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Abstract 

Energy storage systems are key elements for enabling the design of MicroGrids in buildings, specially 

to deal with stochastic renewable energy resources and to promote peak shifting. However, inaccuracies 

in the batteries’ mathematical models due to temperature and ageing effects can reduce the performance 

of a MicroGrid system. To tackle these uncertainties, this article presents a two-level hierarchical model 

predictive controller empowered with a data-driven algorithm for real-time model identification of 

Lithium-ion batteries. The objective is to enhance their state of charge estimation and to make their 

maximum use without damaging them. The results demonstrate that it improves up to three times the 

accuracy of state-of-charge estimation and increases about 3% the annual building MicroGrid self-

consumption rate. Furthermore, the division of the building MicroGrid energy management system into 

two hierarchical levels soften the drawbacks arise from the inaccuracies of day-ahead data prediction 

while reducing the computational cost. The proposed architecture guarantees higher energetic autonomy 

indexes than a conventional rule-based controller in all scenarios under study. 

Introduction 

Building MicroGrids (BMGs) are an attractive alternative to foster the integration of renewable energy 

sources (RESs) into the electrical grid [1]. However, their wide implementation is restrained by the 

difficulty of designing a generic Energy Management System (EMS) capable of operating under 

stochastic variations in the power plant. Unpredictability in power generation and power consumption, 

along with inaccuracy of mathematical models of BMG components lead to the under exploitation of 

BMG resources or equipment damaging [2]. 

 

In the literature, there are various strategies to implement a reliable and efficient EMS [3]. Among the 

existent strategies, the hierarchical control structure enables to embed algorithms with different 

complexities at the same time, thanks to the parallel coordination of multiple control layers deployed at 

different sample time [4]. Concerning the EMS algorithms, those based on model predictive control 

(MPC) have proved their robustness against environmental disturbances, even with simplified plant 

model [5]. Nonetheless, there is a lack in evaluating the MPC performance under environmental 

changes, such as temperature, electric devices ageing and batteries model parameters inaccuracy. 

 



In order to face these uncertainties, there are several techniques to estimate better the intrinsic parameters 

of batteries, such as the Arrhenius equation [6], or models devised from technical specifications [2]. 

However, they require beforehand model calibration, which can lead to uncertainties throughout the 

batteries’ life. In this context, strategies based on data analysis are increasingly implemented. The most 

pertinent algorithms are incremental analysis of the voltage and capacity to estimate the batteries’ state 

of health [7], Kalman filter estimator [8] and other machine learning methods [9]. 

 

Therefore, this article proposes a two-level Hierarchical MPC (HMPC) with a Real-Time Model 

Identification (RTMI) module to deal with batteries’ parameter inaccuracy. Equipped with photovoltaic 

(PV) panels and Li-ion batteries, the purpose of the proposed HMPC is to maximise the MicroGrid self-

consumption rate (𝜏𝑎) [10]. Relying on continuous data measurement and forecast data, the strategy is 

to optimise its internal power flow by promoting the use of renewables and reducing the energy 

dependency on the external grid. The results show that the RTMI enhances the State-of-Charge (SoC) 

estimation, leveraging 𝜏𝑎 and leading HMPC to outperform the traditional rule-based strategy. 

 

The remaining of this paper is organised as follows. In the second section, the overview of the underlying 

hierarchical control structure associated with the proposed algorithm for identifying the battery 

parameters is described. The third section details the new model developed for the estimation of the SoC 

and the RTMI algorithm. The fourth section presents the performance of the proposed control strategy, 

by comparing the HMPC with RTMI module with both the conventional MPC under hierarchical and 

non-hierarchical architecture and a traditional rule-based controller. In the last section, the conclusions 

on the advantages and disadvantages of the proposed approach are summarized. 

Overview of the hierarchical energy management system  

The designed hierarchical EMS is a centralised controller for optimising the power flow of a grid-

connected BMG that interacts with the external grid throughout a community aggregator, as illustrated 

in Fig. 1. Composed mainly by three control units, the objective of the proposed control architecture is 

to assure the building internal power balance with minimum dependency on the main grid. The following 

two subsections describe the hierarchical MPC and the RTMI module, respectively. 
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Fig. 1: Two-level hierarchical model predictive control architecture empowered with the batteries’ real-

time model identification module for energy management of a grid-connected building MicroGrid. 

Hierarchical model predictive controller 

The proposed HMPC disposes of two control levels, namely Economic MPC (EMPC) and Tracking 

MPC (TMPC). The upper control level performs the economic power dispatch through an EMPC and 

determines both the day-ahead electricity trading planning to be sent toward the community aggregator 

and the batteries’ State-of-Charge references (𝑆𝑜𝐶𝑟𝑒𝑓) to be forward to the TMPC. Simultaneously, the 

lower level determines the batteries’ power references (𝑃𝑏𝑎𝑡) based on the updated prediction data and 

measurements, by performing a TMPC to follow 𝑆𝑜𝐶𝑟𝑒𝑓. 

 

Considering the fluctuations of the data prediction of both PV power generation and building power 

consumption (𝑃𝑐𝑜𝑛𝑠
𝑝𝑟𝑒𝑑

), the EMPC determines 𝑆𝑜𝐶𝑟𝑒𝑓 that, within a horizon of 𝑁ℎ
𝐸𝑀𝑃𝐶  48ℎ, minimises 



the external grid energy dependency. Therefore, the EMPC maximises 𝜏𝑎 defined by (1) and minimises 

additional energy imports to reduce the cost of purchasing electricity. For this, the cost function defined 

by (2) is optimised daily (𝑇𝑠
𝐸𝑀𝑃𝐶  24ℎ), in which the total power injected (𝑃𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑) and the total 

power purchased (𝑃𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑) are minimised. It is noteworthy that the horizon (𝑁ℎ
𝐸𝑀𝑃𝐶) twice bigger 

than the updating time (𝑇𝑠
𝐸𝑀𝑃𝐶) is to guarantee the most suitable 𝑆𝑜𝐶 at the end of the day. Doubling 

the horizon avoids unnecessary completely discharge of batteries at the end of the day since the last half 

of control variables determined by the EMPC is not implemented.  

 𝜏𝑎  
𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦  𝑝𝑟𝑜 𝑢 𝑒  𝑓𝑟𝑜𝑚 𝑅𝐸𝑆 𝑡ℎ𝑎𝑡 𝑖𝑠  𝑜𝑛𝑠𝑢𝑚𝑚𝑒  𝑙𝑜 𝑎𝑙𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜 𝑢 𝑒  𝑓𝑟𝑜𝑚 𝑅𝐸𝑆 𝑙𝑜 𝑎𝑙𝑙𝑦
 1 −

∑ 𝑃𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑘𝑘

∑ 𝑃𝑃𝑉 𝑘𝑘
 (1)  

 𝑆𝑜𝐶𝑟𝑒𝑓  arg( min
𝑆𝑜𝐶𝑟𝑒𝑓

∑ 𝑃𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑘 + 𝑃𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑘
𝑁ℎ
𝐸𝑀𝑃𝐶 =48

𝑘=1
) (2)  

Parallelly to the EMPC, the TMPC is triggered at each 𝑇𝑠
𝑇𝑀𝑃𝐶  1ℎ to follow the 𝑆𝑜𝐶𝑟𝑒𝑓 as much as 

possible, considering the updated data prediction and the 𝑆𝑜𝐶̂ estimated from the last measurements. To 

achieve this, the TMPC minimises hourly the cost function defined by (3). The purpose of the TMPC is 

to reduce the stochastic variation of the day-ahead power imbalance and battery model inaccuracies, by 

using a shorten horizon, simplifying the optimisation process.  

 𝑃𝑏𝑎𝑡  arg(min
𝑃𝑏𝑎𝑡

∑ (𝑆𝑜𝐶𝑟𝑒𝑓 𝑘 − 𝑆𝑜𝐶̂𝑘)
2𝑁ℎ

𝑇𝑀𝑃𝐶=6

𝑘=1
) (3)  

Meanwhile, in the background, the EMPC supervises the performance of the TMPC. Every hour, the 

EMPC compares the accuracy of day-ahead power planning sent to the aggregator (𝑃𝑔𝑟𝑖𝑑
𝑟𝑒𝑓

) and 𝑆𝑜𝐶𝑟𝑒𝑓 

with real measurements. As soon as the absolute difference between them is higher than a predefined 

threshold – named Δ𝑆𝑜𝐶
𝑡ℎ𝑟  or Δ𝑃𝑔𝑟𝑖𝑑

𝑡ℎ𝑟  at time 𝑡𝑟𝑒𝑂𝑝𝑡 – the EMPC determines new 𝑆𝑜𝐶𝑟𝑒𝑓 using the updated 

prediction data, but with a reduced horizon, as illustrated in Fig. 2. The reduced horizon comprehends 

the data prediction of the remaining period of the first EMPC optimisation and is equal to 𝑁ℎ − 𝑡𝑟𝑒𝑂𝑝𝑡. 
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Fig. 2: Re-optimization process of EMPC with reduced horizon. 

 

The main constraints embedded in both EMPC and TMPC are those to respect the recommendations of 

the French Energy Regulation Commission (ERC) for grid-connected BMGs with PV capacity over 100 

kWc [11]. To prevent energy speculation with the local energy storage systems (ESSs) when trading 

electricity, the ERC allows charging the ESSs only from renewable power generated locally. 

Additionally, it imposes that 𝜏𝑎 ≥ 50% at the end of the year [12]. As a result, batteries can be charged 

(𝑃𝑏𝑎𝑡
𝑐ℎ ) as soon as there is an internal energy surplus, while they can be discharged (𝑃𝑏𝑎𝑡

𝑑𝑖𝑠) when there is 

an energy deficit, as detailed in (4). Moreover, aiming to extend the life of batteries, the maximum power 

rate (𝑃𝑏𝑎𝑡
𝑚𝑎𝑥) and the SoC limits defined by their manufacturer must be supervised [2], [13]. 

Consequently, it is important to well estimate future SoC (𝑆𝑜𝐶𝑘+1) and to limit them. Similarly, to 

maximize 𝜏𝑎 beyond the MPC horizon, the SoC at 𝑘   48ℎ is forced to be higher than 40%. 

 −|max(𝑃𝑏𝑎𝑡
𝑀𝐴𝑋 𝑃𝑠𝑢𝑟𝑝𝑙𝑢𝑠)| ≤ 𝑃𝑏𝑎𝑡 𝑘

𝑐ℎ ≤ 0 ; 0 ≤ 𝑃𝑏𝑎𝑡 𝑘
𝑑𝑖𝑠 ≤ |max(𝑃𝑏𝑎𝑡

𝑀𝐴𝑋 𝑃𝑑𝑒𝑓𝑖𝑐𝑖𝑡)| (4)  

Real-time model identification algorithm  

Most of the scientific studies [5] estimate 𝑆𝑜𝐶𝑘+1 through a model composed of time-invariant 

parameters derived from batteries’ technical specification, as formulated in (5). However, based on more 

realistic models of Li-ion batteries [13], the efficiency during its charge (𝜂𝑐ℎ) or discharge (𝜂𝑑𝑖𝑠 ), the 



nominal capacity (𝑄𝑛𝑜𝑚) and the nominal voltage (𝑣𝑛𝑜𝑚) change according to the intensity of current, 

battery age and cell temperature (𝑇𝑐𝑒𝑙𝑙). According to [7], [9] the voltage variation can be around 10% 

of the nominal voltage when they are fully charged and discharged. Moreover, the nominal capacity can 

reach, at the end of their life, up to 80% of its initial value [9]. Consequently, additional uncertainties 

on 𝑆𝑜𝐶𝑘+1 estimation arise, which may result in under or overuse of the batteries. 

 
𝑆𝑜𝐶𝑘+1  𝑆𝑜𝐶𝑘 +

𝜂𝑐ℎ𝑇𝑠
𝑣𝑛𝑜𝑚 ∙ 𝑄𝑛𝑜𝑚

∙ 𝑃𝑐ℎ 𝑘 +
𝑇𝑠

𝑣𝑛𝑜𝑚 ∙ 𝑄𝑛𝑜𝑚𝜂𝑑𝑖𝑠
∙ 𝑃𝑑𝑖𝑠 𝑘 

(5)  
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Fig. 3: Real-time parameters identification algorithm for a charge and discharge sequence ( 𝑘      ). 

 

To tackle this issue, the authors designed the algorithm RTMI to improve the estimation of both 𝑆𝑜𝐶𝑘+1 

and their upper (𝑆𝑜𝐶𝑚𝑎𝑥
𝑘+1) and lower boundaries (𝑆𝑜𝐶𝑚𝑖𝑛

𝑘+1). The main objective of this new algorithm is 

to reduce human intervention for model calibration and BMG maintenance while taking full advantages 

of batteries. Therefore, the RTMI module updates the parameters of 𝑆𝑜𝐶𝑘+1, as illustrated in Fig. 3. The 

limits 𝑆𝑜𝐶𝑚𝑎𝑥
𝑘+1  and 𝑆𝑜𝐶𝑚𝑖𝑛

𝑘+1 are determined to guarantee the operation of the batteries in the linear region, 

as shown in Fig. 4a. 

 
(a) 

  
(b) 

Fig. 4: RTMI module operation. (a) Discharge curves of a Li-ion battery under temperature cell 

variations. (b) Model perspective with the three pivot points for predicting the variation of SoC (𝛥𝑖𝑡). 
 

The RTMI module determines the parameters   ,    and    of the 𝑆𝑜𝐶 model defined by (6) and (7) by 

implementing an unconventional linear regression based on previous data measurements. The variable 

𝛿  𝑘 is a Boolean variable which is worth 1 when the battery is active and 0 otherwise. Remarkably, 

equation (7) can be interpreted as four surfaces 𝛴  of axis 𝑥𝑦𝑧    [𝑃  𝑖𝑡  𝛥𝑖𝑡] , as illustrated in Fig. 4b. 

Then, each surface 𝑥𝑦𝑧 can be represented by three pivot points, namely 𝐴    [ 𝑖𝑡
𝑀𝐼𝑁  𝑃𝑏𝑎𝑡

𝑀𝐼𝑁 𝛥𝑖𝑡
𝐴]
 
, 

𝐵    [ 𝑖𝑡
𝑀𝐴𝑋 𝑃𝑏𝑎𝑡

𝑀𝐼𝑁  𝛥𝑖𝑡
𝐵]
 
 and 𝐶  [ 𝑖𝑡

𝑀𝐴𝑋 𝑃𝑏𝑎𝑡
𝑀𝐴𝑋 𝛥𝑖𝑡

𝐶]
 
 , which cover the feasibility zone which 

corresponds to the limits recommended by the manufacturer extended in 20%. To reduce the impact of 

voltage variation, the surfaces 𝛴  are classified into four main categories, named     {           }, 
which indicate the sequence of batteries’ charge ( ) and discharge ( ), at time 𝑘 − 1 and 𝑘. 

Consequently, the RTMI sends daily to the HMPC only the values of   ,    and    corresponding to the 

most likely temperature for the next day, which is the average temperature of the previous day. 

 𝑆𝑜𝐶𝑘+1  1 −
𝑖𝑡 𝑘 + ∆𝑖𝑡 𝑘
𝑄𝑛𝑜𝑚𝑘

;  𝑃𝑏𝑎𝑡 𝑘  𝑃𝑏𝑎𝑡 𝑘
𝑐ℎ + 𝑃𝑏𝑎𝑡 𝑘

𝑑𝑖𝑠   ∑ 𝑃  𝑘
 ={𝑐𝑑 𝑑𝑑 𝑐𝑐 𝑑𝑐}

 (6)  

 ∆𝑖𝑡 𝑘  ∑   𝑃  𝑘 +   𝑖𝑡 𝑘−1 +   𝛿  𝑘
 ={𝑐𝑑 𝑑𝑑 𝑐𝑐 𝑑𝑐}

 (7)  



Details of the RTMI algorithm  

Synchronized with both EMPC and TMPC, the RTMI module acquires a new measurement point 𝑀, 

composed by the integral of the current (𝑖𝑡), the reference power (𝑃𝑏𝑎𝑡) and the battery voltage (𝑣) at 

each TMPC sampling time (i.e. 𝑇𝑠
𝑇𝑀𝑃𝐶). As detailed in the following sub-sections, the RTMI algorithm 

is divided into three steps, namely: classification, updating and identification of the limits for charging 

and discharging the batteries. 

Step 1: Classification of data measurements by temperature interval 

As depicted in Fig. 4a, 𝑣 is directly correlated to the 𝑇𝑐𝑒𝑙𝑙. This effect in the battery voltage impacts the 

batteries round-trip efficiency, reducing the accuracy of the classical model defined by (7). Higher 

voltage when charging the batteries or lower voltages when discharging them implies a loss of 

efficiency, once the storage energy variation is mainly dependent on the current flowing through the 

batterie cells. Therefore, aiming to improve the robustness against 𝑇𝑐𝑒𝑙𝑙 disturbance, the RTMI fits a 

linear model for each temperature ranges using classified measurements points. Without using any 

temperature sensor, the RTMI algorithm estimates the temperature interval from 𝑣 measurements. The 

Fig. 4a and Fig. 5a show that the 𝑇𝑐𝑒𝑙𝑙 mainly involves a vertical offset in the batteries discharge curve, 

but almost does not affect the slope of 𝑣 with respect to 𝑖𝑡. In this way, the maximum amplitude of 𝑣 
(𝛥𝑣𝑀𝐴𝑋) due to the full charges and discharges of the batteries is almost unchanged, resulting in a quasi-

constant slope along with different 𝑇𝑐𝑒𝑙𝑙, as depicted in Fig. 5b and Fig. 5c. 

 

Consequently, when the BMG operates for the first time, the EMS will force two full charges and 

discharges of the batteries to determine 𝛥𝑣𝑀𝐴𝑋, and therefore, the absolute value of the slope of the 

discharge curve (|Δ𝑣/𝑖𝑡|). After this preliminary step, the temperature intervals are defined by 

identifying the lines 𝑠𝑇𝑐𝑙𝑎𝑠𝑠 , as shown in Fig. 5c, where 𝑇𝑐𝑙𝑎𝑠𝑠 is the identification number for a specific 

temperature class. The lines 𝑠𝑇𝑐𝑙𝑎𝑠𝑠  are outspread from a voltage interval which is chosen a priori 

regarding the desired precision, the computing resources and the RTMI convergence time. Typically, 

this voltage offset can be set as 1% of 𝑣𝑛𝑜𝑚. As a result, a measurement 𝑀 belongs to 𝑇𝑐𝑙𝑎𝑠𝑠, if and only 

if, the point 𝑀 is between the lines 𝑠𝑇𝑐𝑙𝑎𝑠𝑠  and 𝑠𝑇𝑐𝑙𝑎𝑠𝑠+1. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5: One-year simulation of the BMG with SoCmax = 80% and SoCmin = 20%. (a) 𝑣 and 

𝑇𝑐𝑒𝑙𝑙  correlation. (b) Slope of battery discharge curve. (c) Correlation between voltage measurements, 

current integral and 𝑇𝑐𝑒𝑙𝑙. 

Step 2: Updating the values of   ,    and    

Once determined which class of temperature the measurement 𝑀 belongs to, it is possible to adjust the 

values of       and    of these respective 𝑇𝑐𝑙𝑎𝑠𝑠. The determination of       and    is implemented 

based on an iterative and real-time process. As soon as a new measurement 𝑀 is acquired, the parameters 

of       and    are updated. Remarkably,       and    are vectors of size equals to the number of 

𝑇𝑐𝑙𝑎𝑠𝑠, where each element of these vectors is the fitted values of the model defined by (8) over all 

measurements 𝑀. The upmost advantage of the RTMI algorithm is the non-dependency on storage of 

the past measurements. The knowledge of the previous measures is stored in dynamic confidence 

weights, named 𝜔𝐴 𝑘, 𝜔𝐵 𝑘 and 𝜔𝐶 𝑘. 



Starting from minimal values – typically between 0.1 and 1.0 – these confidence weights grow with the 

acquisition of new measurements. Since the pivot points possess fixed values in the plan 𝑥𝑦  [𝑃  𝑖𝑡], 
the fitting process only consists of calculating the values of z-axis (i.e. 𝛥𝑖𝑡 𝑘

𝐴 , 𝛥𝑖𝑡 𝑘
𝐵  and 𝛥𝑖𝑡 𝑘

𝐶 ). For the 

first iteration, the pivot points are initialized according to (8), where it is used the parameters given by 

the technical specification of the batteries and using the classical model defined in (7).  

 𝛥𝑖𝑡 𝑘=0
𝐴  𝛥𝑖𝑡 𝑘=0

𝐵  
𝜂𝑐ℎ𝑇𝑠

𝑄𝑛𝑜𝑚𝑣𝑛𝑜𝑚
∙ 𝑃𝑏𝑎𝑡

𝑀𝐼𝑁; 𝛥𝑖𝑡 𝑘=0
𝐶  

𝑇𝑠

𝑄𝑛𝑜𝑚𝑣𝑛𝑜𝑚𝜂𝑑𝑖𝑠
∙ 𝑃𝑏𝑎𝑡

𝑀𝐴𝑋 (8)  

Thereafter, the values of Δ𝑖𝑡 𝑘
𝐴 , Δ𝑖𝑡 𝑘

𝐵  and Δ𝑖𝑡 𝑘
𝐶  are updated so that to approach the surface Σ  to the new 

measurement 𝑀. To achieve this, an intermediate surface 𝜙  defined by the intermediary pivot points 

𝐴′ , 𝐵′  and 𝐶′ , with z-axis values equal to 𝑧𝐴, 𝑧𝐵 and 𝑧𝐶, are calculated through the optimisation of 

the cost function defined by (9). The surface 𝜙  contains the point 𝑀 and is determined to make 𝛥𝑖𝑡 𝑘 + 1
𝐴 𝐵 𝐶

 

of the next iteration as close as possible of 𝛥𝑖𝑡 𝑘
𝐴 𝐵 𝐶

 of the previous period. 

 
𝑧𝐴 zB z  arg ( min

𝑧𝐴 zB zC
𝑛𝐴 𝑘(Δ𝑖𝑡 𝑘

𝐴 − 𝑧𝐴)
2
+𝑛𝐵 𝑘(Δ𝑖𝑡 𝑘

𝐵 − zB)
2
+ 𝑛𝐶 𝑘(Δ𝑖𝑡 𝑘

𝐶 − z )
2
) 

Subject to: 
𝑀 𝜖 𝐴 

′𝐵 
′𝐶 
′;  𝑧𝐴  𝑧𝐵  𝑧𝐶 ≥ 0 

(9)  

Intuitively, high value of 𝑛𝐴 𝑘 and low values of 𝑛𝐵 𝑘 and 𝑛𝐶 𝑘 lead 𝑧𝐴 approach to Δ𝑖𝑡 𝑘
𝐴  faster than 𝑧𝐵 

and 𝑧𝐶 to Δ𝑖𝑡 𝑘
𝐵  and Δ𝑖𝑡 𝑘

𝐶 , whereas balanced values of 𝑛𝐴 𝑘, 𝑛𝐵 𝑘  and 𝑛𝐶 𝑘 result in a fair variation among 

𝑧𝐴  𝑧𝐵 and 𝑧𝐶. The weights of (9) are calculated with regard the normalized distance between the measure 

𝑀 and the respective intermediate pivot point projected on the plan 𝑥𝑦 (i.e. operator ‖∙‖𝑥𝑦 ), as defined 

in (10) for the pivot point 𝐴 
′ .  

 𝑛𝐴 𝑘   
‖𝑀𝐴̅̅ ̅̅̅‖𝑥𝑦

‖𝑀𝐴̅̅ ̅̅̅‖𝑥𝑦 + ‖𝑀𝐵̅̅ ̅̅ ̅‖𝑥𝑦 + ‖𝑀𝐶̅̅̅̅̅‖𝑥𝑦
 (10)  

Once determined the intermediary plan 𝜙 , Δ𝑖𝑡 𝑘
𝐴 , Δ𝑖𝑡 𝑘

𝐵  and Δ𝑖𝑡 𝑘
𝐶  and the confidence weights 𝜔𝐴 𝑘, 𝜔𝐵 𝑘 

and 𝜔𝐶 𝑘 are updated following equations (11) – (14), in the order of compilation. For the sake of 

simplicity, in this paper, it will only be detailed the updating process of the pivot point 𝐴 , but it is 

important to highlight that similar equations are used for 𝐵 
′ and 𝐶 

′. 

 𝜔𝐴 𝑘+1  𝜔𝐴 𝑘 + 

1
‖𝑀𝐴̅̅ ̅̅̅‖𝑥𝑦

1
‖𝑀𝐴̅̅ ̅̅̅‖𝑥𝑦

+
1

‖𝑀𝐵̅̅ ̅̅ ̅‖𝑥𝑦
+

1
‖𝑀𝐶̅̅̅̅̅‖𝑥𝑦

 (11)  

 𝜔𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑘
𝐴  𝜎(𝜔𝐴 𝑘+1 − 𝜔𝐴 𝑘) ≤ 𝜔𝐴 𝑘+1 (12)  

 Δ𝑖𝑡 𝑘+1
𝐴  

Δ𝑖𝑡 𝑘
𝐴 ∙ 𝜔𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑘

𝐴 + zA ∙ 𝜔𝐴 𝑘+1

𝜔𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑘
𝐴 + 𝜔𝐴 𝑘+1

 (13)  

 𝜔𝐴 𝑘+1  𝜔𝐴 𝑘+1 − 𝜏𝑑𝑒𝑐𝑎𝑦 ∙ (𝜔𝐴 𝑘+1 − 𝜔𝑚𝑖𝑛  ) (14)  

Firstly, the confidence weight 𝜔𝐴 𝑘 is updated using (11). The closer 𝑀 is to the 𝐴 , the more reliable 

the value of 𝑧𝐴 calculated from (9) is. Consequently, 𝜔𝐴 𝑘+1 is inversely proportional to the distance 

between the pivot point 𝐴  and the measurement 𝑀, and it is normalised according to the distance from 

other pivot points (i.e. 𝐵  and 𝐶 ). To improve the robustness against measurement noise, the updated 

Δ𝑖𝑡 𝑘+1
𝐴 is a weighted value between the previous Δ𝑖𝑡 𝑘

𝐴  and the new fitted 𝑧𝐴. The inertial factor handles 

the ponderation among these two variables 𝜔𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑘
𝐴  and the confidence weight 𝜔𝐴 𝑘+1 as defined in 

(13). The equilibrium amongst 𝜔𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑘
𝐴  and 𝜔𝐴 𝑘+1 control the convergence time of Δ𝑖𝑡 𝑘+1

𝐴  to zA. This 

balance can be manually set by tuning the value of 𝜎, which indicates the importance of the new 

measurement regarding the previous value. Notably, 𝜔𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑘
𝐴  is upper limited by 𝜔𝐴 𝑘+1, to restrict the 

convergence time to a scale of two. Since the charge/discharge curve of batteries changes with age, the 

confidence weight 𝜔𝐴 𝑘 + 1 gradually decreases with a time constant 𝜏𝑑𝑒𝑐𝑎𝑦 until a minimum value 𝜔𝑚𝑖𝑛  

which is equal to the starting value, as specified in (14). 

 



After updating the plan Σ , the coefficients   ,    and    are calculated using the principles of analytical 

geometry. As the last step, it is still necessary to refine the developed model, because according to (7) 

and Fig. 4b, the plan Σ  does not cross the 𝑖𝑡 axis, which makes batteries model inaccurate for low 

powers. Therefore, the model polishing consists of forcing the plan Σ  cross the 𝑖𝑡 axis by using (15). 

 ∆𝑖𝑡 𝑘  ∑ 𝜃 𝑃  𝑘
 ={𝑐𝑑 𝑑𝑑 𝑐𝑐 𝑑𝑐}

 ∑ 𝑃  𝑘 (  +
1

𝑃′𝑏𝑎𝑡
𝑀𝐴𝑋 ∙ (  +

(𝑖′𝑡
𝑀𝐴𝑋 + 𝑖′𝑡

𝑀𝐼𝑁) ∙   
2

))

 ={𝑐𝑑 𝑑𝑑 𝑐𝑐 𝑑𝑐}

 (15)  

Step 3: Identification of the limits for charging and discharging the batteries  

As mentioned before and illustrated in Fig. 6a, the batteries must operate between points 𝑄(𝑣𝑒𝑥𝑝) and 

𝑄(𝑣𝑛𝑜𝑚). The strategy consists in adjusting 𝑖𝑡 𝑚𝑎𝑥 and 𝑖𝑡 𝑚𝑖𝑛 to reduce the variations of the slope 

|Δ𝑣/Δ𝑖𝑡|. According to Fig. 6a, while 𝑖𝑡is inside the linear zone (zone 1), the slope |Δ𝑣/Δ𝑖𝑡| is quasi-

constant, because 𝑣  is linearly dependent on 𝑖𝑡 . However, when operating outside this zone (zone 2), 
|Δ𝑣/Δ𝑖𝑡| is not constant because 𝑣 is non-linear regarding 𝑖𝑡. 

 
(a) 

 
(b) 

 
(c) 

Fig. 6: Simulation of Li-ion batteries. (a) The slope of the charge/discharge curves as a function of 𝑖𝑡. 
(b) and (c) Temporal evolution of the slope when operating in linear and non-linear zones, respectively. 

 

Based on this phenomenon, the developed algorithm for identifying the actual boundaries of 𝑖𝑡 divides 

the temporal graphs into two zones, named 𝑧𝑜𝑛𝑒 𝐴 and 𝑧𝑜𝑛𝑒 𝐵, as illustrated in Fig. 6b and Fig. 6c. The 

𝑧𝑜𝑛𝑒 𝐴, indicated by the red dots, represents the range where the batteries certainly operates in the linear 

zone. On the other hand, the 𝑧𝑜𝑛𝑒 𝐵, outlined by the blue dots, is the zone for which the battery can be 

either in the linear or non-linear region. Therefore, 𝑧𝑜𝑛𝑒 𝐴 comprehends the range of 20% to 80% of 

the predefined limits of 𝑖𝑡 𝑚𝑖𝑛 and 𝑖𝑡 𝑚𝑎𝑥, whereas 𝑧𝑜𝑛𝑒 𝐵 is its complementary region. 

 

Remarkably, the oscillation of the slope is more intense when zone B is in the non-linear zone (Fig. 6c) 

than when it is inside the linear range (Fig. 6b). As a result, to determine whether zone B corresponds 

to the linear or non-linear range, the average of the absolute difference between each |Δ𝑣/Δ𝑖𝑡| measured 

inside 𝑧𝑜𝑛𝑒 𝐵 (𝑚𝑢𝑝) and those measured inside 𝑧𝑜𝑛𝑒 𝐴 (𝑚𝑑𝑜𝑤𝑛) are constant compared, through the 

mean deviations 𝜗𝑢𝑝 and 𝜗𝑑𝑜𝑤𝑛 calculated as detailed in Fig. 7. These deviations 𝜗𝑢𝑝 and 𝜗𝑑𝑜𝑤𝑛 are 

monitored by means of a proportional controller with a hysteresis at its input to maintain them within 

the range 𝜗𝑢𝑝 𝑑𝑜𝑤𝑛
𝑟𝑒𝑓

± 𝑇𝑜𝑙. The values of 𝑇𝑜𝑙 ≅ 2% and 𝜗𝑢𝑝 𝑑𝑜𝑤𝑛
𝑟𝑒𝑓

≅ 10% were manually regulated, but 

they can be re-adjusted to reduce the oscillations or increase the response time of 𝑖𝑡 𝑚𝑖𝑛and 𝑖𝑡 𝑚𝑎𝑥. If the 

𝑖𝑡 boundaries are modified more than 10% of the previous values, the feasibility zone of Fig. 4b is 

readjusted accordingly and the confidence values 𝜔𝐴 , 𝜔𝐵, 𝜔𝐶 are reset to 𝜔𝑚𝑖𝑛. 

 
Fig. 7: Algorithm for identifying the 𝑖𝑡 limits to guarantee the batteries’ operation inside the linear zone. 



Simulation results 

Aiming to evaluate the performance of the proposed control architecture, a BMG equipped with PV 

arrays with 107kWc and Li-ion batteries with nominal voltage of 700V and nominal capacity of 167Ah 

was simulated for 365 days in MATLAB Simulink® under several scenarios. The simulations were 

carried out using real solar radiation data [14] and the estimated annual building energy consumption, 

resulting in 135.95 MWh energy generation and 241.85 MWh energy consumption per year. The 𝜏𝑎 and 

the total power exchanged with the main grid was used for assessing the proposed HMPC with RTMI 

module, a non-hierarchical MPC, and a conventional rule-based (RB) strategy with and without data 

prediction inaccuracy.  

 

The RB was adapted from [15], where, using no data prediction, the batteries are charged when there is 

an energy surplus and discharged when there is an energy deficit. The simulation results are divided into 

two subsections. The first one is to validate the RTMI algorithm for SoC and batteries’ capacity 

estimation, while the second one is for assessing the benefits of dividing the EMS hierarchically.  

Performance of the algorithm for batteries’ parameter identification 

To show the robustness of the RTMI algorithm against inaccuracies of the parameters coming from the 

technical specifications, three initial values of 𝑄 were considered, namely 𝑄80, 𝑄100 and 𝑄120, 
corresponding to 80%, 100% and 120% of the actual capacity (167 Ah), respectively. To verify the error 

between the day-ahead 𝑆𝑜𝐶𝑟𝑒𝑓 calculated by the EMPC and the real one, the TMPC in these scenarios 

was considered as a perfect router. Consequently, instead of optimising (3), it does implement the control 

variables determined by EMPC. In this manner, it is possible to decouple the effect of TMPC and 

highlight only the impact of the errors in EMPC state of charge estimation on the BMG performance. 

The graph in Fig. 8a shows that, in all study cases, the cumulative error in predicting 𝑆𝑜𝐶𝑘+1 using the 

RTMI module is about 3 times lower than using the conventional model with static parameters. 

Furthermore, the graphs in Fig. 8b shows that the EMPC empowered by RTMI module assures 𝜏𝑎 about 

3% higher than the EMPC without RTMI module with 𝑄80 and between 2% and 4% higher than RB 

controller. 

 
 

 
 

Fig. 8: Evaluation of the EMPC robustness against parameter imprecision. (a) The cumulative error of 

the SoC estimation. (b) Self-consumption rate comparison. (c) Maximum (in blue lines) and minimum 

(in red lines) boundaries of the 𝑖𝑡 when using RTMI. (d) Estimation of 𝑇𝑐𝑒𝑙𝑙 variation through 𝑇𝑐𝑙𝑎𝑠𝑠.  
 

The increase in 𝜏𝑎 is mainly due to the enlargement of the 𝑖𝑡 boundaries closed to the real frontiers (𝑄𝑒𝑥𝑝 

and 𝑄𝑛𝑜𝑚), as shown in Fig. 8c. Accurately estimating the battery capacity reinforces the potential of 

batteries of shifting the load toward the periods of energy surplus, resulting in an enhanced internal load 

matching and lower grid dependency. For this reason, the relative difference between 𝜏𝑎 is more 

remarkable when the batteries’ capacity is underestimated (i.e. 𝑄80). Nonetheless, there is a tradeoff 

between fostering 𝜏𝑎 and the batteries’ state of heathy. Fig. 8c shows that expanding 𝑖𝑡 boundaries, the 

attained depth of discharge (DoD) is higher when employing RTMI module than not using it (at the 



beginning of the simulation), accelerating the batteries’ degradation [7]. In addition, as shown in Fig. 

8d employing the RTMI module and processing of 𝑣  and 𝑖𝑡 measurements, 𝑇𝑐𝑒𝑙𝑙  can be supervised 

without needing any thermal sensor, because 𝑇𝑐𝑙𝑎𝑠𝑠 is an image of the temperature variation. This can 

provide further information to the HMPC for preserving the batteries state of healthy [2], [8].  

Performance of the proposed two-level hierarchical control structure 

Since the purpose of the hierarchical EMS is to soften the drawbacks provoked by stochastic variations 

in the internal power imbalance, the prediction data were multiplied by a random time-dependent factor 

(𝜌), as detailed in Fig. 9a. In this manner, the error in the estimate power imbalance grows according to 

the horizon, attaining up to 60% at 𝑁ℎ
𝐸𝑀𝑃𝐶  48, as shown in Fig. 9b and Fig. 9c. Aiming to assess the 

proposed HMPC, five control architectures were investigated. The first and second ones are the HMPC 

with and without RTMI modules. The third and fourth control structures are the non-hierarchical MPC 

with and without RTMI module, in which only EMPC is updated hourly with the full horizon. Finally, 

the fourth control disposal is the simple RB. 
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Fig. 9: Real power and its 48-hours data prediction of a summer day. (a) Time-variant factor. (b) Power 

consumption. (c) Power generation. 

 

Fig. 10a and Fig. 10b show that both HMPC and the non-hierarchical MPC are robust against data 

prediction uncertainties, because with and without errors, the BMG imported and exported almost the 

same amount of energy in a year. Remarkably, when using HMPC with RTMI, it imported about 1% 

less energy and exported 8% less than without RTMI. Even though the non-hierarchical MPC optimises 

the cost function (2) around 11 times more than the HMPC, the results are very similar. Indeed, the non-

hierarchical structure triggers EMPC at each hour, which means 8760 optimizations in a year, whereas 

only up to 631 times (number of re-optimisations plus once per day) using the proposed control structure, 

as detailed in Fig. 10c.  

  

  
Fig. 10. Comparison between different control architectures. (a) Total power injected. (b) Total power 

purchased. (c) Number of EMPC re-optimization. (d) Moving average error in 𝑃𝑔𝑟𝑖𝑑
𝑟𝑒𝑓

 of the last 10 days 

 

The cooperation of two control layers – one with long and another with a short horizon – enables to 

handle prediction data variability without needing to optimize the laborious cost function (2) every hour, 



but only when the error in either 𝑆𝑜𝐶𝑟𝑒𝑓 or 𝑃𝑔𝑟𝑖𝑑
𝑟𝑒𝑓

 is greater than Δ𝑆𝑜𝐶
𝑡ℎ𝑟  Δ𝑃𝑔𝑟𝑖𝑑

𝑡ℎ𝑟  7%. Fig. 10d shows 

that errors in 𝑃𝑔𝑟𝑖𝑑
𝑟𝑒𝑓

 are higher when not using the RTMI module, because of imprecisions in SoC 

estimation, which result in 391 more re-optimisations in the scenario without errors and 135 with errors. 

Conclusions 

This paper aims to develop a generic Building MicroGrid Energy Management System capable of 

adapting to external changes, such as Li-ion batteries modelling inaccuracy and inherent power 

imbalance uncertainties. The hierarchical MPC empowered with the proposed real-time parameter 

identification module increases the self-consumption rate regarding a well-established rule-based 

controller and the conventional MPC. This data-driven algorithm enables to identify the original 

batteries capacity and the cell temperature without any previous modelling step and without any thermal 

sensor, which simplify the energy management system design. Moreover, the simulation results 

demonstrated that the division in two control layers reduces the number of optimizations while 

maintaining the building less energetic dependent on the external grid even under imprecisions in data 

predictions. 
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