 9a. In this manner, the error in the estimate power imbalance grows according to the horizon, attaining up to 60% at 𝑁 ℎ 𝐸𝑀𝑃𝐶 48, as shown in Fig. 9b and Fig. 9c. Aiming to assess the proposed HMPC, five control architectures were investigated. The first and second ones are the HMPC with and without RTMI modules. The third and fourth control structures are the non-hierarchical MPC with and without RTMI module, in which only EMPC is updated hourly with the full horizon. Finally, the fourth control disposal is the simple RB. Fig. 10a and Fig. 10b show that both HMPC and the non-hierarchical MPC are robust against data prediction uncertainties, because with and without errors, the BMG imported and exported almost the same amount of energy in a year. Remarkably, when using HMPC with RTMI, it imported about 1% less energy and exported 8% less than without RTMI. Even though the non-hierarchical MPC optimises the cost function (2) around 11 times more than the HMPC, the results are very similar. Indeed, the nonhierarchical structure triggers EMPC at each hour, which means 8760 optimizations in a year, whereas only up to 631 times (number of re-optimisations plus once per day) using the proposed control structure, as detailed in Fig. 10c. The cooperation of two control layersone with long and another with a short horizonenables to handle prediction data variability without needing to optimize the laborious cost function (2) every hour, but only when the error in either 𝑆𝑜𝐶 𝑟𝑒𝑓 or 𝑃 𝑔𝑟𝑖𝑑 𝑟𝑒𝑓 is greater than Δ 𝑆𝑜𝐶 𝑡ℎ𝑟 Δ 𝑃 𝑔𝑟𝑖𝑑 𝑡ℎ𝑟 7%. Fig. 10d shows that errors in 𝑃 𝑔𝑟𝑖𝑑 𝑟𝑒𝑓 are higher when not using the RTMI module, because of imprecisions in SoC estimation, which result in 391 more re-optimisations in the scenario without errors and 135 with errors.

Conclusions

This paper aims to develop a generic Building MicroGrid Energy Management System capable of adapting to external changes, such as Li-ion batteries modelling inaccuracy and inherent power imbalance uncertainties. The hierarchical MPC empowered with the proposed real-time parameter identification module increases the self-consumption rate regarding a well-established rule-based controller and the conventional MPC. This data-driven algorithm enables to identify the original batteries capacity and the cell temperature without any previous modelling step and without any thermal sensor, which simplify the energy management system design. Moreover, the simulation results demonstrated that the division in two control layers reduces the number of optimizations while maintaining the building less energetic dependent on the external grid even under imprecisions in data predictions.
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 2 Fig. 2: Re-optimization process of EMPC with reduced horizon.

Fig. 3 :

 3 Fig. 3: Real-time parameters identification algorithm for a charge and discharge sequence ( 𝑘 ).

  Fig. 4: RTMI module operation. (a) Discharge curves of a Li-ion battery under temperature cell variations. (b) Model perspective with the three pivot points for predicting the variation of SoC (𝛥𝑖 𝑡 ).

Fig. 5 :

 5 One-year simulation of the BMG with SoCmax = 80% and SoCmin = 20%. (a) 𝑣 and 𝑇 𝑐𝑒𝑙𝑙 correlation. (b) Slope of battery discharge curve. (c) Correlation between voltage measurements, current integral and 𝑇 𝑐𝑒𝑙𝑙 .

Fig. 6 :

 6 Simulation of Li-ion batteries. (a) The slope of the charge/discharge curves as a function of 𝑖 𝑡 . (b) and (c) Temporal evolution of the slope when operating in linear and non-linear zones, respectively.

Fig. 8 :

 8 Fig. 8: Evaluation of the EMPC robustness against parameter imprecision. (a) The cumulative error of the SoC estimation. (b) Self-consumption rate comparison. (c) Maximum (in blue lines) and minimum (in red lines) boundaries of the 𝑖 𝑡 when using RTMI. (d) Estimation of 𝑇 𝑐𝑒𝑙𝑙 variation through 𝑇 𝑐𝑙𝑎𝑠𝑠 .

Fig. 9 :

 9 Real power and its 48-hours data prediction of a summer day. (a) Time-variant factor. (b) Power consumption. (c) Power generation.

Fig. 10 .

 10 Fig. 10. Comparison between different control architectures. (a) Total power injected. (b) Total power purchased. (c) Number of EMPC re-optimization. (d) Moving average error in 𝑃 𝑔𝑟𝑖𝑑 𝑟𝑒𝑓 of the last 10 days

  can be interpreted as four surfaces 𝛴 of axis 𝑥𝑦𝑧 [𝑃 𝑖 𝑡 𝛥𝑖 𝑡 ] , as illustrated in Fig.4b. Then, each surface 𝑥𝑦𝑧 can be represented by three pivot points, namely 𝐴 Consequently, the RTMI sends daily to the HMPC only the values of , and corresponding to the most likely temperature for the next day, which is the average temperature of the previous day.

								[ 𝑖 𝑡 𝑀𝐼𝑁 𝑃 𝑏𝑎𝑡 𝑀𝐼𝑁 𝛥𝑖 𝑡 𝐴 ] ,
	𝐵	[ 𝑖 𝑡 𝑀𝐴𝑋 𝑃 𝑏𝑎𝑡 𝑀𝐼𝑁 𝛥𝑖 𝑡 𝐵 ] and 𝐶	[ 𝑖 𝑡 𝑀𝐴𝑋 𝑃 𝑏𝑎𝑡 𝑀𝐴𝑋 𝛥𝑖 𝑡 𝐶 ] , which cover the feasibility zone which
	corresponds to the limits recommended by the manufacturer extended in 20%. To reduce the impact of
	voltage variation, the surfaces 𝛴 are classified into four main categories, named	{	},
	which indicate the sequence of batteries' charge ( ) and discharge ( ), at time 𝑘 -1 and 𝑘.
		𝑆𝑜𝐶 𝑘+1 1 -	𝑖 𝑡 𝑘 + ∆𝑖 𝑡 𝑘 𝑄 𝑛𝑜𝑚 𝑘	; 𝑃 𝑏𝑎𝑡 𝑘 𝑃 𝑏𝑎𝑡 𝑘 𝑐ℎ	+ 𝑃 𝑏𝑎𝑡 𝑘 𝑑𝑖𝑠	={𝑐𝑑 𝑑𝑑 𝑐𝑐 𝑑𝑐} ∑	𝑃 𝑘	(6)
		∆𝑖 𝑡 𝑘	∑	𝑃 𝑘 + 𝑖 𝑡 𝑘-1 + 𝛿 𝑘
				={𝑐𝑑 𝑑𝑑 𝑐𝑐 𝑑𝑐}		

  To achieve this, an intermediate surface 𝜙 defined by the intermediary pivot points 𝐴′ , 𝐵′ and 𝐶′ , with z-axis values equal to 𝑧 𝐴 , 𝑧 𝐵 and 𝑧 𝐶 , are calculated through the optimisation of the cost function defined by[START_REF] Li | Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review[END_REF]. The surface 𝜙 contains the point 𝑀 and is determined to make 𝛥𝑖 𝑡 𝑘 + 1 𝐴 𝐵 𝐶 of the next iteration as close as possible of 𝛥𝑖 𝑡 𝑘 𝐴 𝐵 𝐶 of the previous period. Intuitively, high value of 𝑛 𝐴 𝑘 and low values of 𝑛 𝐵 𝑘 and 𝑛 𝐶 𝑘 lead 𝑧 𝐴 approach to Δ𝑖 𝑡 𝑘 𝐴 faster than 𝑧 𝐵 and 𝑧 𝐶 to Δ𝑖 𝑡 𝑘 𝐵 and Δ𝑖 𝑡 𝑘 𝐶 , whereas balanced values of 𝑛 𝐴 𝑘 , 𝑛 𝐵 𝑘 and 𝑛 𝐶 𝑘 result in a fair variation among 𝑧 𝐴 𝑧 𝐵 and 𝑧 𝐶 . The weights of (

	𝑡 𝑘=0 𝐴	𝛥𝑖 𝑡 𝑘=0 𝐵	𝜂 𝑐ℎ 𝑇 𝑠 𝑄 𝑛𝑜𝑚 𝑣 𝑛𝑜𝑚	• 𝑃 𝑏𝑎𝑡 𝑀𝐼𝑁 ; 𝛥𝑖 𝑡 𝑘=0 𝐶	𝑇 𝑠 𝑄 𝑛𝑜𝑚 𝑣 𝑛𝑜𝑚 𝜂 𝑑𝑖𝑠	• 𝑃 𝑏𝑎𝑡 𝑀𝐴𝑋	(8)
	Thereafter, the values of Δ𝑖 𝑡 𝑘 𝐴 , Δ𝑖 𝑡 𝑘 𝐵 and Δ𝑖 𝑡 𝑘 𝐶 are updated so that to approach the surface Σ to the new
	measurement 𝑀. 𝑧 𝐴 z B z	arg ( min 𝑧 𝐴 z B z C	𝑛 𝐴 𝑘 (Δ𝑖 𝑡 𝑘 𝐴 -𝑧 𝐴 )	2 + 𝑛 𝐵 𝑘 (Δ𝑖 𝑡 𝑘 𝐵 -z B )	2 + 𝑛 𝐶 𝑘 (Δ𝑖 𝑡 𝑘 𝐶 -z )	2 )	(9)
	Subject to:						
			𝑀 𝜖 𝐴 ′ 𝐵 ′ 𝐶 ′ ; 𝑧 𝐴 𝑧 𝐵 𝑧 𝐶 ≥ 0		

Acknowledgements

The authors would like to thank the New Aquitaine Region for their financial support.