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Abstract 41 

Recent developments in global dynamical climate prediction systems have allowed for 42 

skillful predictions of climate variables relevant to living marine resources (LMRs) at a scale 43 

useful to understanding and managing LMRs. Such predictions present opportunities for 44 

improved LMR management and industry operations, as well as new research avenues in 45 

fisheries science. LMRs respond to climate variability via changes in physiology and behavior. 46 

For species and systems where climate-fisheries links are well established, forecasted LMR 47 

responses can lead to anticipatory and more effective decisions, benefitting both managers and 48 

stakeholders. Here, we provide an overview of climate prediction systems and advances in 49 

seasonal to decadal prediction of marine-resource relevant environmental variables. We then 50 

describe a range of climate-sensitive LMR decisions that can be taken at lead-times of months to 51 

decades, before highlighting a range of pioneering case studies using climate predictions to 52 

inform LMR decisions.  The success of these case studies suggests that many additional 53 

applications are possible.  Progress, however, is limited by observational and modeling 54 

challenges.  Priority developments include strengthening of the mechanistic linkages between 55 

climate and marine resource responses, development of LMR models able to explicitly represent 56 

such responses, integration of climate driven LMR dynamics in the multi-driver context within 57 

which marine resources exist, and improved prediction of ecosystem-relevant variables at the 58 

fine regional scales at which most marine resource decisions are made.  While there are 59 

fundamental limits to predictability, continued advances in these areas have considerable 60 

potential to make LMR managers and industry decision more resilient to climate variability and 61 

help sustain valuable resources. Concerted dialog between scientists, LMR managers and 62 

industry is essential to realizing this potential. 63 

 64 
1. Introduction  65 

Paleoecological and contemporary analyses demonstrate that large fluctuations in fish 66 

populations are associated with variations in climate (Baumgartner et al., 1992; Finney et al., 67 

2002; Lehodey et al., 2006; Finney et al., 2010; Brander, 2010; Holsman et al., 2012; Barange et 68 

al., 2014). Clearly, climate-driven variability has always been part of the fisher and fisheries 69 

manager experience. However, the management response to climate variability has often been 70 

reactionary, and enacting efficient coping strategies has, at times, been difficult (McGoodwin, 71 
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2007; Chang et al., 2013; Hodgkinson et al., 2014). For instance, unrecognized periods of 72 

environmentally- or climate-driven reduction in productivity contributed to the demise of Pacific 73 

sardine (Sardinops sagax) fishery in California in the 1950s (Murphy 1966; Lindegren et al., 74 

2013; Essington et al., 2015), the collapse of the Peruvian anchoveta (Engraulis ringens) fishery 75 

in the 1970s (Clark, 1977; Sharp, 1987), and overfishing of cod (Gadus morhua) in the Gulf of 76 

Maine (Pershing et al., 2015, Palmer et al. 2016). Unanticipated temperature-induced changes in 77 

the timing of Gulf of Maine Atlantic lobster (Homarus americanus) life-cycle transitions resulted 78 

in an extended 2012 fishing season and record landings, but outstripped processing capacity and 79 

market demand, leading to a collapse in prices and an economic crisis in the lobster fishery 80 

(Mills et al., 2013). Similarly, an unforeseen extreme low water temperature event resulted in a 81 

$10-million-dollar loss to the Taiwanese mariculture industry in 2008 (Chang et al., 2013). 82 

Failure to prepare for inevitable climate variability on seasonal to decadal scales can also alter 83 

the rebuilding times of stocks that have previously been overfished (Holt and Punt, 2009; Punt 84 

2011; Pershing et al., 2015) and break down international cooperative harvesting agreements for 85 

border straddling stocks and highly migratory species (Miller and Munro, 2004; Hannesson, 86 

2006; Hannesson, 2012).  87 

Negative impacts of climate variability on coastal economies can be exacerbated when 88 

fishers, aquaculturists, and fisheries managers make decisions about future harvests, harvest 89 

allocations, and operational planning based on previous experience alone, without consideration 90 

of potential novel climate states (Hamilton, 2007). For instance, current fisheries abundance 91 

forecasts are largely based on historical recruitment (i.e. addition of new individuals to the 92 

fishery) estimates, and aquaculture harvests on the basis of historical growth patterns. While this 93 

approach makes harvest decisions robust to a range of historical uncertainty, it may be 94 

insufficient when an ecosystem shifts to a new productivity state, when a productivity trend 95 

moves beyond historical observations, or when the degree of variation in productivity changes 96 

(Wayte, 2013; Audzijonyte et al., 2016). Past patterns may not always be a good indication of 97 

future patterns, especially under anthropogenic climate change (Milly et al., 2008). Species will 98 

experience new conditions across multiple ecologically significant climate variables (Williams et 99 

al., 2007; Rodgers et al., 2015), challenging our ability to manage living marine resources 100 

(LMRs) under the assumption of stationarity. Adapting our decision frameworks to climate 101 

variability at seasonal to decadal scales can serve as an effective step towards improving our 102 
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long-term planning ability under future climate change (Link et al., 2015).  103 

Incorporating environmental forcing into management frameworks for LMRs is 104 

challenging because the emergent effects of climate on marine ecosystems are complex. For 105 

example, atmospheric forcing can drive changes in ecologically significant physical or chemical 106 

variables that directly affect organismal physiology and behavior (e.g. temperature-driven 107 

changes in oxygen demand; Pörtner and Farrell, 2008), species distribution (e.g. Pörtner and 108 

Knust, 2007), phenology (e.g. Asch, 2015), and vital rates, such as growth (e.g. Kristiansen et al., 109 

2011; Audzijonyte et al., 2013; Audzijonyte et al., 2014; Audzijonyte et al., 2016). Additionally, 110 

climate can indirectly impact LMR productivity by affecting key biotic processes, such as 111 

variation in prey fields and energy transfer in response to fluctuations in alongshore and cross-112 

shelf transport (e.g. Bi et al., 2011; Keister et al., 2011; Combes et al., 2013; Wilderbuer et al., 113 

2013) or to climate-driven changes in primary productivity and phytoplankton size-structure 114 

(Daufresne et al., 2009). Climate-related variations in the abundance of predators, competitors, 115 

and parasites can also have an indirect effect on LMRs (e.g. Boudreau et al., 2015), and 116 

concurrent responses to fishing, habitat loss, and pollution may further complicate observed 117 

responses (Brander, 2007; Halpern et al., 2008; Andrews et al., 2015; Fuller et al., 2015; Halpern 118 

et al., 2015). 119 

While such biophysical complexities challenge efforts to implement climate-informed 120 

fisheries management frameworks, concerted observational and modelling efforts across decades 121 

have led to some improved understanding of climate-ecosystem interactions in many regions 122 

(Lehodey et al., 2006; Alheit et al., 2010; Ainsworth et al., 2011; Hunt et al., 2011; Di Lorenzo et 123 

al., 2013; Bograd et al., 2014). These gains have been mirrored by improved climate predictions 124 

at the temporal and spatial scales relevant to LMRs and their management, e.g. days to decades 125 

(Hobday and Lough, 2011; Stock et al., 2011). Operational seasonal predictions have now 126 

enabled development of climate services for a range of applications relevant to society (Vaughan 127 

and Dessai, 2014). For example, improvements in model spatial resolution have allowed skillful 128 

prediction of hurricane activity at a sub-basin scale relevant to climate risk management (Vecchi 129 

et al., 2014). Seasonal climate forecasts have also reduced vulnerability of the agricultural sector 130 

to climate variability (Meinke and Stone, 2005; Meza et al., 2008; Hansen et al., 2011; 131 

Zinyengere et al., 2011; Takle et al., 2014, Zebiak et al., 2015 and references therein) and have 132 

informed water resources decision making (Hamlet et al., 2002; Abawi et al., 2007). 133 
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Furthermore, seasonal climate forecasts have been incorporated into human health early warning 134 

systems for diseases, such as malaria, that are influenced by climatic conditions (Abawi et al., 135 

2007) and for outbreaks of noxious jellyfish (Gershwin et al., 2014). Enhanced capability has 136 

also made possible skillful seasonal forecasts of LMR-relevant variables at fine spatial and 137 

temporal scales useful to industry (defined here to include fisheries and aquaculture industries) 138 

and management (Stock et al., 2015; Siedlecki et al., 2016). While multi-annual to decadal 139 

predictions are at an initial stage of development and are not yet operational (Meehl et al., 2014), 140 

in specific ocean regions, particularly the North Atlantic, multi-annual forecasts appear skillful 141 

over several years (Yang et al., 2013; Msadek et al., 2014a; Keenlyside et al., 2015), and may 142 

show promise for some LMR applications (Salinger et al., 2016). 143 

The objective of this paper is to assess present and potential uses of these advances in 144 

climate predictions to facilitate improved management of wild and cultured LMRs.  This effort 145 

was initiated at the workshop "Applications of Seasonal to Decadal Climate Predictions for 146 

Marine Resource Management" held at Princeton University on June 3-5 2015, which brought 147 

together 60 scientists spanning climate and marine resource disciplines. This resulting synthesis 148 

establishes a common understanding of the prospects and challenges of seasonal to decadal 149 

forecasts for LMRs to support further innovative and effective application of climate predictions 150 

to management decisions. In Section 2, we describe climate prediction systems and discuss their 151 

strengths and limitations. In Section 3, we briefly summarize climate-sensitive decisions made 152 

within management of commercially exploited species, protected and endangered species, and 153 

for fishing and aquaculture industry applications. Section 4 presents case studies drawn from 154 

peer-reviewed literature highlighting the scope of past and present applications.  Sections 5 and 6 155 

distill successful components across these existing applications and identify priority 156 

developments based on the material in Sections 2-4.  Section 7 offers concluding remarks on 157 

prospects for expanded use of climate predictions for marine resource management. 158 

 159 

2. Predicting environmental change across space and time scales 160 

Advances in global dynamic climate prediction systems raise the prospect of skillful 161 

environmental prediction at the time scales relevant to LMR management and industry decisions. 162 

In this section, we first describe these prediction systems (Section 2.1), emphasizing 163 

characteristics relevant to informing the management decisions which will be described in 164 
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Section 3, and then discuss evaluation of forecast skill (Section 2.2).  Lastly, we provide a brief 165 

overview of existing studies of prediction skill for LMR-relevant climate variables (Section 2.3).  166 

 167 

2.1. Overview of climate prediction systems 168 

There exist two types of climate prediction models: dynamical models based on knowledge of 169 

the underlying physics of the climate system, and statistical models based on empirical 170 

relationships. The focus here is on dynamical seasonal to decadal prediction systems derived 171 

from Global Climate Models (GCMs), but it is important to note that statistical climate 172 

prediction models have also been used with success at seasonal time scales (Xue et al., 2000; van 173 

den Dool, 2007; Muñoz et al., 2010; Newman et al., 2011; Barnston et al., 2012; Ho et al., 2013; 174 

Barnston and Tippett, 2014; Chapman et al., 2015). Statistical climate predictions require 175 

considerably less computing resources than dynamical prediction systems and are used by 176 

climate offices throughout the world, particularly where high-performance computing facilities 177 

are not available. However, when developing a statistical forecast, care must be taken to not 178 

impart artificial skill through the method used to select predictors (DelSole and Shukla, 2009) or 179 

through the forecast sets used for training and skill assessment not being sufficiently independent 180 

of each other. Statistical predictions are also limited by the assumption that historically observed 181 

statistical relationships between climate variables will be maintained in the future (Mason and 182 

Baddour, 2007). By contrast, dynamical seasonal to decadal climate predictions arise more 183 

directly from fundamental physical principles expected to hold under novel climate states 184 

(Randall et al., 2007).  Dynamical models can also forecast quantities that are difficult to observe 185 

and thus develop statistical models for (e.g., bottom temperature).  We note, however, that many 186 

small-scale processes, such as cloud microphysics or submesoscale fronts and eddies, are not 187 

resolved by most GCMs and uncertainty connected to the parameterization of such “sub-grid 188 

scale” processes within GCMs can impact prediction skill (Warner, 2011). 189 

Dynamical climate predictions on seasonal to decadal time scales rest on the premise that 190 

knowledge of the present climate and the dynamic principles governing its evolution may yield 191 

useful predictions of future climate states.  Four core components are thus required to make such 192 

predictions at global scales and translate them for users:  1) global dynamical climate models, 2) 193 

global observing systems, 3) a data assimilation system, and 4) analysis and dissemination 194 
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systems to provide predictions to stakeholders across sectors.  We provide a brief overview of 195 

each of these components below. 196 

 197 

2.1.1. Dynamical coupled global climate models for seasonal to decadal prediction 198 

GCMs are comprised of atmospheric, ocean, sea-ice and land physics and hydrology 199 

components, each governed by dynamical laws of motion and thermodynamics solved 200 

numerically on a global grid.  GCMs used for seasonal to decadal prediction are largely 201 

analogous to those used for century-scale climate change projection (e.g. Stock et al. 2011), but 202 

the simulation design is different (Fig. 1). In the climate change case (Fig. 1, bottom), the goal is 203 

to track the evolution of the climate over multi-decadal time scales as it responds to 204 

accumulating greenhouse gases (GHGs) and other anthropogenic forcing.  The simulations have 205 

three components: a pre-industrial control of several hundred to several thousand years where the 206 

model comes to quasi-equilibrium with preindustrial GHGs and aerosol concentrations, a 207 

historical segment where GHGs increase in accordance with observed trends, and a projection 208 

following one of several future GHGs scenarios (Moss et al., 2010; van Vuuren et al., 2011). 209 

Because initial conditions at the start of the preindustrial period are largely “forgotten” except 210 

possibly in the abyssal ocean, the only aspects linking historical and future simulations to a 211 

specific year are the GHGs, land cover changes, solar forcing, land use changes, and other 212 

radiatively active atmospheric constituents (e.g. aerosols). Internal climate variations arising 213 

from interactions in the components of the climate system itself such as the El Niño Southern 214 

Oscillation (ENSO) are represented in climate simulations, but their timing/chronology does not 215 

and is not expected to agree with past observations. The objective is to obtain an accurate 216 

representation of the evolving climate statistics over multiple decades, including the statistics of 217 

internal climate variation, rather than precise predictions of the climate state at a given time. 218 

Indeed, ensembles of historical and future simulations begun from different initial conditions, 219 

and containing different realizations of internal climate variations, are often employed in 220 

obtaining these statistics (Kay et al., 2015).  221 

On the other hand, seasonal (months to a year) prediction skill (Fig. 1, top) largely 222 

depends on initializing the model using information specific to the current climate state. Owing 223 

to the chaotic nature of the atmosphere, daily weather has a deterministic predictability limit of 224 

5-10 days (e.g. Lorentz, 1963; Goddard et al., 2001). In seasonal forecasts, the predictability 225 



 8

horizon is extended by forecasting monthly or seasonally-integrated statistics rather than daily 226 

weather, and by exploiting the more slowly evolving elements of the climate system, such as the 227 

ocean. It is assumed that the initial climate state sufficiently determines the future evolution of 228 

internal climate variations so that skillful predictions of climate states within the forthcoming 229 

months are possible. The presence of ENSO in June, for example, will impact extra-tropical sea-230 

surface temperature (SST) in September via teleconnections that are now substantially captured 231 

by many GCMs, albeit some important biases remain (Deser et al., 2010).  232 

In today's coupled dynamical prediction systems, seasonal prediction is thus classified as 233 

an initial value problem rather than a boundary value problem. As the response to changes in 234 

external forcing like GHGs occurs over much longer time scales, their predictive skill is more 235 

dependent on initialization to current climate conditions rather than boundary conditions (i.e. 236 

external forcing). Although external forcing changes are typically small over periods spanned by 237 

individual seasonal forecasts, they can be significant over the multi-decadal periods spanned by 238 

successive real time forecasts and the accompanying retrospective forecasts discussed in Section 239 

2.1.3, and therefore should ideally remain included in seasonal forecast models (Doblas-Reyes et 240 

al., 2006; Liniger et al., 2007). Annual to decadal predictability (1 to 30 years), in contrast, arises 241 

from both predictable internal climate variations following model initialization and external 242 

forcing, presenting a hybrid problem (Fig. 1, middle panel, Meehl et al., 2014).  243 

Another difference between GCMs configured for climate projections and seasonal to 244 

decadal predictions systems has been the successful expansion of the climate change GCM 245 

configuration to earth system models (ESMs) that include biogeochemistry (e.g. Bopp et al., 246 

2013). ESMs can simulate biological and chemical properties (e.g. oxygen, pH, nutrients, 247 

primary and secondary production) strongly linked to LMRs (Stock et al., 2011), and thus they 248 

have been broadly applied to assess climate change impacts on LMRs (e.g. Cheung et al., 2009; 249 

Barange et al., 2014). While incorporation of earth system dynamics in global seasonal to 250 

decadal prediction models remains in an early stage of development (Séférian et al., 2014; Case 251 

Study 4.6), it may yield benefits at the seasonal to decadal scale. In Section 2.3, discussion of 252 

LMR-relevant seasonal to decadal predictions will be focused on the physical variables produced 253 

by the operational seasonal to decadal global forecast systems, but priority developments to 254 

expand biogeochemical prediction capabilities will be discussed in Section 6. 255 

 256 
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2.1.2. The global climate observing system supporting climate prediction 257 

The initialization of seasonal to decadal climate predictions is generated via a range of 258 

data assimilation approaches (Section 2.1.3) that draw observational constraints from the global 259 

climate observing system. This system collates diverse observations of many climate quantities 260 

across the globe including those obtained from satellites, land-based weather stations, 261 

radiosondes, weather radars, aircrafts, weather balloons, profiling floats, moored and drifting 262 

ocean buoys, and ships (see 263 

http://www.wmo.int/pages/prog/gcos/index.php?name=ObservingSystemsandData for a list of 264 

the global climate observing system’s observational networks and climate variables). Expansion 265 

of the global climate observing system across decades has improved prediction skill. For 266 

instance, establishment of the Pacific Tropical Atmosphere-Ocean (TAO) moored buoy array in 267 

the early 1990s (McPhaden, 1993) was key in enhancing seasonal prediction skill of ENSO and 268 

ENSO-related SSTs (Ji and Leetmaa, 1997; Vidard et al., 2007). Similarly, the addition of Argo 269 

profiling floats to the global ocean observing network improved seasonal SST forecast skill 270 

(Balmaseda et al., 2007).   271 

 272 

2.1.3. Assimilating observations to constrain the initial climate state 273 

While the advent of satellites and of observing platforms, such as the TAO array and 274 

Argo floats, have considerably increased the number of available observations, much of the 275 

Earth system, particularly in the deep ocean (> 2000 m), remains unobserved. Climate prediction 276 

systems combine observational and model constraints using a data assimilation system to fully 277 

initialize climate predictions. Diverse approaches are used, from nudging methods to four-278 

dimensional variational analyses and ensemble Kalman filters. For instance, the NOAA 279 

Geophysical Fluid Dynamics Laboratory (GFDL) coupled data assimilation system produces an 280 

estimate of the present climate state by using an ensemble Kalman filter algorithm to combine a 281 

probability density function (PDF) of observations, both oceanic and atmospheric, with a prior 282 

PDF derived from the dynamically coupled model (Zhang et al., 2007). For more details on data 283 

assimilation techniques we refer readers to Daley et al. (1991), Kalnay et al. (2003), Tribbia and 284 

Troccoli (2007), Edwards et al. (2015), Zhang et al. (2015), and Stammer et al. (2016). 285 

Assimilating observations produces an initialized climate state that differs from what the 286 

climate models would simulate were they running freely. This is because dynamical climate 287 
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models are an approximation of the real world, and as such can show systematic bias (Warner, 288 

2011). Once a seasonal forecast begins, dynamical models drift back to their freely running state. 289 

In some cases, drifts can be as large as the signal being predicted, particularly for longer lead-290 

times, and can degrade forecast skill (Goddard et al., 2001; Magnusson et al., 2013; Smith et al. 291 

2013). It is therefore important to remove this drift to obtain the signal of interest for input into 292 

LMR models. While diverse approaches for this have been proposed, they primarily involve 293 

subtracting the mean drift from across a set of retrospective forecasts (hindcasts). For example, 294 

to correct for model drift in a January-initialized SST anomaly forecast for May, the mean drift 295 

for January-initialized May forecasts from the past 30 years is subtracted from the predicted 296 

temperature trend. 297 

While a primary goal of data assimilation is forecast initialization, the estimates of 298 

atmospheric or ocean state produced via data assimilation are also useful for model verification 299 

and calibration, retrospective studies of past ocean variability, and “nowcasts” of present 300 

conditions. Such historical time series of past ocean state estimates are referred to as reanalysis 301 

datasets. While often taken as “observations” they are obtained using the model and a data 302 

assimilation system in the same way as was described for model initialization. Hence, reanalyses 303 

are model-dependent and each climate prediction center produces its own version of what the 304 

earth system looked like in the past (Table A1). While such reanalyses are generally in 305 

agreement for variables that are widely sampled (e.g. SST after the advent of satellites) over 306 

scales resolved by the GCMs, there are differences, reflecting model uncertainty, the scarcity of 307 

observational data, and the fact that single observations may not be representative of the large-308 

scale climate state. One way to estimate uncertainties among ocean reanalyses is to conduct 309 

ocean reanalysis intercomparisons (Balmaseda et al., 2015).  Table A1 lists six operational ocean 310 

reanalysis products that are available for the period from 1979 to present and that are used in a 311 

Real-time Ocean Reanalysis Intercomparison Project (Xue et al., in review). One example of 312 

uncertainties of ocean reanalysis products is shown in Fig. 2 for temperature anomalies at a depth 313 

of 55 m during April 2015. Some areas, such as the west coast of North America, clearly stand 314 

out as being consistent between reanalysis products. This has also been shown in some recent 315 

seasonal forecast efforts in the region (Siedlecki et al., 2016), increasing confidence in their 316 

treatment as “observations”. By contrast, temperature values along the Northeast shelf of North 317 

America are more uncertain. This highlights the importance of confirming consistency of 318 
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reanalyses with observations at the scales of interest when possible (Stock et al., 2015), and the 319 

paucity of oceanic variables for which we can robustly evaluate prediction skill. 320 

 

2.1.4. Analysis and dissemination in support of diverse stakeholders 321 

The goal of analysis and dissemination systems is to take the raw output from the 322 

predictions and package it in a way that can be easily accessible and understood by stakeholders. 323 

Generally, because of the variety of users and applications of seasonal forecasts, most climate 324 

prediction centers focus on ensuring that seasonal climate model output is corrected for model 325 

drift (see Section 2.1.3 for more details) and verified. Forecast verification, which entails an 326 

assessment of forecast skill, is described in Section 2.2. Any further post-processing, such as 327 

downscaling to application-relevant spatial scales, is performed on an ad hoc basis in 328 

collaboration with users.  329 

Climate forecasts are inherently uncertain because of the chaotic nature of the climate 330 

system, whereby small differences in initial conditions can lead to a diverse range of climate 331 

states (Lorenz, 1963; Wittenberg et al., 2014), as well as our imperfect understanding of the 332 

climate system. In an attempt to capture some of this uncertainty, a collection of forecasts 333 

differing in their initial conditions or model parametrizations, referred to as an ensemble, is 334 

produced (see Section 2.2 for more details). For a forecast to be useful for decision making, it 335 

needs to represent the likelihood of different outcomes. Probabilistic forecasts constructed from 336 

information provided by the ensemble forecast fill this need. Such forecasts are commonly 337 

communicated as probabilities that the outcome will be in the lower, middle or upper tercile of 338 

the climatological PDF (Fig. 3), although many other possibilities exist. Reliability, the property 339 

that forecast probabilities are similar to observed frequencies, is crucial for decision making. 340 

However, probabilistic forecasts based on raw forecast output tend to be overconfident, and are 341 

thus often recalibrated to improve their reliability (Sansom et al., 2016). Deterministic forecasts 342 

describing the average outcome of the forecast ensemble are also sometimes disseminated. While 343 

relatively simple to interpret, they are generally less useful than probabilistic forecasts because 344 

they contain no measures of uncertainty or the likelihood of alternative outcomes.  345 

Once the climate predictions are verified, most prediction centers deliver forecasts to 346 

users via the internet. For example, seasonal forecasts from NOAA NCEP, GFDL, and numerous 347 

other modeling centers can be downloaded from the North American Multi-Model Ensemble 348 
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(NMME) (Kirtman et al., 2014) website at http://www.cpc.ncep.noaa.gov/products/NMME/. 349 

Hindcasts (i.e. retrospective forecasts) are archived on the same site, and skill assessment maps 350 

are also made available. It should be noted that because of the large variety of users and the 351 

limited resources devoted to delivery systems, model output presentation and visualization is 352 

rarely customized to specific user needs. Thus, there is utility in repackaging standard forecasts 353 

specifically for the fisheries and aquaculture sectors as “targeted forecasts” (Hobday et al., 2016; 354 

Siedlecki et al., 2016). 355 

 356 

2.2. Forecast skill 357 

In addition to providing users with information on forecast uncertainty through well-358 

calibrated probabilistic forecasts as discussed above, skill information is essential for LMR 359 

managers or fishing industry personnel to assess confidence in seasonal to decadal forecasts. 360 

Hence, model verification, which assesses prediction quality of the forecast through skill 361 

assessment, is essential for seasonal to decadal predictions to be practically useful to decision-362 

making. As well as enabling drift correction as described in Section 2.1.3, retrospective forecasts 363 

are used by climate prediction centers to establish forecast skill. This involves initializing a suite 364 

of predictions across the past several decades and testing whether predictions would have been 365 

successful (e.g. given an estimate of climate conditions in January of 1982, how well can the 366 

model predict temperature and precipitation anomalies for the rest of 1982).  These retrospective 367 

forecast suites are also made available to potential users to assess predictability of particular 368 

variables of interest. 369 

Numerous prediction skill measures have been developed (Stanski et al., 1989; von 370 

Storch and Zwiers, 2001; Jolliffe and Stephenson, 2003; Mason and Stephenson, 2007; van den 371 

Dool, 2007; Wilks, 2011). Generally, stakeholders are interested in the correctness of a forecast 372 

(Mason and Stephenson, 2007), and thus the anomaly (see Section 3.1.3 for details on how 373 

anomalies are calculated) correlation coefficient (ACC) and root mean square error (RMSE) 374 

between the model retrospective forecast and observations are among the most commonly used 375 

prediction skill measures for deterministic forecasts. For a probabilistic forecast, the Brier Score 376 

(BS) is often used to measure of the mean squared probability error of whether an event 377 

occurred. The value of the dynamical prediction can also be assessed by comparing the skill of a 378 

dynamical forecast output to that of climatology. For instance, the ranked probability skill score 379 
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(RPSS), a commonly used measure of probabilistic prediction, is used to reflect the relative 380 

improvement given by the forecast over climatology (Fig. 3). Seasonal to decadal prediction skill 381 

is also often compared against that of a persistence forecast. A persistence forecast is a forecast 382 

produced by simply projecting forward the current climate anomaly. For example, a January one-383 

month lead SST forecast would be compared against a persistence forecast derived from 384 

maintaining the December temperature anomaly into January. Statistical predictions, particularly 385 

for decadal forecasts whose skill also depends on changes in radiative forcing not represented in 386 

a persistence forecast, can also act as useful tools against which to assess dynamical prediction 387 

skill (Ho et al., 2013). While statistical or persistence forecasts provide an important benchmark 388 

against which to assess the added value of dynamical seasonal forecasts, a skillful statistical (e.g. 389 

Eden et al., 2015) or persistence forecast can be as relevant to users as a skillful dynamical 390 

forecast. 391 

As discussed in Section 2.4.1, for a forecast to be useful to LMR managers and the 392 

fisheries and aquaculture industries, not only does it need to be skillful, but its uncertainty has to 393 

be representative of the spectrum of potential outcomes. Climate prediction uncertainty arises 394 

from different sources (Payne et al., 2016), with internal variability and model uncertainty being 395 

the most important for seasonal to decadal predictions, particularly at regional scales (Hawkins 396 

and Sutton, 2009). Internal variability uncertainty stems from emergent chaotic properties of the 397 

climate system, and causes predictions differing only a little in initial conditions to evolve to 398 

quite different climate states (Lorenz, 1963; Wittenberg et al., 2014). In an attempt to capture 399 

some of this internal variability uncertainty, climate prediction centers produce different 400 

forecasts characterized by the same global dynamic model started with slightly different initial 401 

conditions chosen to reflect equally probable initial states given a set of observational 402 

constraints. The collection of such forecasts is referred to as a single-model ensemble.  403 

Forecast uncertainty also arises from our incomplete understanding of the climate system, 404 

as reflected in the forecast model being a simplification of the real world. Model error can stem 405 

from uncertainties in the parameterizations of physical processes that are either not well 406 

understood, act at a scale below the model’s spatial or temporal resolution, or are too 407 

computationally expensive to be modeled explicitly. Errors in numerical approximations also add 408 

to model uncertainty. Multi-model ensembles are a way to characterize forecast uncertainty 409 

arising from this model uncertainty. In such ensembles, simulations from entirely different 410 
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models, often from various prediction centers, are combined to produce a forecast output. The 411 

North American Multi-Model Ensemble (NMME) (Section 2.1.4) is an example of such a 412 

forecast. Seasonal forecasts from leading US and Canadian prediction systems are combined to 413 

produce a multi-model ensemble mean seasonal forecast. Single model forecasts are also 414 

provided, but the multi-model mean has been shown to have higher prediction skill than any 415 

single model (Becker et al., 2014). The skill increase comes from error cancellation and the non-416 

linearity of model diagnostics (Becker et al., 2014). In addition to a more accurate measure of 417 

central tendency, use of a multi-model ensemble often allows for a more complete representation 418 

of forecast uncertainty. Ensemble methods thus allow forecasts to be probabilistic, reflecting the 419 

range of all potential outcomes (Goddard, 2001). To base decisions on a comprehensive 420 

assessment of risk, incorporation of seasonal to decadal predictions into LMR applications 421 

should include these estimates of forecast uncertainty. 422 

Dynamical processes that operate at scales finer than a model’s resolution must be 423 

parameterized. The spatial resolution of a model grid dictates the breadth of processes that may 424 

be simulated, and differences in this resolution can influence model error and thus limit forecast 425 

skill. Indeed, an increase in resolution from the 100 to 200-km atmospheric resolution common 426 

to many of the current seasonal to decadal prediction systems (Kirtman et al., 2013), to 50-km 427 

resulted in better seasonal temperature and precipitation forecast skill, particularly at a regional 428 

scale (Jia et al., 2015). Nevertheless, in regions where local and/or unresolved sub-grid scale 429 

processes strongly modulate the basin-scale climate signal, even such relatively high resolution 430 

(50-km atmosphere and 100-km ocean) predictions have limited skill.  For example, global 431 

climate models that have an ocean resolution of 100-km to 200-km have a bias in both ocean 432 

temperature and salinity in complex coastal environments such as the US Northeast Continental 433 

Shelf (Saba et al., 2016). These biases may partially explain the relatively poor predictive skill of 434 

seasonal SST anomalies predictions in this region (Stock et al., 2015).  When both atmosphere 435 

and ocean model resolution are increased (50-km atmosphere, 10-km ocean), such biases are 436 

substantially reduced (Fig. 4) because the Gulf Stream coastal separation position as well as 437 

regional bathymetry are more accurately resolved. We stress, however, that while enhanced 438 

resolution appears critical for some scales and ecosystems, existing models show considerable 439 

prediction skill for marine resource relevant variables at other scales and ecosystems (Section 440 

2.3).  High resolution GCMs (10-km ocean versus 100-km in many prediction systems), are also 441 
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considerably more computationally expensive to run, currently limiting their use in operational 442 

climate prediction systems. Furthermore, biases can remain at this resolution, and can be quite 443 

large in specific ocean regions (Delworth et al., 2012; Griffies et al., 2015). This is due, in part, 444 

to the challenges of optimizing sub-gridscale parametrizations for higher resolution models 445 

(Goddard et al., 2001).  446 

An alternative means of addressing resolution challenges is to embed a regional 447 

dynamical downscaling model in a global climate prediction system (e.g. Section 4.5, Section 6). 448 

Most of the world’s fish catch is produced (Pauly et al., 2008) and most aquaculture operations 449 

are located in coastal and shelf seas. Regional models have the added advantage of improved 450 

resolution of coastal process (e.g. tidal mixing) that impact predictive skill of LMR-relevant 451 

variables at decision-relevant scales. However, these advantages must be weighed against the 452 

challenges, such as boundary condition inconsistencies, encountered when nesting models of 453 

considerably different structure and resolution (Marchesiello et al., 2001; Brennan et al., 2016).  454 

It is important to note that while some of the current uncertainty in seasonal to decadal 455 

predictions can be reduced by, for example, improved model parameterizations, expanded 456 

observational networks, or increased model resolution, irreducible uncertainties will remain. 457 

Owing to the chaotic nature of the atmosphere, there are inherent seasonal and decadal 458 

predictability limits, which need to be clearly communicated to stakeholders (Vaughan and 459 

Dessai, 2014; Zebiak et al., 2015). For instance, on the west coast of the US, the seasonal 460 

upwelling season ends abruptly with the fall transition. This transition is driven mostly by 461 

storms, and consequently may not be predictable on seasonal time scales. 462 

Finally, since reanalysis products are often treated as observations in forecast verification 463 

(Section 2.1.3), it is important for users to confirm the fidelity of such data sets to their specific 464 

area of interest prior to integration with LMR management frameworks. Where possible, this 465 

should be done with additional hydrographic data that may not have been incorporated in the 466 

reanalysis. We refer readers to Stock et al. (2015) for an example on how such an analysis can be 467 

performed.  468 

 469 

2.3. Prediction of living marine resource-relevant physical variables 470 

Variables routinely predicted using current seasonal to decadal forecast systems are 471 

LMR-relevant (e.g. SST), and the objectives of seasonal to decadal climate prediction are 472 
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consistent with the spatiotemporal scale of many of the fisheries management decisions. 473 

However, oceanic prediction skill has often only been assessed with a view to its influence on 474 

regional weather prediction, rather than being of primary interest in itself (Stockdale et al., 475 

2011).  There are, however, a growing number of prediction studies for quantities and 476 

spatiotemporal scales relevant to LMR science and management challenges (Fig. 5). Below we 477 

discuss several of these, including predictability of SST anomalies, sea ice, and freshwater 478 

forcings that influence LMRs, along with recent advances for anticipating extreme events. 479 

SST anomalies are both important drivers and meaningful indicators of ecosystem state 480 

(e.g., Lehodey et al., 2006; Brander et al., 2010).  Efforts to assess the predictability of SST 481 

anomalies have emphasized ocean basin-scale modes of variability often linked to regional 482 

climate patterns (e.g., ENSO; Barnston et al., 2012). However, recent work has also revealed 483 

considerable SST prediction skill for many coastal ecosystems (Stock et al., 2015).  Over short 484 

time scales, skill often arises from simple persistence of SST anomalies due to the ocean’s 485 

substantial thermal inertia (Goddard and Mason, 2002).  In many cases, however, skill exceeds 486 

that of persistence forecasts and can extend across leads of 6-12 months (Fig. 6). Such seasonal 487 

SST predictability may arise from diverse mechanisms, including the seasonal emergence of 488 

predictable basin-scale SST signatures following periods dominated by less predictable local 489 

variation, transitions between opposing anomalies due to the seasonal migration of ocean fronts, 490 

or the predictable re-emergence of sub-surface anomalies following the breakdown of summer 491 

stratification (Stock et al., 2015). Further analysis suggests that multi-model based SST 492 

predictions can further improve regional SST anomaly prediction skill and more reliably 493 

represent prediction uncertainty and the potential for extremes (Hervieux et al., in review).  The 494 

considerable prediction skill at this LMR-relevant scale has allowed for some pioneering use of 495 

SST predictions for marine resource science and management (e.g., see case studies in Section 496 

4), and suggests ample potential for further expansion. 497 

In a few ocean regions, most notably the North Atlantic, SST predictions are skillful for 498 

several years (Yang et al., 2013; Msadek et al., 2014a; Keenlyside et al., 2015). This time scale is 499 

of particular interest for many LMR applications (Fig. 5). The predictive skill on these time 500 

scales emerges from phenomena, primarily in the ocean, that have inherent decadal scales of 501 

variability (Salinger et al., 2016). Perhaps the most prominent among these is the Atlantic 502 

Meridional Overturning Circulation (AMOC). Decadal-scale variations in AMOC-related ocean 503 
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heat transport can influence SST over a wide area of the North Atlantic, and are thought to be a 504 

critical component of North Atlantic basin-scale SST variation characterized by the Atlantic 505 

Multidecadal Oscillation (AMO). For example, the abrupt warming observed in the mid-1990s in 506 

the North Atlantic has been retrospectively predicted in several models (Pohlmann et al., 2009; 507 

Robson et al., 2012; Yeager et al., 2012; Msadek et al., 2014a), with an increase of the AMOC 508 

being responsible for the warming. The Pacific Decadal Oscillation (PDO) also has decadal 509 

scales of variability and can be predicted a few years in advance, with significant impacts across 510 

a broad area of the North Pacific and adjacent continental regions (Mochizuki et al., 2010; Meehl 511 

and Teng, 2012). More idealized predictability studies also suggest the potential for substantial 512 

decadal predictive skill in the Southern Ocean (Boer, 2004), associated with deep vertical mixing 513 

and substantial decadal scale natural variability (Salinger et al., 2016). Nevertheless, unlike 514 

seasonal climate predictions, which are operational, the field of decadal prediction is in a very 515 

early stage (Meehl et al., 2014). Performance of decadal predictions needs to be assessed over a 516 

wider range of models and systematic model errors have to be reduced further to increase their 517 

utility to the marine resource community. Furthermore, the limited number of decadal-scale 518 

fluctuations of the 30-40 year period for which retrospective forecasts are possible severely 519 

restricts the effective sample size with which to characterize decadal prediction skill.  Models 520 

may demonstrate an ability to capture several prominent events over this time period, but it is 521 

difficult to robustly generalize skill for this limited sample of independent decadal-scale events. 522 

Sea ice is another LMR-relevant variable (Coyle et al., 2011; Hunt et al., 2011, Saba et 523 

al., 2013), whose seasonal predictive skill has been assessed at a regional scale. Based on 524 

estimates by the National Snow and Ice Data Center, September Arctic sea ice extent has 525 

declined at a rate of about 14% per decade since the beginning of satellite records (Stroeve et al., 526 

2014), a trend largely attributed to warming due to accumulating GHGs (e.g. Stroeve et al., 527 

2012). In addition to these long-term changes, large year-to-year variations have been observed 528 

in the position of the summer and winter sea ice edge. Operational and quasi-operational 529 

initialized predictions show some skill in predicting summer Pan-Arctic sea ice extent when it 530 

reaches its minimum in September, with significant correlation 3 to 6 months in advance at best 531 

in a few dynamical models (Sigmond et al., 2013; Wang et al., 2013; Chevallier et al., 2013; 532 

Msadek et al., 2014b). Sea ice thickness appears to provide the memory for sea ice extent 533 

predictability from one summer to the next. Hence more accurate predictions could be expected 534 
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with improved observations of sea ice thickness and sea ice thickness initialization (Guemas et 535 

al., 2016). While predictions of summer sea ice have important implications for shipping and 536 

resource extraction, sea ice extent in late winter affects spring phytoplankton bloom timing and 537 

ultimately fish production (Hunt et al., 2011). However, while enhanced forecast skill with up to 538 

3 to 4 months of lead-time relative to a persistence forecast has been reported during fall and 539 

early winter, forecast skill remains limited in late winter (Sigmond et al., 2013; Msadek et al., 540 

2014b).  Processes driving winter sea ice predictability include the representation of atmospheric 541 

dynamics like the position of the blocking high (Kwok, 2011), but also oceanic processes like 542 

heat convergence that drives SST anomalies in the marginal seas (Bitz et al., 2005). On-going 543 

studies based on improved model physics, improved parameterizations, and increased resolution 544 

in the atmospheric and oceanic components of the models are expected to improve representation 545 

of atmospheric dynamics, oceanic processes, and the mean distribution of sea ice, its seasonal 546 

variations, and possibly its predictability. Such improvements may also impact SST prediction 547 

skill (Stock et al., 2015).    548 

While oceanic variables are of major importance for production and distribution of wild 549 

and aquaculture species, river temperature and flow are additional influences on recruitment and 550 

survival of commercially-important anadromous fish species, such as Pacific and Atlantic 551 

salmon (Bryant, 2009; Jonsson and Jonsson, 2009) and stocks such as northwest Atlantic river 552 

herring that have fallen below historical levels (Tommasi et al., 2015). In addition, these 553 

variables affect nearshore ocean dynamics and hence impact aquaculture of estuarine species. 554 

Seasonal stream flow predictability is thus of high interest to some industry groups and fisheries 555 

management agencies. Land models incorporated in current seasonal to decadal climate 556 

prediction systems, however, only provide a coarse representation of topography, river networks, 557 

and land cover, and forecasts of hydrological properties are not very skillful if taken directly 558 

from global dynamical forecast systems (Mo and Lettenmaier, 2014). Historically, land 559 

resolution in models has limited topographic variability, which impacts snowfall, and as a result 560 

has downstream influences on surface hydrology (e.g. reduced soil moisture and stream flow) in 561 

mountainous regions and surrounding areas dependent on orographic precipitation and spring 562 

and summer snowmelt (Kapnick and Delworth, 2013; Kapnick et al., 2014). This bias is 563 

pronounced in western North America where mountain hydrology drives water availability 564 

(Barnett et al., 2005). As a result, higher resolution hydrological models have been forced by the 565 
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larger scale input from coarser global climate models to produce hydrologic forecasts at scales 566 

useful for decision makers (e.g. Mo and Lettenmaier, 2014). As prediction systems increase in 567 

atmospheric and land surface resolution, precipitation and temperature prediction skill over 568 

mountain regions also increases as topography is better resolved (Jia et al., 2015). 569 

Aside from issues in resolution, hydrologic predictability is largely a function of initial 570 

land surface conditions (primarily soil moisture and snow cover) and seasonal forecasts of 571 

rainfall and temperature (Shukla et al., 2013; Yuan et al., 2015). In regions where snow and soil 572 

moisture provide a long hydrological memory, such as the western United States or high altitude 573 

locations, accurate initial conditions can provide skillful forecasts out to 3 to 6 months, 574 

particularly during cold seasons (Koster et al., 2000; Mahanama et al., 2012; Shukla et al., 2013). 575 

Similarly, in regions where the flow regime is controlled by groundwater rather than rainfall, 576 

persistence of initial flow can provide a skillful seasonal forecast (e.g. Svensson, 2016). 577 

However, over most of the globe, persistence skill decreases after a month (Shukla et al., 2013), 578 

and improvements in the predictability of streamflow are made by incorporating climate 579 

information into hydrological forecasting systems. Climate predictions systems can provide such 580 

climate forcing inputs (i.e. precipitation and temperature predictions) (Mo and Lettenmaier, 581 

2014). However, the precipitation prediction skill of current global dynamical forecast systems is 582 

often too low to extend hydrological forecast skill beyond 1 month, particularly in dynamically 583 

active regions (Mo and Lettenmaier, 2014). Skillful seasonal hydrological predictions out to 3 to 584 

9 months lead-times have been obtained, however, by integrating into hydrological models 585 

rainfall predictions derived from a climate index, such as the NAO, from a climate prediction 586 

system (e.g. Svensson et al., 2015). Alternatively, skillful seasonal hydrological predictions have 587 

been achieved by statistically integrating a climate index directly into a hydrological forecast 588 

system (e.g. Piechota and Dracup, 1999; Karamouz and Zahraie, 2004; Wang et al., 2011; 589 

Bradley et al., 2015).  590 

Over recent years substantial effort has been placed on seasonal predictions of extreme 591 

phenomena, particularly tropical (Camargo et al., 2007; Vecchi and Villarini, 2014) and 592 

extratropical (e.g., Yang et al., 2015) cyclones. These extreme events threaten fishers’ safety at 593 

sea and can dramatically impact the aquaculture and fishing industry through lost production and 594 

income with changes in fish survival and growth, reduction in water quality, and destruction of 595 

essential fish habitat (e.g. coral reefs, seagrass beds) or infrastructure (Chang et al., 2013; 596 
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Hodgkinson et al., 2014). Although individual tropical cyclones are very much "weather" 597 

phenomena, with no path to predictability beyond a few days, some aggregate statistics of 598 

tropical cyclones are strongly influenced by predictable large-scale aspects of climate, such as 599 

ENSO or other modes of variability (e.g., Gray, 1984). This has led to the development of a 600 

number of skillful statistical (Klotzbach and Gray, 2009; Jagger and Elsner, 2010), dynamical 601 

(Vitart and Stockdale, 2001; Vitart, 2006; Zhao et al., 2010; Chen and Lin, 2011; Vecchi et al., 602 

2014; Murakami et al., 2015), and hybrid statistical-dynamical (Wang et al., 2009; Vecchi et al., 603 

2011) prediction methodologies, which have targeted primarily basin-wide (e.g., North Atlantic, 604 

West Pacific, etc.), seasonally-integrated statistics of tropical cyclone activity. More recently, 605 

methodologies that exploit the ability of high-resolution GCMs to represent both regional 606 

hurricane activity and its connection to climate variation and change have led to skillful seasonal 607 

predictions of tropical cyclone activity at more regional scales (e.g., Vecchi et al., 2014; Zhang et 608 

al., 2016, Murakami et al., in review). The coming years are likely to see an expansion in the 609 

growth of tools for the seasonal prediction of tropical cyclones and many other extreme 610 

phenomena, such as tornadoes (Elsner and Widen, 2014 ; Allen et al., 2015), and heat waves (Jia 611 

et al., 2016) enabled by the widespread development of high-resolution dynamical prediction 612 

models, improved understanding of the connection of weather extremes to large-scale conditions, 613 

and the pressing societal need for information about the statistics of high-impact weather events 614 

at regional scales. 615 

 616 

3. Managing living marine resources in a dynamic environment 617 
 618 

Management of LMRs is an exercise in trade-offs, requiring that managers balance 619 

multiple, often competing objectives (e.g. Jennings et al., 2016). For instance, global policies and 620 

the legal mandates of many countries require weighting conservation of commercial stocks 621 

against their exploitation, protecting bycatch species that are overfished or listed as endangered 622 

or threatened, safeguarding of coastal economies and fishing communities, and balancing present 623 

benefits to stakeholders against future losses (King et al., 2015). Fisheries managers acting on 624 

the best available science are mandated to prevent overfishing while, on a continuing basis, 625 

achieving high levels of benefits to society from fisheries and other seafood products. Fishers 626 

must balance a parallel tradeoff between the value of current harvest and the maximum value of 627 

future harvests. Similarly, aquaculture industry participants have to balance the value of expected 628 
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returns from capital investment against its opportunity costs.  629 

LMR industry or management decisions are made all the more challenging because these 630 

objectives must be achieved against the backdrop of a highly dynamic ocean environment. 631 

Different decisions are made for different spatial and temporal scales (with regard to both lead-632 

time and the application of the decision), and thus their effectiveness is influenced by climate–633 

driven variability from across the climate system (Fig. 5). In this section, we summarize LMR 634 

management and industry decisions made with lead-times from days to decades and the 635 

frameworks used to make them, identifying the points where seasonal to decadal climate 636 

predictions could inform decisions, and discuss the potential benefits of this information.  637 

 638 

3.1. Industry Operations 639 

For the aquaculture industry, key decisions include when to release fry, ‘plant’ and 640 

harvest fish/shellfish, and when and what remedial actions to take to counter or avoid poor 641 

conditions.  Extreme events such as floods, storms, and tropical cyclones can dramatically 642 

impact the aquaculture industry through reduction in water quality and destruction of 643 

infrastructure (Hodgkinson et al., 2014). Anomalously warm or cold conditions can also result in 644 

lost production and income via direct mortality effects, changes in growth or disease outbreaks 645 

(Chang et al., 2013, Spillman and Hobday, 2014). Hence, nowcasts and daily environmental 646 

forecasts are routinely used to improve the operational planning of the aquaculture industry. For 647 

example, monitoring networks of coastal water chemistry have been essential to reduce the 648 

impact of extremely low pH waters on oyster larval survival, increasing the economic resilience 649 

of the Pacific Northwest shellfish industry (Barton et al., 2015). Similarly, estuarine conditions 650 

are monitored to time release of hatchery reared salmon fry with optimal environmental 651 

conditions for growth and survival (Kline et al., 2008). While information on current 652 

environmental conditions is useful, seasonal forecasts of particular environmental variables can 653 

further improve the operational planning activities and climate readiness of the aquaculture 654 

industry by giving aquaculture farm managers time to develop and implement management 655 

strategies that minimize losses to climate, as is outlined in Case Study 4.1 (Spillman and 656 

Hobday, 2014; Spillman et al., 2015), or by allowing hatcheries time to adjust their release 657 

schedule (Chittenden et al., 2010).  658 

For the fishing industry, key decisions include investments in boats, gear and labor, as 659 
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well as when, where, and what to fish. Fishers rely on historical knowledge of the influence of 660 

environment on fish distribution to optimize such investment and harvest decisions. However, 661 

movement of environmental conditions into new ranges and associated changes in fish 662 

distribution (Section 1) is now affecting the value of fishers' past knowledge, making it harder to 663 

locate fish and make optimal pre-season investments, undermining their business performance 664 

(Eveson et al., 2015). As demonstrated in Case Study 4.2, seasonal climate forecasts can be 665 

incorporated into fish habitat models to produce fish distribution forecasts and improve the 666 

operational planning and efficiency of the fishing industry. 667 

Such habitat models generally use correlative techniques to define regions of high 668 

abundance, or high probability of occurrence, for a species of interest in relation to 669 

oceanographic conditions. Species distribution data can be sourced from tagging studies, 670 

fisheries-dependent records, fisheries-independent surveys, or other sources. The distribution 671 

data is then related to one or multiple environmental variables (e.g. temperature, Hobday et al., 672 

2011) through a variety of statistical methods, including generalized linear models (GLM), 673 

generalized additive models (GAM), classification and regression trees (CART), and artificial 674 

neural networks (ANN). When making century-scale projections of how fish distributions will 675 

change due to shifts in climate and marine habitat distribution, other commonly used models 676 

include Maxent (Phillips et al., 2006), Dynamic Bio-climate Envelope Model (DBEM; Cheung 677 

et al., 2009), AquaMaps (Kaschner et al., 2006), and the Non-Parametric Probabilistic Ecological 678 

Niche (NPPEN) model (Beaugrand et al., 2011). These models vary in assumptions and 679 

complexity, and can at times give markedly different results when applied to the same dataset 680 

(Lawler et al., 2006; Jones et al. 2013; Jones and Cheung 2014, Cheung et al. 2016a). For this 681 

reason, it is advisable to use an ensemble of multiple models when it is practicable to do so. 682 

Regardless of the statistical model used, all correlative habitat models assume that the 683 

relationships observed between species distributions and environmental variables in the training 684 

dataset are reliable proxies for actual mechanistic drivers of habitat preference. This assumption 685 

can be reasonably robust, for example if statistical associations with temperature closely mirror 686 

known physiological constraints, or more questionable, where a correlation is observed but the 687 

mechanistic basis is unknown (Peck et al., 2013). This can limit the performance of habitat 688 

models when they are extrapolated outside the range of the training dataset: either spatially into 689 

other geographic regions, or temporally into past or future time periods (Brun et al. 2016).   690 
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Long-term industry decisions, such as long-term resource capitalization and 691 

determination of optimal investment strategies for long-term sustainability can also be informed 692 

by these same habitat models, driven by multi-annual to decadal rather than seasonal, climate 693 

forecasts. Such long-term species distribution forecasts would help the fishing industry 694 

determine, and initiate a discussion with managers on optimal licensing strategies in the face of a 695 

changing environment, such as more flexible quota-transfer frameworks (McIlgorm et al., 2010). 696 

For the aquaculture industry, multi-annual to decadal scale species distribution forecasts would 697 

improve capital investment decisions such as where to establish a new site or estimate and sell 698 

risk in a market place (Little et al., 2015). 699 

 700 

3.2. Monitoring and closures 701 

Public health officials and fisheries managers have to make decisions on when to close a 702 

resource to protect the public, the resource itself, or, as for the case of bycatch species, resources 703 

caught incidentally to fisheries operations. Decisions also have to be made on how best allocate 704 

limited monitoring resources. Advanced estimates of stock distribution via bioclimatic habitat 705 

models (Case Study 4.5) or more complex ecosystem models (Case Study 4.6) informed by 706 

seasonal climate forecasts can guide planning for observer coverage and for fishery-independent 707 

surveys to ensure that stocks are monitored across their distributions. Below we elaborate via 708 

three examples on how short-term forecasts of climatic variability can be linked to triggers for 709 

fisheries closures (e.g., harmful algal blooms), allow time to prepare response plans (e.g., in 710 

response to coral bleaching), and reduce unwanted and incidental captures. 711 

 Harmful algal blooms (HABs), pathogens (e.g. Vibrio spp.), and dangerous marine 712 

species such as jellyfish pose a significant threat to public health and fishery resources. Total 713 

economic costs of HABs, including public health, commercial fishery, and tourism impacts, are 714 

an average of $49 million per year in the US alone (Anderson et al., 2000). For instance, an 715 

unprecedented coastwide HAB in spring 2015 caused widespread closures of commercial and 716 

recreational fisheries over the entire U.S. West Coast and led to substantial economic losses to 717 

the seafood and tourism industries (McCabe et al., 2016). HAB-related fish-mortality is also 718 

recognized as a significant problem in Europe (ICES, 2015), and HAB-related closures of 719 

fisheries in eastern Tasmania and the west coast of North America have led to economic 720 

hardship and are becoming more frequent (Lewitus et al., 2012; van Putten et al., 2015). To limit 721 
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such adverse effects, coastal resource managers have to estimate optimal allocation of 722 

monitoring resources, as well as appropriate times and locations for beach and shellfish bed 723 

closures. If fishers can anticipate HAB-related closures, they can make informed decisions about 724 

which stocks to target and develop approaches to compensate for expected lost revenues. 725 

Nowcasts and short-term (e.g. lead-time less than a month) forecasts of pathogens and 726 

HAB likelihood or distribution have been successful in helping coastal planners target 727 

monitoring, guide beach and shellfish closures, water treatment practices, and minimize impacts 728 

on the tourism and fisheries and aquaculture industries 729 

(http://coastalscience.noaa.gov/research/habs/forecasting; Stumpf and Culver, 2003; Constantin 730 

de Magny, 2009). Such nowcasts and short-term forecasts are generally derived from an 731 

empirical habitat model (Section 3.1) incorporating temperature and salinity fields from regional 732 

hydrodynamic models driven by weather models (e.g. Constantin de Magny, 2009), though 733 

mechanistic HAB models have also been developed (McGillicuddy et al., 2011). Integration of 734 

seasonal climate forecasts into such frameworks could extend the lead-times of HABs and 735 

pathogen forecasts, allowing coastal planners and impacted industries more time to develop 736 

response strategies. Likewise, temperature-based surveillance tools dependent on seasonal SST 737 

forecasts have been proposed to help monitor, research, and manage emerging marine disease 738 

threats (Maynard et al., 2016).   739 

Reduction of incidental capture of protected or over-exploited species during fishing 740 

operations is an important management objective in many jurisdictions; and fisheries managers 741 

are tasked with deciding what management actions are warranted to achieve this objective (e.g. 742 

Howell et al., 2008; Smith et al., 2007). Spatial management strategies that restrict fisher access 743 

in specific zones and at specific times have been successfully used to limit interactions between 744 

bycatch species and fishing gears (Hobday et al., 2014; Lewison et al., 2015). However, as fish 745 

move to remain in suitable physical and feeding conditions, fish distributions and phenology 746 

change with varying ocean dynamics (Platt et al., 2003; Perry et al., 2005; Nye et al., 2009; 747 

Pinsky et al., 2013; Asch, 2015), and therefore static time-area closures can be ineffective 748 

(Hobday and Hartmann, 2006; Howell et al., 2008; Hobday et al., 2011; Howell et al., 2015). 749 

Integration of real-time or forecast ocean conditions into a habitat preference model (Section 3.1) 750 

is now being pursued to determine spatial distributions of species of concern and to set dynamic 751 

time-area closures (Hobday and Hartmann, 2006; Howell et al., 2008; Hobday et al., 2011; 752 
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Howell et al., 2015; Dunn et al., 2016). For instance, nowcasts of the preferred habitat of 753 

loggerhead and leatherback turtles are helping to reduce interactions between Hawaii swordfish 754 

longline fishing vessels and these endangered species (Howell et al., 2008; Howell et al., 2015). 755 

The utility of seasonal forecasts in setting effective dynamic spatial management strategies 756 

(Maxwell et al., 2015) to reduce bycatch is exemplified in Case Study 4.7. 757 

 758 

3.3. Provision of Catch Advice  759 

Setting annual catch quotas, or adjustments to fishing seasons or effort, is one of the most 760 

critical and difficult decisions taken by fisheries managers. In the United States, Annual Catch 761 

Limits (ACLs) are mandated to not exceed scientifically determined sustainable catch levels 762 

(Methot et al., 2014).  Such intensive management of fishing levels occurs in other fishery 763 

systems and has been considered key to effective control of exploitation rates (Worm et al., 764 

2009). ACLs are dependent on a control rule that basically defines the fraction of the fish stock 765 

that can be safely harvested each year.  The control rule is designed to achieve a large fraction of 766 

the biologically possible “Maximum Sustainable Yield”, based on a forecast of stock abundance 767 

over the next one to several years and biological reference points. Reference points, such as the 768 

fishing rate that achieves the maximum long-term average yield (Fmsy), reflect the long-term 769 

productivity of a fish stock and are the basis for a management system to maintain annual fishing 770 

mortalities at a target level that does not lead to overfishing (Quinn and Deriso, 1999).  771 

Reference points and forecasts of stock status are based upon stock assessment models, 772 

which commonly are data-assimilating, age-structured models of a single stock’s population 773 

dynamics (Methot, 2009; Maunder and Punt, 2013). Typically, these lack spatial structure, while 774 

focusing on temporal dynamics on an annual time step over several decades.  We refer readers to 775 

Quinn and Deriso (1999) for a detailed description of a range of stock assessment models, 776 

differing in complexity and data requirements. The parameters of the model, e.g., annual 777 

recruitment, natural mortality rates, annual fishing mortality rates, etc., are calibrated by 778 

assimilating data on fishery catch, fish abundance from surveys, and the age or length 779 

composition of fish in the surveys and catch. Nielsen and Berg (2014) illustrate recent advances.  780 

The effects of ecological (e.g. predator abundance) or physical factors on population 781 

dynamics are rarely modeled explicitly: a recent meta-analysis showed that just 24 out of the 782 

1200 assessments incorporated such information (Skern-Mauritzen et al., 2015). These 783 
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unmeasured, non-fishing driving factors are only accounted for by allowing the models to 784 

incorporate random variability in key model parameters, particularly recruitment, or by 785 

incorporating empirical measured inputs, particularly regarding fish body weight-at-age. 786 

However, without including the process causing the fluctuations in the model framework, there 787 

is no basis for refining the random forecast into the future.   788 

Reference points are thus generally computed assuming quasi-equilibrium conditions and 789 

stationary stock productivity (Quinn and Deriso, 1999). However, in many fish populations, 790 

ecosystem and climate can shift the production curve over time (Mohn and Chouinard, 2007; 791 

Munch and Kottas, 2009; Payne et al., 2009; Payne et al., 2012; Peterman and Dorner, 2012; 792 

Vert-pre et al., 2013; Bell et al., 2014; Perälä and Kuparinen, 2015), calling this assumption into 793 

question. Failure to include variability in any component of productivity, such as recruitment, 794 

natural mortality, and growth, into the development of reference points and annual catch advice 795 

can lead to unexpected population declines when productivity shifts to unanticipated low levels 796 

(Brunel et al., 2010; Brooks, 2013; Morgan et al., 2014). Furthermore, the use of static reference 797 

points can contribute to inaccurate estimates of stock recovery time and rebuilding thresholds 798 

(Collie and Spencer, 1993; Holt and Punt, 2009; Hammer et al., 2010; Punt, 2011; Pershing et 799 

al., 2015).  800 

Nevertheless, robust alternatives to the status quo definitions of reference points have yet 801 

to be developed. For stocks that have undergone recognized shifts in productivity over their 802 

catch history, dynamic reference points can be constructed using data from the most current 803 

regime, as is currently done for Gulf of Alaska walleye pollock (Dorn et al., 2014) or southeast 804 

Australian morwong (Wayte, 2013). However, performance of such reference points in achieving 805 

management objectives as compared to the status quo has been mixed (Punt et al., 2014a, b). A 806 

common shortcoming is that using a shorter time series leads to less biased, but more uncertain, 807 

reference points (Haltuch et al., 2009; Dorner et al., 2013; Punt et al., 2014b). Furthermore, even 808 

dynamic reference points assume that the recent past will be representative of near future 809 

conditions. Because of the noisy nature of productivity parameters, such as recruitment, 810 

productivity shifts tend to be recognizable only well after the change has taken place, preventing 811 

managers from adjusting harvest strategies in a timely manner, and increasing the risk of 812 

overfishing (A'mar et al., 2009; Szuwalski and Punt, 2013). Statistical techniques such as the 813 

Kalman filter, which allow for time varying productivity parameters in stock assessment models, 814 
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have proven useful in a timely detection of productivity shifts and improved reference point 815 

estimation for semelparous species (Peterman et al., 2000; Peterman et al., 2003; Collie et al., 816 

2012). Temporal variability in reference points can also be introduced via environmental 817 

covariates on productivity parameters. When these environmental factors can be skillfully 818 

forecasted and the environment-population dynamics relationship is robust, the fish productivity 819 

forecast is improved (Maunder and Watters, 2003; Schirripa et al., 2009; Haltuch and Punt, 820 

2011; Johnson et al., 2015; Miller et al., 2016). 821 

Effectiveness of alternative reference point definitions and climate-robust harvest control 822 

rules can be tested through Management Strategy Evaluation (MSE). MSE is a simulation tool 823 

for comparing the trade-offs in the performance of alternative management strategies while 824 

accounting from uncertainty from different sources, such as climate responses, biological 825 

interactions, fishery dynamics, model parametrizations, observations, and management 826 

approaches (Cooke, 1999; Butterworth and Punt, 1999; Sainsbury et al., 2000). While the utility 827 

of accounting for the environment in achieving management objectives has been demonstrated 828 

for some species (Basson, 1999; Agnew et al., 2002; Brunel et al., 2010; Hurtado-Ferro et al., 829 

2010; Pershing et al., 2015; Miller et al., 2016), existing MSEs demonstrate that climate drivers 830 

of stock productivity show mixed results with respect to the effectiveness of alternative, 831 

potentially climate-robust, management strategies when compared to those currently 832 

implemented (A’mar et al., 2009; Punt et al., 2011; Szuwalski and Punt, 2013; Punt et al., 2014). 833 

One exception is the Pacific sardine fishery; whose catch targets vary with a reference point 834 

dependent on a 3-year moving average of past SST (Hill et al., 2014).  835 

Through the use of seasonal climate forecast information, climate informed reference 836 

points as used operationally for the US sardine fishery, would be more reflective of future 837 

productivity. This may help managers both adjust annual catch targets in a timely manner and set 838 

more realistic rebuilding targets (Tommasi et al., accepted.). Effectiveness of such climate-839 

informed reference points will depend upon achieving climate forecast skill at the seasonal to 840 

decadal scale, and on past observations used to identify environmental drivers of productivity 841 

being able to adequately characterize future relationships. 842 

Addition of climate forecast information into stock assessment models may also reduce 843 

uncertainty bounds on stock status projections by narrowing the window of probable outcomes 844 

as compared to the use of the entire historical range (Fig. 7a). Furthermore, if a stock 845 
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productivity parameter is subject to an environmentally-driven shift or directional trend, future 846 

values may lie outside of the historical probability space, leading to biased estimates of stock 847 

status under the assumption of stationarity (Fig. 7b and 7c). As a result, a climate forecast may 848 

serve as an advance warning of shifts in environmental conditions and stock productivity 849 

parameters, and may reduce bias in stock status estimates (Fig. 7b and 7c).  850 

It must be stressed that the theoretical value of climate forecast information detailed in 851 

Fig. 7 is dependent on both the strength of the environment-fisheries relationship and climate 852 

forecast skill. That is, we assume that the environment-fisheries relationship is robust and 853 

stationary, that a relatively high proportion of the unexplained variability can be explained by the 854 

environmental data (e.g. Basson, 1999), and the environment can be well predicted. For instance, 855 

if the environment-fisheries relationship breaks down, climate-driven harvest control rules will 856 

perform poorly (Fig. 2d), highlighting the need for a strong mechanistic understanding of the 857 

environment-fisheries link (Dorner et al., 2013), or more conservative management approaches 858 

when the fluctuations cannot be predicted with adequate precision. 859 

 860 

3.4. Spatial Issues and Protected Areas 861 

In addition to multi-year forecasts of stock status and revisions of reference points 862 

(Section 3.3), multi-year to decadal fisheries management decisions encompass long-term spatial 863 

planning decisions regarding changes to closed areas, the setting of future closures, preparation 864 

for emerging fisheries, and adjustment of quotas for internationally shared fish stocks. Even 865 

decisions about which management body has jurisdiction may need adjustment over time.   866 

As for short-term spatial management rules aimed at bycatch reduction (Section 3.2), 867 

stock distributions employed in the setting of current long-term closed areas are generally taken 868 

as static. Fish assessment models generally lack spatial structure, and thus have no inherent 869 

capability to forecast changes in stock distribution as ocean conditions shift the distribution of 870 

the stock, nor to calculate the localized impact of a spatially restricted fishery or reserve 871 

(McGilliard et al., 2015). However, the spatial distribution of many marine species has been 872 

shown to be particularly sensitive to changes in climate over multi-annual to decadal scales (Nye 873 

et al., 2009; Pinsky et al., 2013; Poloczanska et al., 2013; Bell et al., 2015; Thorson et al. 2016).  874 

Such climate-driven distributional shifts can have important implications for spatial 875 

management measures. For example, shifts of juvenile plaice (Pleuronectes platessa) towards 876 
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deeper waters have made a closed area (the “Plaice Box”) set up in the North Sea to prevent 877 

recruitment overfishing less effective (van Keeken et al., 2007). One potential solution for stocks 878 

that have undergone recognized shifts distribution over their catch history is use of dynamic 879 

seasonal-area closures. Climate predictions, particularly of surface and bottom temperatures, 880 

could be used to drive species habitat models that help define fishery closure areas (Section 3.1; 881 

Link et al., 2011; Makino et al., 2014; Shackell et al., 2014; Rutterford et al., 2015). 882 

Furthermore, seasonal to decadal predictions (as well as nowcasts and hindcasts) of 883 

environmental conditions may contribute to management even if they are not directly 884 

incorporated within stock assessments. For instance, the Northeast US butterfish (Poronotus 885 

triacanthus) assessment investigated methods to incorporate historical change in thermal habitat 886 

to evaluate changing availability to the survey. While habitat-driven time-varying survey 887 

catchability was not included in the final assessment, the focused effort to evaluate survey 888 

catchability overall altered assessment estimates of scale, permitted more robust estimation of 889 

natural mortality, and ultimately increased the catch quota relative to previous results.  890 

Shifting species distributions can also create important new fishing opportunities, such as 891 

the squid fishery in the Gulf of Maine that appeared during a particularly warm year (Mills et al., 892 

2013). Hence, forecasts of species distributions driven by multi-year to decadal climate 893 

predictions can help identify which species are likely to spark new fisheries, and then prioritize 894 

them for additional research, experimental fishing programs, or short-term closures during the 895 

colonization phase. Such forecasts can also warn of distributional shifts outside of the range of 896 

current fisheries operations, and may prevent overfishing of the remaining portion of the stock. 897 

Advance warning of shifting distributions is particularly important when they impact 898 

international agreements, since negotiations can take years. For example, mackerel faced a 899 

“double jeopardy” scenario when they partially shifted into Icelandic and Faeroese waters and 900 

the additional harvest pressure led to overfishing of the stock (Astthorsson et al., 2012; 901 

Hannesson, 2012; Dankel et al., 2015). Pre-agreements between organizations or nations can be 902 

drafted to create a clear set of rules for how to adjust quotas and allocations based on indicators 903 

of changes in a stock distribution, perhaps including side-payments to compensate for lost 904 

fishing opportunities (Miller and Munro, 2004). For instance, forecasts of ocean conditions are 905 

used to forecast the proportion of Fraser River salmon migrating around the south end of 906 

Vancouver Island, thus dramatically affecting international allocation of the catch opportunity 907 
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(Groot and Quinn, 1987). Forecasts may also be critical for building a common understanding of 908 

stock trajectories and for motivating the need for pre-agreements. 909 

 910 

4. Case Studies 911 
 912 

The previous two sections have provided an overview of the range of marine resource 913 

decisions that could be improved with climate forecasts and of climate forecast skill for LMR-914 

relevant variables across decision making time scales.  In this section, we highlight pioneering 915 

applications of the climate predictions discussed in Section 2.  916 

 917 
 4.1 Seasonal forecasts to improve prawn aquaculture farm management 918 

Pond-based prawn aquaculture in Australia is primarily located on the northeast coast of 919 

Queensland (Fig. 8). Growing season length, timing of harvest, and farm production in this 920 

region are strongly influenced by environmental conditions, such as air temperature, rainfall, and 921 

extreme events, including tropical cyclones. Anomalously cool or warm temperatures can impact 922 

production and timing of harvest, thus affecting delivery to market. Rainfall extremes, including 923 

tropical cyclones, affect freshwater quality and supply to farms, road access in the case of 924 

flooding, and can also cause loss of farm infrastructure. In this situation, predictions of 925 

environmental conditions weeks to months in advance can improve risk management and allow 926 

implementation of proactive management strategies to reduce unfavorable impacts and maximize 927 

positive effects of conditions on farm production.  928 

Seasonal forecast products for Queensland prawn farms were first developed in 2011-929 

2012 (Spillman et al., 2015) and currently continue to be delivered via a password protected 930 

website.  Regional temperature and precipitation forecasts are derived from the global dynamical 931 

seasonal prediction system POAMA (Predictive Ocean Atmosphere Model for Australia; 932 

Spillman and Alves, 2009; Spillman et al. 2011), and then downscaled using local weather 933 

station information for participating prawn farms. The forecasts were verified by assessing the 934 

probabilistic skill of the model predicting the upper terciles for maximum air temperature and 935 

rainfall, and the lower tercile for minimum temperature, as these were the events of greatest 936 

concern to prawn farm managers. Forecast accuracy is generally higher for temperature than 937 

rainfall, and declines with lead-time (Fig. 8). Forecasts out to lead-times of 2 months, which 938 

aligns with several farm operational planning timeframes, such as those for feed management or 939 



 31 

harvest time (Hobday et al., 2016), are sufficiently skillful to be integrated within prawn farm 940 

management decision framework (Spillman et al., 2015).  941 

Feedback from prawn farm managers following delivery of the first few forecasts led to 942 

refinement of forecast format, visualization and delivery, and resulted in an industry award for 943 

the project team.  This approach has been applied to other marine aquaculture industries (e.g. 944 

salmon; Spillman and Hobday, 2014), with industry recognition that a range of management 945 

decisions can be supported by environmental forecasts to improve aquaculture production in the 946 

face of climate variability and change. 947 

 948 

4.2 Seasonal forecasts to improve economic efficiency of a large-scale tuna fishery 949 

Large numbers of juvenile quota-managed southern bluefin tuna (SBT) (Thunnus 950 

maccoyii) occur in the Great Australian Bight (GAB) during the austral summer (Dec-Apr), 951 

where they are caught in a purse-seine fishery worth ~AUD 60 million annually. In recent 952 

fishing seasons, unexpected changes in the distribution of SBT were observed that affected the 953 

timing and location of fishing activity and contributed to economic pressure on the fishery. In 954 

particular, in the 2011/12 season, SBT moved through the GAB quickly and were distributed 955 

further east than in the past two decades. This resulted in less than 15% of purse-seine catches 956 

being taken from fishing grounds reliably used over the previous 20 years. The following season 957 

(2012/13) also saw unusual SBT distribution patterns that again impacted the fishery. As a result 958 

of these observed changes, the Australian Southern Bluefin Tuna Industry Association 959 

recognized the need for scientific support to improve operational planning in the purse-seine 960 

fishery. Many decisions central to SBT industry members planning their fishing operations need 961 

to be made weeks to months in advance, so seasonal forecasts of environmental conditions were 962 

regarded as a useful tool.  963 

Environmental variables influencing the spatial distribution of SBT in the GAB during 964 

summer were explored using location data collected on SBT over many years from electronic 965 

tags, and comparing the ocean conditions where fish were found with the conditions available to 966 

them throughout the region and time period of interest (Eveson et al., 2015). SST was found to 967 

have the greatest influence, with fish preferring temperatures in the range of 19-22°C. Once 968 

habitat preferences were established, this information was coupled with POAMA (see Section 969 

4.1) to predict locations of preferred SBT habitat in future. Both the habitat preference model 970 
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and POAMA were evaluated against historical observations, and it was concluded that SST-971 

based habitat forecasts for SBT in the GAB have useful skill for lead-times up to 2 months. A 972 

daily-updating website was created to provide industry with forecasts of environmental 973 

conditions and SBT distributions for the next fortnight and next 2 calendar months from the date 974 

of issue (Fig. 9), along with a suite of other relevant information, including skill of the forecasts 975 

(www.cmar.csiro.au/gab-forecasts).  Based on feedback from industry stakeholders obtained 976 

both formally through a survey and informally through an industry liaison representative, the 977 

information provided on the website has proven to be a valuable tool for fishers making 978 

decisions such as when and where to position vessels and to conduct fishing operations (Eveson 979 

et al., 2015). As the SBT fishery is quota-managed, the forecasting approach will not lead to 980 

increased catches (and thus impact sustainability), but will enable fishers to catch their quota 981 

more efficiently, thereby increasing profitability. 982 

 983 

4.3 A statistical seasonal forecast to improve the operational planning of a lobster fishery 984 

The US fishery for American lobster is one of the most valuable in the country.  Landings 985 

in Maine alone accounted for nearly US$500M in 2015.  The fishery is open year-round, but the 986 

catch is highly seasonal.  In Maine, where the majority of lobsters are landed, landings typically 987 

begin increasing rapidly during the first week of July, when lobster migrate inland and begin to 988 

molt. During 2012, the Gulf of Maine was at the center of a prolonged “marine heatwave,” 989 

which caused temperatures in the spring to lead the normal annual cycle by 3-4 weeks (Mills et 990 

al., 2013). The annual lobster migration and molt took place nearly a month early, resulting in 991 

very high catches in early June instead of early July.  The supply chain was not ready for the 992 

influx of newly molted soft-shell lobsters, and the imbalance between supply and demand led to 993 

a severe decline in price.  Furthermore, record warm air temperatures contributed to increased 994 

mortality of lobsters during storage and transport.  Thus, even though lobster landings set a 995 

record in 2012, it was an economically challenging year for many lobstermen. 996 

Motivated by the events in 2012, the possibility of an early warning indicator of lobster 997 

fishery timing was explored and it was found that the date when landings in Maine begin to 998 

increase is negatively correlated with subsurface temperatures in March and April.  Based on this 999 

relationship, a statistical forecast system was developed that takes temperatures at 50 m from a 1000 

network of coastal ocean buoys operated by the Northeast Regional Association of Coastal 1001 
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Ocean Observing Systems (NERACOOS) in spring and estimates the probability of the fishery 1002 

shifting into the high-landings period during a particular week in June or July. For the last two 1003 

years, the first forecast of the year has been announced to the industry at the Maine Fishermen’s 1004 

Forum and then updated weekly at www.gmri.org/lobster-forecast and via Twitter (Fig. 10). 1005 

Forecasters have now begun to work more closely with harvesters, dealers, and marketers in the 1006 

industry to assess how it can be further improved to meet their needs. Other work has identified 1007 

value in using sea temperature observations and models to help forecast outbreaks of lobster 1008 

epizootic shell disease (Maynard et al., 2016). 1009 

 1010 

4.4 Seasonal forecasts to improve coral reef management 1011 

Increases in ocean temperature over a coral’s tolerance limit are the leading cause of 1012 

coral bleaching events (Hoegh-Guldberg et al., 2007). Since 1997, NOAA’s Coral Reef Watch 1013 

has been using SST satellite data to provide near real-time warnings of coral bleaching (Liu et 1014 

al., 2014). While coral reef managers and scientists have been able to use these nowcasts to 1015 

execute operational response plans, managers recognized the need for longer lead-time forecasts 1016 

to improve management responses to coral bleaching. Following these requests, NOAA Coral 1017 

Reef Watch developed the first seasonal coral bleaching outlook, based on a statistical model 1018 

from NOAA’s Earth System Research Laboratory (Liu et al., 2009). In 2009 the Australian 1019 

Bureau of Meteorology developed the first dynamical seasonal forecasts for coral bleaching risk 1020 

on the Great Barrier Reef, based on seasonal SST predictions from POAMA (see Section 4.1; 1021 

Spillman and Alves, 2009; Spillman, 2011). NOAA Coral Reef Watch, in turn, developed a 1022 

dynamical 4 month lead coral bleaching outlook for coral reefs globally using seasonal SST 1023 

predictions from the NOAA National Centers for Environmental Prediction (NCEP) global 1024 

dynamical climate prediction system, the CFS model (Eakin et al., 2012).  1025 

These seasonal coral bleaching forecasts are made publicly available on the internet 1026 

(http://www.bom.gov.au/oceanography/oceantemp/GBR_SST.shtml, 1027 

http://coralreefwatch.noaa.gov/satellite/bleachingoutlook_cfs/outlook_cfs.php) and they allow 1028 

coral reef managers around the world to develop timely and proactive bleaching response plans, 1029 

brief stakeholders and allocate monitoring resources in advance of bleaching events. Resource 1030 

managers and scientists have been using these bleaching outlooks extensively throughout the 1031 

2014-16 global coral bleaching event (Eakin et al., 2014; Eakin et al., 2016). 1032 
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For example, in August 2010, following severe coral bleaching, the Thailand and 1033 

Malaysian governments closed numerous popular dive sites to reduce additional stress to 1034 

severely bleached reefs (Thomas and Heron, 2011). In May 2016, Thailand again closed ten 1035 

reefs, this time in advance of the bleaching peak (The Guardian 2016, 1036 

https://www.theguardian.com/environment/2016/may/26/thailand-closes-dive-sites-over-coral-1037 

bleaching-crisis. Accessed August 15, 2016) and in response to these forecast systems. More 1038 

recently, once Coral Reef Watch alerts were issued in late June 2015 of the high potential for 1039 

bleaching in Hawaiian waters (Fig. 11), the Hawaii Department of Land and Natural Resources 1040 

(DLNR) immediately began preparations of resources to monitor this event. Having only seen 1041 

significant multi-island bleaching in the main islands twice before, in 1996 and 2014 (Jokiel and 1042 

Brown, 2004; Bahr et al., 2015), a much more comprehensive effort was needed. Additional 1043 

volunteers were trained, who, together with teams from the state, University of Hawaii, NOAA, 1044 

and XL Catlin Seaview Survey, were deployed across most of the islands. This group was able to 1045 

document and monitor this unprecedented event, while the DLNR was able to alert the public 1046 

and work with marine resource users to encourage reduction of activities that could further stress 1047 

the corals during the bleaching event. Additionally, DLNR undertook an effort to collect 1048 

specimens of the rarest coral species from the main Hawaiian Islands and safeguard them in their 1049 

coral nurseries on Oahu and Maui. Many of these species suffered severe bleaching and 1050 

mortality, and DLNR staff have been unable to find one of these species alive off Oahu since the 1051 

2015 event. Both Bureau of Meteorology and NOAA seasonal forecast tools were also used 1052 

extensively by reef management during the most recent bleaching event on the Great Barrier 1053 

Reef in the summer of 2015/2016, currently believed to be the worst on record 1054 

(http://www.gbrmpa.gov.au).  1055 

 1056 

4.5 Seasonal forecasts of Pacific sardine habitat  1057 

Pacific sardines are notable as one of the few stocks managed with respect to climatic 1058 

variability in the US. Just recently, sardine distribution and migration forecasts have been 1059 

produced (Kaplan et al., 2016; Fig. 12) for the US Pacific Northwest and Canadian British 1060 

Columbia, based on 6 to 9 month predictions of ocean conditions 1061 

(http://www.nanoos.org/products/j-scope/; Siedlecki et al., 2016). These predictions rely upon 1062 

the NOAA NCEP global dynamical climate prediction system Climate Forecast System (Saha et 1063 
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al., 2006) to force a high resolution (~1.5 km) Regional Ocean Modeling System (Haidvogel et 1064 

al., 2008).  The efforts are fully described in Siedlecki et al. (2016), including skill assessment 1065 

for SST, bottom temperature, and oxygen. Relationships between sardine distribution and J-1066 

SCOPE predictions of ocean physics and chlorophyll were estimated for 2009. The final fitted 1067 

relationships between SST and salinity had moderate skill to predict sardine distributions 1068 

(presence or absence) in summer 2013 and 2014, with up to 4 to 5 month lead-times. Skill 1069 

assessment focused on a “hit rate” metric, area-under-the-curve (AUC), which balances the 1070 

desire to correctly predict sardine presence against the risk of false positives. One caveat to the 1071 

sardine forecasts is that they predict available sardine habitat (Fig. 12) without accounting for 1072 

sardine stock size. Recent declines in sardine abundance (Hill et al., 2015) have likely meant a 1073 

contraction of the stock southward (MacCall, 1990), despite availability of suitable habitat in the 1074 

US Pacific Northwest and British Columbia.   1075 

As with many pelagic species, sardines are seasonally migratory and forecasts of their 1076 

distribution by J-SCOPE may be relevant for fisheries management and industry.  The sardine 1077 

stock is landed by US, Mexican and Canadian fishers and the extent of the northward summer 1078 

migration is dependent on both water temperature and population contraction due to low 1079 

population abundance. The sardine forecasts by Kaplan et al. (2016) predict the extent of this 1080 

northward migration and could be used to plan fishing operations (e.g. whether Canadian fish 1081 

processors should expect sardine deliveries) or fisheries surveys. Additionally, quotas apportion 1082 

a fixed percent of sardine catch to Canadian vessels, and J-SCOPE provides foresight that that 1083 

this portion may be unharvested in a particular cold year.   Furthermore, sardine straddle 1084 

international boundaries, and short-term seasonal forecasts may help international management 1085 

and industry to cope with and prepare for the long-term distribution shifts expected under climate 1086 

change (Pinsky and Mantua, 2014). To date, forecasts have primarily been delivered through 1087 

collaboration with NANOOS (Northwest Association of Networked Ocean Observing Systems) 1088 

via the web (http://www.nanoos.org/products/j-scope/). Web products include predictions of 1089 

ecological indicators relevant to the regional fishery management council, and will soon be 1090 

incorporated in NOAA’s Integrated Ecosystem Assessment (Harvey et al., 2014). Other outreach 1091 

efforts are ongoing and aim to produce targeted forecasts (as discussed for Australia above in 1092 

Section 4.1) for fishery managers and stakeholders, and to better integrate with fishery 1093 

management council needs. 1094 
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 1095 

4.6 Short-term forecasts of Indonesian tuna fisheries to control illegal fishing  1096 

The last decade has seen the generalization of satellite Vessel Monitoring Systems to 1097 

monitor licensed fishing vessels, the use of satellite radar images to detect illegal fishing and the 1098 

development of Electronic Reporting Systems (ERS) to provide catch statistics in real time. 1099 

Integration of these developments in fishery monitoring with an operational forecasting model of 1100 

fish spatial dynamics that has the ability to predict the distribution of fish under the influence of 1101 

both environmental variability and fishing is assisting Indonesian fishing authorities in 1102 

controlling illegal fishing and implementing conservation measures. This operational monitoring 1103 

framework (Gehlen et al., 2015) was developed through the INDESO project and integrates a 1104 

high resolution regional model system coupling ocean physics to biogeochemistry (NEMO/ 1105 

PISCES; Gutknecht et al., 2016; Tranchant et al., 2016) to a spatially explicit tuna population 1106 

dynamics model (SEAPODYM; Lehodey et al., 2010; 2015). SEAPODYM simulates functional 1107 

groups of organisms at the intermediate trophic levels (Lehodey et al., 2010; 2015) and the 1108 

dynamics of their predators (e.g. tuna) (Lehodey et al., 2008). The model is complemented by a 1109 

quantitative parameter estimation and calibration approach (Senina et al., 2008) which enables 1110 

the application of the model to fish stock assessment and testing of management scenarios 1111 

(Sibert et al., 2012). 1112 

Tuna are highly migratory species, and their habitats cover large expanses of the global 1113 

ocean. Thus, the simulation of fish stock dynamics at high resolution in the Indonesian region 1114 

requires accounting for exchanges (fluxes) with populations outside of the regional domain (i.e. 1115 

Pacific and Indian Ocean) under the influence of both environmental variability (e.g. ENSO) and 1116 

fishing mortality. Boundary conditions for the regional 1/12° SEAPODYM implementation are 1117 

obtained from a 1/4° global operational configuration (Fig.13) driven by temperature and 1118 

currents from the operational ocean prediction system Mercator-Ocean PSY3V3 (Lellouche et 1119 

al., 2013). Biogeochemical forcings (net primary production (NPP), dissolved oxygen) are either 1120 

derived solely from the coupled physical-biogeochemical model NEMO/ PISCES (forecast 1121 

mode) or from NEMO/PISCES and satellite ocean color and SST data (to estimate NPP; 1122 

Behrenfeld and Falkowski, 1997), along with climatological dissolved oxygen (O2) (hindcast and 1123 

nowcast modes). The regional operational model SEAPODYM also uses a climatological data 1124 

set (i.e., monthly average of the last 5 years) of fishing effort prepared from the best available 1125 
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information to apply an average fishing mortality. The forecasting system runs every week and 1126 

delivers one week of hindcast, one week of nowcast, and 10 days of forecast. These outputs are 1127 

used by the Indonesian Fishing Authority to improve the collection and verification of fishing 1128 

data, to assist illegal fishing surveillance, and to establish conservation measures (e.g., 1129 

identification and protection of spawning grounds and nurseries) required for the sustainable 1130 

exploitation of this essential resource (Marion Gehlen, personal communication, June 22, 2016). 1131 

 1132 

4.7 Seasonal forecasts for dynamic spatial management of the Australian east coast tuna fishery 1133 

Since 2003, a dynamic spatial management approach has been used to limit unwanted 1134 

capture of a quota-managed species, SBT, in the Australian eastern tuna and billfish fishery. The 1135 

approach combines a habitat model, conditioned with temperature preference data obtained from 1136 

pop-up satellite archival tags deployed on SBT and an ocean model to produce near real-time 1137 

habitat nowcasts, delivered by email and utilized the same day by fishery managers during the 1138 

fishing season (Hobday and Hartmann, 2006; Hobday et al., 2010). Managers use this 1139 

information along with other data inputs (such as recent fishing catch rates) to restrict access in 1140 

the core (high probability of occurrence) zone to vessels that have both observers and SBT quota. 1141 

The habitat model was extended in 2011 to include a seasonal forecasting component using 1142 

ocean temperature forecasts from the seasonal prediction system POAMA, with useful forecast 1143 

skill out to several months (Hobday et al., 2011).  Both nowcast and seasonal forecast habitat 1144 

maps produced for managers show probabilistic zones of tuna distribution coded as “OK” 1145 

(unlikely to encounter SBT), “Buffer” (likely to encounter SBT) and “Core” (very likely to 1146 

encounter SBT) (Fig. 14).  Incorporating a seasonal forecasting component has been an 1147 

important step in informing and encouraging both managers and fishers to think about decisions 1148 

on longer time scales (Hobday et al., 2016). Forecasts are now delivered via a dedicated webpage 1149 

(http://www.cmar.csiro.au/sbt-east-coast/). The dynamic habitat forecasting approach has 1150 

reduced the need for large areas closures while still meeting the management goal, but does 1151 

require fishing operators to develop more flexible fishing strategies, including planning vessel 1152 

movements, home port selection and quota purchase. 1153 

 1154 

5. Recommended practices  1155 
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Following Hobday et al. (2016) and Siedlecki et al. (2016), there are three main 1156 

components to a successful LMR forecast framework: assessment of needs, forecast 1157 

development, and forecast delivery. Here, we break down the forecast development and delivery 1158 

stages further to provide more details of the forecast implementation process (Fig. 15). 1159 

Identification of a clear management need via effective communication between climate 1160 

scientists and management or industry stakeholders from the start of the forecast development 1161 

process is essential for the utility and widespread adoption of climate prediction tools for LMRs 1162 

(Hobday et al., 2016; Harrison and Williams, 2007; Fig. 15). This needs assessment should 1163 

include the determination of relevant variables, spatial domain, spatial resolution, and timescales. 1164 

Once needs have been assessed, it is incumbent upon scientists to provide balanced 1165 

communication of both capabilities and limitations to evaluate whether forecasts are likely to be 1166 

useful to their partners. 1167 

Forecast development is underpinned by an understanding of the mechanisms relating  1168 

physical climate variables to the LMR of interest. Once such linkages are found, three forecast 1169 

development steps follow: an assessment of the skill of the physical climate variable forecast, an 1170 

assessment of the skill of the LMR model forecast, and the uncertainty associated with each. The 1171 

prediction skill for the physical climate variables must be assessed at an appropriate timescale 1172 

relative to the management decision timeframe and at a spatial resolution able to resolve 1173 

environmental driving mechanisms. Skill assessment will make use of retrospective forecasts and 1174 

observations. When reanalyses are used in lieu of observations, their accuracy at the scale of 1175 

interest should be confirmed against data prior to forecast skill assessment whenever possible 1176 

(Section 3). If the skill evaluation indicates that the variables of interest cannot be skillfully 1177 

forecasted at an adequate lead-time and/or relevant spatial scale, stakeholder expectations may 1178 

be re-evaluated and alternate variables or scales of interest investigated (i.e. it may be necessary 1179 

to return to the needs assessment step). Alternatively, downscaling or bias correction techniques 1180 

may improve skill at the desired scale in some cases (Section 6). Skill may be assessed using at 1181 

least measures of correlation, variability, and bias between forecast and observations, although 1182 

further verification analyses are possible (Mason and Stephenson, 2007). 1183 

Once a physical climate variable forecast has been developed and determined to be 1184 

skillful, the value of using it in an LMR model must be determined. LMR model skill assessment 1185 

can employ skill metrics based on “hit rate”, such as AUC or area-under-the-curve (Fielding and 1186 
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Bell, 1997) and the True Skill Statistics (Allouche et al., 2006), to evaluate whether the LMR 1187 

forecasts reproduce biological phenomena (e.g., presence of tuna, occurrence of a coral 1188 

bleaching event). While it is well known that climate affects LMRs (Section 1), most of derived 1189 

climate-LMR relationships are empirical, with climate variables often acting as proxies of 1190 

complex trophic effects, interspecies interactions, and dispersal processes. For climate 1191 

information to be included in LMR management frameworks, the environment-fisheries 1192 

relationship has to be robust and preferably based on mechanistic, ecologically-sound 1193 

hypotheses. A sufficiently long observational data series is required for model calibration and 1194 

verification (Haltuch and Punt, 2011), including out-of-sample validation (Francis, 2006; Mason 1195 

and Baddour, 2007; Mason and Stephenson, 2007). In addition, if the environment-fisheries 1196 

relationship relies on stock assessment model output (e.g. recruitment), it is important that this 1197 

relationship be developed within the stock assessment model itself rather than as a post-hoc 1198 

analysis to ensure uncertainties associated with the stock assessment model are properly 1199 

propagated (Maunder and Watters, 2003; Brooks and Deroba, 2015). Furthermore, to increase 1200 

confidence in the robustness of these empirical relationships, meta-analytical techniques can be 1201 

employed to ensure that the proposed hypothesis is robust across a species range (Myers, 1998), 1202 

taking into account, however, that environmental variables may affect species differently across 1203 

their latitudinal range (e.g. Mantua et al., 1997).  1204 

As environment-LMR associations may change over time (e.g. with changing baselines 1205 

under climate change), these empirical relationships need to be periodically re-evaluated as new 1206 

environmental and LMR data are collected. LMR forecast development will therefore be an 1207 

iterative process and management has to be dynamic to allow for changing management 1208 

decisions as the environment-fisheries relationship evolves with the continuous integration of 1209 

new information. Environment-LMR correlations have been observed to be more robust when 1210 

tested with new data at the edges of a species range (Myers, 1998). These populations may serve 1211 

as initial case studies with which to develop dynamic management frameworks that integrate 1212 

climate prediction information. Table A2 includes a list of LMRs for which a sufficient 1213 

understanding of how they respond to climate variability has been achieved, and which may 1214 

serve as additional case studies. These include those determined by Myers (1998) as robust to re-1215 

evaluation and those that already make use of environmental information in their management as 1216 

described by Skern-Mauritzen et al. (2015). 1217 
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To provide a thorough presentation of risk to decision makers, it will be important to 1218 

assess the uncertainty of the climate prediction as well as that of the LMR models. For the 1219 

climate prediction, this will involve quantification of processes, variability and model 1220 

uncertainty via the use of single and multi-model ensembles (Section 3). Forecasts will be 1221 

inherently probabilistic, and ensembles can be used to estimate the probability.  On the fisheries 1222 

side, there is also uncertainty associated with LMR models’ parameterizations (Cheung et al., 1223 

2016a, b). As for climate predictions, ensemble approaches can be employed in LMR models to 1224 

account for the high level of uncertainty in the parameterization of biological processes (e.g. 1225 

Kearney et al., 2012; Laufkötter et al., 2015; 2016). Uncertainty in the environment-LMR 1226 

relationship will also need to be accounted for by, for instance, running multiple simulations of 1227 

the LMR model differing in their stochastic error of the LMR-environment relationship (e.g. 1228 

Lindegren et al., 2013).  1229 

Finally, an effective forecast delivery mechanism is required. The climate prediction 1230 

needs to be delivered in a format that can be effectively incorporated into LMR models and 1231 

decision frameworks, such as population models used in fish stock assessment. As in all the 1232 

stages of LMR forecast development, consistent user engagement is essential to ensure sustained 1233 

use of such prediction tools (Harrison and Williams, 2007; Hobday et al., 2016). For instance, 1234 

the general difficulty people have in understanding uncertainty and probabilities has limited the 1235 

use of climate predictions in the natural resource sector (Nicholls, 1999; Marshall et al., 2011). 1236 

Collaboration with social scientists on the most appropriate presentation and delivery options 1237 

may enhance adoption of forecast information (Harrison and Williams, 2007). Automated web-1238 

based delivery systems are a common delivery method, although ongoing contact with end users 1239 

and acknowledgement of user feedback is important to build engagement and for continued 1240 

forecast use (Hobday et al., 2016). Funding for delivery system maintenance, user engagement, 1241 

and continued user training should be included in projects to maintain iterative LMR operational 1242 

forecast systems.  1243 

The value of integrating climate predictions into LMR decision frameworks has to then 1244 

be demonstrated to managers or industry. This can be undertaken by employing cost-benefit 1245 

analyses (e.g. Asseng et al., 2012) and MSE (Section 2.4, Tommasi et al., accepted). For 1246 

example, MSEs can assess the performance of different management strategies (e.g. with and 1247 

without climate predictions) in relation to a suite of performance metrics while taking 1248 
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uncertainty into account. They may also include economic models to better evaluate the specific 1249 

economic value of integrating climate forecasts into LMR decisions (e.g. Richardson, 2000). 1250 

While MSEs have been developed in the context of fisheries science, such decision support 1251 

systems could also be applied to industry or coastal manager’s decision frameworks. Results 1252 

from these assessments would inform both climate and LMR prediction development by 1253 

highlighting further refinements needed to better inform decisions. 1254 

 1255 

6. Priority developments 1256 

While the potential benefits of seasonal climate forecasts in reducing the climate 1257 

vulnerability of the fishery and aquaculture industry and in improving fisheries management are 1258 

clear (Section 4), barriers to their widespread adoption also exist. Social, cultural, economic, or 1259 

political constraints, such as existing regulations or dissemination difficulties, can limit forecast 1260 

use (Nicholls, 1999; Goddard et al., 2001; Harrison and Williams, 2007; Davis et al., 2015).  1261 

However, the discussion herein will be limited to priority developments aimed at reducing 1262 

technical impediments to climate forecast application. These technical barriers include 1263 

incomplete understanding of environment-LMR relationships, limited length and availability of 1264 

physical, biogeochemical and biological time series for model development and validation, and 1265 

the irreducible predictability limits at seasonal to decadal scales. There is also need for 1266 

methodological advancements in LMR models to explicitly consider environmental productivity 1267 

indicators and spatial distributions, and apply empirical models in non-stationary systems. 1268 

Finally, there is a need for reduction in climate model bias through improvements in model 1269 

formulation and initialization, verification of LMR-relevant physical variables at LMR-relevant 1270 

spatial scales beyond SST, the development of biogeochemical forecasting capabilities in global 1271 

prediction systems, and improvements in climate predictability at LMR-relevant regional scales 1272 

through higher resolution global prediction systems or the development of downscaling 1273 

frameworks.  1274 

On the LMR model side, predictive capacity is constrained by our incomplete 1275 

understanding of environment-LMR relationships, especially their response to environmental 1276 

fluctuations (e.g. Chavez et al., 2003; Di Lorenzo et al., 2009; Le Mézo et al., 2016). As a case in 1277 

point, only 2% of managed fisheries worldwide explicitly integrate past environmental 1278 

information into their current tactical decision making and provide an existing framework to 1279 
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readily incorporate climate forecast information (Skern-Mauritzen et al., 2015). This lies in stark 1280 

contrast to ubiquitous climate-marine resource correlations reported in the literature (e.g. Hare et 1281 

al., 2010; Mueter et al., 2011; Ottersen et al., 2013). For most populations, the length of 1282 

available, co-occurring fishery, biological and environmental time series may be too short to 1283 

robustly identify the environment-LMR relationship (Haltuch and Punt, 2011) or to develop a 1284 

habitat preference model, highlighting the importance of maintaining and expanding existing 1285 

observational data series for environment-LMR model development and verification. Funding 1286 

for ocean and LMR observations is limited. Given the importance of having climate observations 1287 

over a period long enough to span different environmental regimes, LMR observations that cover 1288 

a wide range of population sizes, and large sample sizes to improve estimation of model 1289 

parameters, establishment of new monitoring networks must be carefully balanced with the 1290 

critical need to maintain current sampling programs (Haltuch and Punt, 2011; Dorner et al., 1291 

2013). Maintenance and expansion of physical climate observing systems, as discussed in 1292 

Section 3, are also essential to climate model development to improve climate predictability 1293 

through better model initialization (e.g. Servonnat et al., 2014). Including concurrent measures of 1294 

basic biogeochemical and lower-trophic-level measurements should be integrated into existing 1295 

observing systems, when possible, to facilitate better understanding of physical-biological 1296 

interactions in the marine environment and better assessment of model predictive capability. 1297 

That said, while spatially-or temporally-constrained (or incomplete) environmental data may be 1298 

limited in quantitative utility, such data can help provide qualitative context for decision-making. 1299 

For example, time series of conditions can be used to delineate regime-specific parameter 1300 

estimates or emergent patterns in indicators can provide justification for precautionary 1301 

management actions and intensified monitoring (Zador et al., in press). 1302 

Non-stationarity issues are particularly critical for decadal to centennial predictions. 1303 

However, for many populations, knowledge of environment-fishery interactions is limited to 1304 

basic correlations. These correlative (and often linearly approximated) relationships provide a 1305 

useful, existing tool to start integrating climate predictions into LMR models. But if an 1306 

ecosystem were to shift into a new, no-analog state and the ecosystem processes that were 1307 

empirically described by this correlative relationship were to change, subsequent management 1308 

decisions may perform poorly (Dorner et al., 2013). Similar shifts can occur at shorter time-1309 

scales. For example, many species distribution models developed with one decade of data 1310 
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perform poorly when used to project species distribution during another decade (Brun et al., 1311 

2016). For bias correction of physical climate models, non-linear statistical techniques that are 1312 

better at simulating distribution extremes appear to perform better under novel climate conditions 1313 

(Gaitan et al., 2014). More sophisticated, model-free statistical approaches also appear promising 1314 

in establishing environmental influences on LMRs that can be applied in a management 1315 

framework, particularly over short timescales (e.g. Ye et al., 2015). To improve LMR predictive 1316 

capacity, it will be necessary to expand the use of such techniques into tactical management 1317 

frameworks, and to characterize their benefits relative to more traditional statistical techniques as 1318 

well as ecosystem models. 1319 

Dynamic ecosystem models integrate physical variables, lower-trophic-level dynamics, 1320 

LMR dynamics, and human impacts, mechanistically, and are critical to enhance our 1321 

understanding of LMR responses to climate variability (Travers et al., 2007; Rose et al., 2010; 1322 

Le Mézo et al., 2016). Such process-based understanding is necessary to the development of 1323 

models able to skillfully predict LMR under novel conditions (Evans, 2012). Furthermore, 1324 

because of the inherent complexity, non-linearity, and multi-stressor characteristics of marine 1325 

ecosystems, multispecies and ecosystem models can in some cases assess uncertainties and 1326 

trade-offs more effectively (Pikitch et al., 2004; Link et al., 2012). Nevertheless, such models are 1327 

currently only employed for strategic advice at the decadal and multi-decadal scale, rather than 1328 

for short-term tactical decisions (e.g. Smith et al., 2011; Pacific Fishery Management Council 1329 

and National Marine Fisheries Service 2014; Fulton et al., 2014; Marine Stewardship Council, 1330 

2014). One issue of concern with the use of ecosystem models for tactical decisions is their 1331 

inability to integrate all of the data streams, such as catch-at-age data, that are customary in 1332 

current tactical fisheries decision frameworks. Another issue is that their complexity comes at the 1333 

cost of longer running time, hindering their use within current tactical management process 1334 

timelines. Also, they rely on static assumptions and parameterizations, which may not remain 1335 

valid under future conditions. Finally, because more processes are modeled and there is 1336 

uncertainty in each, the fully characterized uncertainty can be large. This may make decision-1337 

making more difficult but, if this uncertainty accurately reflects the true uncertainty in the 1338 

system, it will ultimately result in better decisions. Expanded application of such models for 1339 

tactical management decisions will be dependent on improving their parameterizations, 1340 

specification of initial conditions, extending quantitative model assessments, and reducing their 1341 
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uncertainties through additional physiological studies, process studies, and modeling 1342 

experiments aimed at understanding the mechanisms driving LMR’s responses to climate. LMR 1343 

surveys that include more hydrographic, biogeochemical, and lower-trophic-level (plankton) 1344 

observations will also be critical to make progress towards expanded use of ecosystem models in 1345 

LMR forecasting applications. 1346 

Highly resolved spatial and population dynamics models of a specific target species 1347 

coupled to a coarser, lower-trophic-level model (Lehodey et al., 2008; Senina et al., 2008; 1348 

Section 4.2) or “models of intermediate complexity” – MICE – (Lindegren et al., 2009; Collie et 1349 

al., 2014; Plagányi et al., 2014) may be more immediately suited for tactical management 1350 

decisions, as their uncertainties are more tractable. MICE use statistical parameter estimation 1351 

methods common in current tactical fisheries models to fit multispecies models to data for small 1352 

groups of interacting species. Such models are becoming sufficiently advanced, including both 1353 

species interactions and impacts of temperature on population dynamics (Holsman et al,. in 1354 

press.), and can be used in concert with single-species models to provide tactical fisheries advice 1355 

from a multi-model suite, similar to operational prediction systems used in weather forecasts 1356 

(Ianelli et al., in press.). Combining such models with seasonal and decadal forecasts will help 1357 

evaluate risk profiles and trajectories of recovery plans, assess the flexibility of harvest policies 1358 

to dynamic conditions, and identify areas of management vulnerability to climate change (e.g., 1359 

are dynamic management policies available in hand to respond to sudden shifts in ecosystem 1360 

structure or driving processes?; Holsman et al., in review). While MICE are quite promising for 1361 

tactical decision making in the near future, simulation testing to determine whether they can 1362 

provide adequate information for tactical management under various information conditions 1363 

typical of fisheries management needs to be undertaken. If successful, such applications may 1364 

also provide a valuable template for the expansion of holistic whole ecosystem models from 1365 

strategic to tactical management decisions. 1366 

Expanded use of seasonal to decadal forecasts is also limited by problems of relevance in 1367 

terms of critical variables, and spatial and temporal scales (Nicholls, 1999; Hobday et al., 2016). 1368 

For some LMR-relevant variables, there are irreducible predictability limits at seasonal to 1369 

decadal scales due to the chaotic nature of the atmosphere (Deser et al., 2012). Such variables 1370 

will remain unpredictable even with a perfect data assimilation system and model formulation, 1371 

and hence management frameworks robust to unpredictable variation will need to be developed. 1372 
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It will be important for climate scientist to continue assessing predictability limits of LMR-1373 

relevant variables and to communicate such limitations to users, e.g., by providing reliable 1374 

probabilistic forecasts accompanied by appropriate measures of historical skill. 1375 

For some regions and time scales, however, predictability of LMR-relevant variables is 1376 

limited by the systematic errors of GCMs (Goddard et al., 2001). It is critical to find ways to 1377 

either reduce this model bias or reduce its negative impacts on forecast skill through novel 1378 

techniques (e.g., Batté et al., 2016). Reduction in model bias will involve improvement in both 1379 

model physics and parametrizations, as well as data assimilation systems (Goddard et al., 2001; 1380 

Meehl et al., 2014; Siedlecki et al., 2016). For instance, as variability in ocean circulation can 1381 

depend on both temperature and salinity variations in the ocean's interior, improved observations 1382 

of these quantities, as well as improved assimilation systems to make optimal use of these 1383 

observations, are critical. As resolution of GCMs increases, representation of the physical 1384 

processes responsible for regional climate predictability improves (e.g. Jia et al., 2015), and, in 1385 

some cases, this may lead to improved forecast skill of LMR-relevant variables. 1386 

Forecasts at the multi-annual to decadal time scales, while of great interest to LMR 1387 

management and industry, are not yet operational (Section 3). Continued research to improve our 1388 

theoretical understanding and representation of the physical processes and feedbacks responsible 1389 

for decadal scale climate variability are required to reduce model bias and improve decadal 1390 

forecast skill (Meehl et al., 2014).  Furthermore, in order to better assess the performance of 1391 

decadal forecasts, predictability studies across more models and with larger ensembles need to be 1392 

carried out (Meehl et al., 2014). Demonstration of reliable skill, however, will remain limited by 1393 

the small sample size available for verification due to the high time series autocorrelation and 1394 

limited quantity of independent samples at decadal time scales (Kumar, 2009; Meehl et al., 1395 

2014). Furthermore, it is important to stress that the decadal predictability of regions, such as the 1396 

North Pacific, subject to strong atmospheric forcing, will remain limited (Branstator and Teng, 1397 

2010; Meehl et al., 2014). 1398 

In addition to improvements in models and initialization, predictability across 1399 

spatiotemporal scales of more LMR-relevant physical variables such as bottom temperature, sea 1400 

surface height, onset of upwelling, or salinity need to be examined. Biogeochemical prediction 1401 

(e.g. chlorophyll biomass, net primary productivity (NPP), export production fluxes, aragonite 1402 

saturation in coastal zones, oxygen concentration) is also of major relevance to ecosystem-based 1403 
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management of marine resources (Levin et al., 2009; Stock et al., 2011). While biogeochemical 1404 

prediction is in its early stages and no coupled physical-biogeochemical seasonal to decadal 1405 

forecasting systems are yet operational (but see Case Study 4.6 for their use in sub-seasonal 1406 

prediction), recent work shows some potential. Predictive skill up to several months has been 1407 

shown in the northern CCS for bottom oxygen (Case Study 4.5, Siedlecki et al., 2016), and up to 1408 

3 years for NPP in some oceanic domains (Séférian et al., 2014, Chikamoto et al., 2015). In most 1409 

cases, the increased predictability in NPP arises from that of nutrients, which directly benefit 1410 

from the initialization of the model physical fields (Séférian et al., 2014). These pioneering 1411 

results demonstrate that biogeochemical prediction shows promise and highlight the need to both 1412 

develop integrated physical-biogeochemical forecast systems, and further quantify 1413 

biogeochemical predictive skill over a variety of space and time scales to inform ecosystem-1414 

based management approaches to LMRs. Application of ESMs in a climate change framework 1415 

has demonstrated that uncertainty in LMR projections can be large due to uncertainty in the 1416 

many modelling components, from GCMs to upper-trophic level models, required to assess 1417 

climate change impacts on LMRs (Cheung et al., 2016b). Computing and personnel resources 1418 

will hence be required to develop an ensemble approach for biogeochemical prediction able to 1419 

account for this uncertainty. An assessment of prediction skill beyond SST to other properties 1420 

driving biological responses will also necessitate supporting, collecting, and maintaining 1421 

sampling programs and observing systems.   1422 

The spatial resolution of global climate models poses another limitation to their skill at 1423 

the regional scale relevant to LMR decisions. Downscaling techniques can be used to generate 1424 

finer-scale information from large-scale climate predictions. By relating well predicted large-1425 

scale factors to a local process of interest, downscaling, in addition to providing higher spatially 1426 

and temporally resolved data, may produce LMR-relevant variables not skillfully generated by 1427 

global prediction systems (e.g. Siedlecki et al., 2016). There are two types of downscaling 1428 

techniques: statistical and dynamical. The first links the large-scale output from a global 1429 

prediction system to local scale variables using statistical-empirical relationships. The second 1430 

uses the large-scale output as boundary conditions to regional-scale, physics-based dynamical 1431 

models.  1432 

Statistical downscaling techniques are computationally inexpensive, so the large 1433 

ensembles required to appropriately characterize initial condition and model uncertainty of 1434 



 47 

seasonal to decadal predictions (Section 2.1.2) can be run relatively fast. The ability to quickly 1435 

produce output is an advantage particularly relevant for downscaling of seasonal predictions, as 1436 

they have to be produced in a timely manner to be relevant to the decision-making process 1437 

(Laugel et al., 2014). However, to construct robust statistical relationships, long observational 1438 

records are required (Section 4.1 and 4.3), though are not always available. Second, all statistical 1439 

downscaling techniques assume that the large-scale, local climate relationship will remain the 1440 

same in the future. While these assumptions may hold for the relatively short timeframe of 1441 

seasonal predictions, they may deteriorate over longer-range decadal predictions.  1442 

By contrast, dynamical downscaling techniques explicitly model the physical processes 1443 

involved and therefore may perform better than statistical methods under changing or 1444 

unprecedented conditions (e.g. van Hooidonk et al., 2015). Dynamical downscaling models, 1445 

however, will still inherit any bias of large-scale GCMs, and may even amplify such systematic 1446 

errors (Goddard et al., 2001; Hall, 2014). This stresses again the need to reduce bias in global 1447 

predictions systems to improve predictability of LMR-relevant variables at a regional scale. 1448 

Further research will also be necessary to assess the relative costs and benefits of statistical 1449 

versus dynamical techniques for downscaling of LMR-relevant climate predictions. This will 1450 

require more resources allocated towards the development of downscaling frameworks for LMR-1451 

relevant climate predictions in regions of interest for LMRs. For instance, coupling to fine 1452 

resolution coastal models, like the efforts in the northern CCS and Indonesian region (Case 1453 

Studies 4.5 and 4.6), is a promising approach that warrants more studies in other regions. 1454 

Furthermore, modeling studies aimed at understanding the extent to which LMR-relevant local 1455 

processes are interactive with the large-scale and to what extent they are primarily "driven" by 1456 

large-scale processes are required. Such studies would help to identify the type of downscaling 1457 

method most appropriate and indicate regions requiring higher-resolution global climate 1458 

prediction systems to further enhance predictability and support decision making at fine spatial 1459 

scales. 1460 

 

7. Concluding Remarks 1461 

It is widely recognized that the productivity and distribution of LMR populations change 1462 

over time in response to climate and ecosystem variability and long-term trends. Fishers, 1463 

aquaculturists, coastal planners, and fisheries managers recognize that many of their operational 1464 
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planning and management decisions should account for this dynamism. We have shown how 1465 

recent improvements in global dynamical climate prediction systems have resulted in skillful 1466 

predictions of LMR-relevant variables at many of the spatial and temporal scales at which LMRs 1467 

are managed, and how such predictions are already helping industry and managers make 1468 

decisions in dynamic environments. By describing climate prediction systems and their 1469 

capabilities, as well as the range of decisions currently taken by managers and the fisheries and 1470 

aquaculture sector that may benefit from the inclusion of future climate information, new 1471 

applications may be developed for wider use. Successful integration of climate information into 1472 

LMR decision frameworks will depend on close collaboration and open dialogue between 1473 

potential users and climate scientists.  1474 

While some progress has been achieved within existing frameworks and resources, 1475 

challenges in both climate and fisheries models need to be addressed to further expand utility of 1476 

such predictions for LMRs (Section 6). To ensure widespread application of climate forecasts 1477 

into LMR decision making and prevent unintended consequences of climate and fisheries 1478 

interactions, new methodological approaches that capture complex ecosystem dynamics and the 1479 

full range of LMR drivers need to be developed. Such frameworks will inherently be 1480 

probabilistic and consist of ensemble methods to account for uncertainties in both climate and 1481 

LMR models, improve model accuracy, and help end users understand risk. These frameworks 1482 

will also evolve over time as our understanding of environment-LMR links, which remains poor 1483 

for many species and regions, is improved through more field observations and experimental 1484 

studies. Therefore, management decision systems will need to become more flexible to the 1485 

inclusion of new information streams at a variety of both spatial and temporal scales, as well as 1486 

to frequent re-evaluation.  1487 

As we acknowledged above, seasonal to decadal predictions of climate and LMR 1488 

dynamics will sometime fail despite the best efforts, especially given the increasing potential for 1489 

no-analog system states and ecological surprises (Williams and Jackson, 2007; Doak et al., 1490 

2008). To cope with this inevitability, we also encourage the development of approaches for 1491 

managing unexpected changes once they have happened (Schindler and Hilborn, 2015).  1492 

As predictability is the ultimate test of scientific theory, routinely using these climate-1493 

forecast informed frameworks to make predictions of LMR dynamics will also improve 1494 

understanding of ecosystem dynamics. In addition, skillful predictions at seasonal to multi-1495 
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annual scales will lend confidence to the use of such models to project LMR dynamics over 1496 

longer temporal scales, and can be used to build stakeholder confidence in the use of longer term 1497 

climate projections. With exploited systems being more sensitive to environmental variability 1498 

(Hsieh et al., 2006; Perry et al., 2010), development of such capabilities will be essential to the 1499 

development of climate-ready management systems to effectively manage and culture LMRs in a 1500 

future environment where long term change renders historical experience less valuable. 1501 
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 2627 

Figure Captions 2628 

Figure 1. Overview of simulation design for seasonal and decadal predictions and climate 2629 
projections. GHG refers to greenhouse gases. Note that the year for shifting from pre-industrial 2630 
to historical forcing in climate projections, here set to 1860, can differ between climate models. 2631 
“Forcings” in the climate change context refer to specified solar insolation and concentrations of 2632 
radiatively active atmospheric constituents. 2633 
 2634 
Figure 2. Temperature anomalies at 55-m depth from six different ocean reanalysis products for 2635 
April 2015 relative to each-product 1981-2010 climatology. The bottom left panel shows the 2636 
ensemble mean, and the bottom right the ratio of signal (ensemble mean) to noise (ensemble 2637 
spread). 2638 
 2639 
Figure 3. Left panel: One-month lead probabilistic forecast of SST for summer (June, July, and 2640 
August, JJA) initialized in May 2016 from the North American Multi-Model Ensemble 2641 
(NMME). This forecast was produced using all the ensemble members provided by each model 2642 
participating in the NMME. It therefore reflects both initial condition and model uncertainty. 2643 
Warm colors (yellow-orange) indicate areas with a significant probability of experiencing upper-2644 
tercile temperatures, with the probability of such terciles ranging from 40-100% depending on 2645 
the degree of shading. Analogous interpretations exist for the anomalously cool (blue colors) or 2646 
near climatological (gray colors) conditions. Right panel: Ranked probability skill score for the 2647 
forecast presented in the left panel. The color bar represents the relative improvement of the 2648 
probability forecast (left panel) over climatology, with 0 indicating no skill over climatology. 2649 
Note the higher predictive skill in the North Atlantic, North Pacific and at the equator. 2650 
 2651 
Figure 4. May-June surface and bottom temperature/salinity biases (model minus observations) 2652 
for the US Northeast Continental Shelf. Observations are based on May-June climatologies of 2653 
NOAA ship-based in situ measurements from 1977 to 2009. Model output is from each climate 2654 
model’s 1990 control simulation (40-year mean). The average global ocean (atmosphere) 2655 
resolutions for CM2.1, CM2.5FLOR, CM2.5, and CM2.6 are 100-km (200-km), 100-km (50-2656 
km), 25-km (50-km), and 10-km (50-km), respectively. Note that the operational GFDL seasonal 2657 
climate prediction system uses CM2.5FLOR. Refer to Saba et al. 2016 for further details on the 2658 
models and experiments. 2659 
 2660 
Figure 5. Temporal and spatial scales of fisheries decisions (circles) and atmospheric weather 2661 
phenomena (clouds). Atmospheric weather processes adapted from Troccoli et al. (2007), Fig. 2662 
2.1. Note that “resilience and sustainability” and “rebuilding plans and protected areas” decisions 2663 
are made across a range of spatial scales. Here they are associated with large spatial scales to 2664 
reflect the significant impact of large scale climate processes, such as global climate change, on 2665 
their outcome.  2666 
 2667 
Figure 6. Anomaly correlation coefficients (ACCs) as a function of forecast initialization month 2668 
(x-axis) and lead-time (y-axis) in the National Atmospheric and Oceanic Administration 2669 
(NOAA) Geophysical Fluid Dynamics Laboratory (GFDL) CM2.5 FLOR and NOAA National 2670 
Centers for Environmental Prediction CFSv2 global climate prediction systems for the Gulf of 2671 
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Alaska (GoA) large marine ecosystem (Stock et al. 2015). Note how late winter-early spring SST 2672 
anomaly prediction skill exceeds persistence at long lead-times (4-12 months). Grey dots 2673 
indicate ACCs significantly above 0 at a 5% level; white upward triangles indicate ACCs 2674 
significantly above persistence at a 10% level with ACC > 0.5; white downward triangles 2675 
indicate ACCs significantly above persistence at a 10% level with ACC < 0.5. 2676 
 2677 
Figure 7 Left column: idealized environmental forcing historical time series, and short term 2678 
forecast (±1 standard deviation) based on seasonal climate forecast (blue), forecast based on 2679 
assumption that future conditions will be within the historical variability (red), and truth (black); 2680 
central columns: probability density function of environmental forcing and of environmentally-2681 
dependent productivity parameters; right column: productivity historical time series and its one-2682 
year forecast based on a dynamic environmental driver (blue) or on average environmental 2683 
conditions (red). Arrows represent the different steps of an environmentally-explicit stock 2684 
assessment framework. 2685 
 2686 
Figure 8. Regional probabilistic forecast skill for maximum air temperature (upper tercile), 2687 
minimum air temperature (lower tercile), and rainfall (upper tercile) based on tercile probabilities 2688 
for each lead-time. The skill score corresponds to the ratio of the number of correct forecasts to 2689 
the total number of forecasts for the period of 1981-2010 (Adapted from Spillman et al., 2015). 2690 
 2691 
Figure 9.  Left: Maps showing the average SST for the GAB as forecast by POAMA on 17 Dec 2692 
2015 for the next fortnight and the next two calendar months. The mean SST over the whole area 2693 
shown is given in the top left corner of each map. The black line represents the 200-m contour. 2694 
Right: Corresponding areas of preferred SBT habitat, where values > 1 indicate more preferred 2695 
habitat and values < 1 indicate less preferred habitat. 2696 
 2697 
Figure 10. Example of the GMRI lobster forecast as delivered to the fishing industry via Twitter 2698 
on March 24, 2016. The first panel shows the spring temperature from the NERACOOS coastal 2699 
ocean buoys in spring 2016 (red line) used to generate the forecast. Temperatures in 2016 have 2700 
been higher than the 2000-2014 average. The second panel shows that SST has been 2701 
anomalously warm throughout the Maine coastal region for March 2016. The bottom panel is the 2702 
actual forecast, predicting a 68% chance that the season will start three weeks earlier than 2703 
normal, a 31% chance that it will start two weeks early, and only a 1% chance that it will begin 2704 
one week early. The normal high-landings period for Maine lobster is considered to start 2705 
between July 3 and 10.  2706 
 2707 
Figure 11. Comparison of (a) Coral Reef Watch 4-Month Bleaching Outlook with (b) 4-month 2708 
composite of maximum Bleaching Alert Area from real-time satellite data for the same period, 2709 
August-November 2015. The levels refer to potential bleaching intensity, with possible 2710 
bleaching starting at a warning thermal stress level, bleaching likely at an Alert Level 1 and 2711 
bleaching mortality likely at an Alert Level 2. Note successful prediction of severe bleaching in 2712 
Kiribati and Hawaii. 2713 

Figure 12. Probability of sardine presence, for July (left) and August (right) of 2015. These two 2714 
to three month forecasts are the average of a three-member ensemble, initialized as April 15th, 2715 
May 1, and May 15th. Due to relatively warm sea surface temperature, the forecasts predict 2716 
habitat suitable for sardine throughout the region. The exception is low salinity water for which 2717 
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the model would expect sardine to be found at more intermediate rather than warm temperatures. 2718 
This leads to low probability of presence in the less saline Columbia River plume. Note that 2719 
recent declines in sardine stock size (which is not included in the model) may be resulting in 2720 
unoccupied, but suitable, habitat in the northern region. 2721 
 2722 
Figure 13. Example output from the global (top) and regional (bottom) SEAPODYM model 2723 
configurations developed though the INDESO project.  2724 
 2725 
Figure 14. Habitat maps indicating zones of SBT distribution (see text for explanation of zones), 2726 
obtained using POAMA seasonal forecasts of ocean temperature.  The upper left plot shows the 2727 
historical daily climatology of the zones (yellow ribbon), the current year’s observed zone 2728 
locations to date (red ribbon) and the latest monthly forecasts of zone location (red stars). The 2729 
arrows along the other panels indicate whether the zones are moving north or south relative to 2730 
the POAMA nowcast. 2731 
 2732 
Figure 15. Steps required for successful integration of climate predictions into LMR decision 2733 
frameworks. (Adapted from Hobday et al., 2016). 2734 
 2735 
Appendix 2736 

Table A1. List of six operational ocean reanalysis products from 1979-present used in the Real-2737 
time Ocean Reanalysis Intercomparison Project. See 2738 
http://www.cpc.ncep.noaa.gov/products/GODAS/multiora_body.html for a link to download 2739 
some of these reanalysis products. The data assimilation column lists the observation types used 2740 
for their estimation (T/S for temperature and salinity; SLA: altimeter-derived sea level 2741 
anomalies; SST: sea surface temperature, SIC: sea-ice concentration), as well as assimilation 2742 
techniques used for reanalysis: Ensemble Optimal Interpolation (EnOI), Ensemble Kalman Filter 2743 
(EnKF), Variational methods (3DVar). The atmospheric surface forcing is usually provided by 2744 
atmospheric reanalyses, using either direct daily fluxes, or different bulk formulations. There are 2745 
also systems that use fluxes from coupled data assimilation systems (Coupled DA). 2746 

 2747 

Product Forcing 
Ocean 

Model 

Data 

Assim. 

Method 

Ocean 

Observations 

Analysis 

Period 

NCEP 
GODAS 

(NGODAS) 
NCEP-R2 

1°x1/3° 
MOM3 

3DVAR 
 

T/SST 1979-present 

GFDL 
(ECDA) 

Coupled DA 
1ox1/3° 
MOM4 

EnKF 
 

T/S/SST 1979-present 

BOM 

(PEODAS) 

ERA40 to 2002; 
NCEP-R2 
thereafter 

1°x2° 
MOM2 

EnKF 
 

T/S/SST 1970-present 

ECMWF 

(ORAS4) 
ERA40 to 1988; 
ERAi thereafter 

1°x1/3° 
NEMO3 

3DVAR 
SLA/T/S/SST/

SIC 
1979-present 

JMA 

(MOVE-G2) 
JRA55 corr + 
CORE Bulk 

1ox0.5° 
MRI.CO

3DVAR 
SLA/T/S/SST/

SIC 
1979-present 
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M3 
NASA 

(MERRA 
Ocean) 

MERRA + 
Bulk 

0.5°x1/4° 
MOM4 

EnOI 
SLA/T/S/SST/

SIC 
1979-present 

  2748 
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 2749 

 2750 

Table A2. Living marine resources for which there is a linkage between their dynamics and 2751 

environmental variability. These includes those determined by Myers 1998 as robust to re-2752 

evaluation, marked by an *, and those described by Skern-Mauritzen et al. 2015 as making use of 2753 

environmental information in their management, marked by a †. For all other examples, the 2754 

reference is provided.  2755 

 2756 
Species Region Environmental 

Driver 

Reference 

Cod*† Barents Sea Temperature  
Cod* Eastern Baltic Salinity  
Cod* Labrador Salinity  
Cod* NW Atlantic Calanus spp. 

abundance 
 

Eurasian Perch* Windemere and 
Baltic region 

Temperature  

Pike Perch* Netherlands and 
Baltic region 

Temperature  

Herring* Southern British 
Columbia 

Temperature  

Herring* Northern 
Newfoundland 

Temperature  

Sardine*† California Temperature  
Sardine† Mediterranean Chlorophyll a  
Anchovy† Mediterranean Chlorophyll a  
Sea Bass* South Britain Temperature  
Smallmouth bass* Lake Opeongo Temperature  
Smallmouth bass* North Lake Huron Temperature  
White Hake† Southeastern Atlantic 

(West Africa) 
NAO  

Mutton Snapper† South Atlantic/Gulf 
of Mexico 

Temperature and 
salinity 

 

Yellowtail flounder* Southern New 
England 

Temperature  

Plaice* Kattegat Wind  
Skipjack tuna† Eastern Pacific Temperature, ocean 

currents, primary 
production 

 

Swordfish† Southeastern Pacific Ocean climate, 
hydrography, primary 
production 
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Striped Marlin† Northeastern Pacific Ocean climate, 
hydrography, primary 
production 

 

Pacific hake California Current Ocean currents Agostini et al. 2006 
Sablefish California Current Ekman transport, sea 

level 
Schirripa and Colbert 
2006 

Pink salmon† North Pacific Temperature and prey 
availability 

 

Coho and Chinook 
Salmon 

Columbia River PDO and prey 
availability 

Peterson and 
Schwing 2003, Bi et 
al. 2011, Peterson 
and Burke 2013, 
Burke et al. 2013) 

Chinook Salmon Snake River Air temperature, river 
flow, upwelling, PDO 

Zabel et al. 2013 

Lobster* Gulf of Maine Temperature  
Northern shrimp* Gulf of Maine Temperature  
Banana prawn* Gulf of Carpentaria Salinity  

 2757 



   Data Assimilation System
Initialization to present observed conditions

Global Climate Observing System
         e.g. satellites, Argo, meteorological stations

Pre-Industrial Control Run
               1860 repeated continuously

Historical Run
       1860 - Present

SEASONAL PREDICTION
               1 - 12 months forecast

DECADAL PREDICTION
                  1 - 30 years forecast

   Initial
   Value 
Problem

Boundary
    Value 
 Problem

     Historical Forcings
e.g. GHG, Aerosols, Ozone, Solar

        Future Forcings 
Forcing Scenarios Present - 2100+ 

     
 Global Dynamical Climate Model

CLIMATE PROJECTION
             100+ years projection
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reservoir for carrying fall SST anomalies across the winter season
to the following spring in the EBS – with high sea ice mass carrying
cold SST signals and low sea ice mass carrying warm. This mirrors
mechanisms invoked to explain sea-ice predictability in the Arctic
whereby melt patterns during previous years leave SST imprints
that impact ice extent during the following ice growth season
(Blanchard-Wrigglesworth et al., 2011).

The sea-ice mechanism illustrated in Fig. 4 further suggests that
winter/early spring initialized prediction may generate ACCs above
persistence with accurate initialization of sea-ice mass. Such pre-
dictions, however, have little skill in CM2.5 FLOR. They are some-
what better CFSv2, but improved sea-ice initialization may still
offer a means of improving spring/summer SST anomaly forecast
skill in the EBS for both forecast systems (see Section 4).
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Fig. 2. Anomaly correlation coefficients (ACCs) as a function of forecast initialization month (x-axis) and lead time (y-axis). Initialization month 1 corresponds to January 1
initialization in CM2.5 FLOR and initialization during the latter half of December in CFSv2 (see Section 2.2). The lower left box (x = 1, y = 0–1) thus corresponds to a January
forecast and the lower right a December forecast. Gray dots indicate ACCs significantly above 0 at 5% level; white upward triangles indicate ACCs significantly above
persistence at the 10% level with ACC > 0.5; downward triangles indicate ACCs above persistence at 10% level with ACC < 0.5.
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persistence at the 10% level with ACC > 0.5; downward triangles indicate ACCs above persistence at 10% level with ACC < 0.5.
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initialization in CM2.5 FLOR and initialization during the latter half of December in CFSv2 (see Section 2.2). The lower left box (x = 1, y = 0–1) thus corresponds to a January
forecast and the lower right a December forecast. Gray dots indicate ACCs significantly above 0 at 5% level; white upward triangles indicate ACCs significantly above
persistence at the 10% level with ACC > 0.5; downward triangles indicate ACCs above persistence at 10% level with ACC < 0.5.
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