

Symboles modulaires surconvergents et fonctions L p-adiques

Karim Belabas, Bernadette Perrin-Riou

▶ To cite this version:

Karim Belabas, Bernadette Perrin-Riou. Symboles modulaires surconvergents et fonctions L p-adiques. 2021. hal-03112844

HAL Id: hal-03112844 https://hal.science/hal-03112844v1

Preprint submitted on 17 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Symboles modulaires surconvergents et fonctions L p-adiques

Karim Belabas* et Bernadette Perrin-Riou**

January 17, 2021

Abstract

We come back to the construction of p-adic L-functions attached to cusp forms of even weight k in the spirit of G. Stevens, R. Pollack [7] and M. Greenberg [3] with a new unified presentation including the non-ordinary case. This construction is based on Stevens's modular symbols rather than q-developments. We review the proofs in order to obtain an effective algorithm guaranteeing a given p-adic accuracy.

Résumé

Nous reprenons la construction des fonctions L p-adiques associées aux formes paraboliques de poids k pair dans l'esprit de G. Stevens, R. Pollack [7] et M. Greenberg [3] avec une présentation différente et unifiée dans le cas non ordinaire. Cette construction est basée sur les symboles modulaires de Stevens plutôt que sur les q-développements. Nous reprenons les démonstrations pour maîtriser les approximations p-adiques et obtenir un algorithme effectif.

Soit p un nombre premier. Il y a de nombreuses constructions des fonctions L p-adiques associées à une forme parabolique F pour un sous-groupe de congruence Γ de niveau N et de poids k ([1], [5], [4], ...). L'une d'elles, due à Pollack-Stevens [7] et Greenberg [3], part du symbole modulaire de Stevens associé qui est un élément de $\text{Hom}_{\Gamma}(\Delta_0, V_k)$ où Δ_0 est le sous-module de $\mathbb{Z}[\mathbb{P}^1(\mathbb{Q})]$ formé des diviseurs de degré 0 et V_k l'espace des polynômes homogènes de degré k-2 pour des actions de Γ convenables. En supposant que F est une forme propre pour l'opérateur de Hecke $T_p(N)$ et pour un certain \mathbb{Q}_p -espace vectoriel D de dimension 1 ou 2 selon la valeur propre de F, on associe à F un symbole modulaire à valeurs dans $D \otimes_{\mathbb{Q}} V_k$ qui est vecteur propre pour l'opérateur de Hecke U_p de niveau Np. Par itération de U_p , on construit alors un symbole modulaire Φ_{∞} à valeurs dans l'espace des distributions sur \mathbb{Z}_p et

^{*} Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400, Talence, France; INRIA, IMB, UMR 5251, F-33400, Talence, France

^{**}Université Paris-Saclay, CNRS, Laboratoire de mathématiques d'Orsay, 91405, Orsay, France.

fixe par U_p . La fonction L p-adique est alors associée comme usuellement à la distribution $\Phi_{\infty}((\infty,0))$ ou plutôt à sa restriction à \mathbb{Z}_p^{\times} . On associe donc à F sa transformée de Cauchy \mathcal{C}_F dans $\mathbb{Q}_p[[w]]$ donnée par

$$C_F(w) = \int_{\mathbb{Z}_p} \frac{1}{1 - zw} d\left(\Phi_{\infty}((\infty, 0))\right)(z) ,$$

qui est donc formée à l'aide des moments de $\Phi_{\infty}((\infty,0))$. L'intérêt de cette présentation est d'obtenir facilement les dérivées successives de la fonction L p-adique aux valeurs critiques. Nous avons implanté cette construction dans le système Pari/GP [8] (fonctions mspadicmoments et mspadicL; la fonction ellpadicL optimise le cas particulier k=2, permettant en particulier le calcul des invariants d'Iwasawa (ellpadiclambdamu) et la vérification numérique de la conjecture de Birch et Swinnerton-Dyer p-adique (ellpadicbsd).

Donnons le plan de l'article. Le premier paragraphe est un rappel sur les distributions. Dans le deuxième paragraphe, nous définissons les filtrations qui permettent de maitriser la convergence des séries. Dans le troisième paragraphe, nous démontrons l'existence sous certaines conditions d'un symbole modulaire à valeurs dans les distributions sur \mathbb{Z}_p à partir d'un symbole modulaire à valeurs dans les polynômes de degré inférieur ou égal à k-1 (proposition 3.5). Dans le quatrième paragraphe, nous donnons les trois situations venant des formes modulaires (cas ordinaire, cas semi-stable, cas supersingulier) où notre construction s'applique, puis nous relions les valeurs des fonctions L p-adiques ainsi définies aux valeurs complexes traditionnelles.

1 Distributions

Soit Γ un sous-groupe de congruence de niveau N et $\Gamma_0 = \Gamma \cap \Gamma_0(p)$. Soit

$$\Sigma_0(p) = \{ \gamma \in M_2(\mathbb{Z}) \text{ tel que } \det(\gamma) \neq 0, p \mid c, p \nmid a \}.$$

Soit $A = \mathbb{Q}_p[[z]]$ l'anneau des séries entières $\sum_{n=0}^{\infty} a_n z^n$ à coefficients dans \mathbb{Q}_p telles que $a_n \to 0$. Pour $k \in \mathbb{Z}_p$, on munit A d'une action à gauche de $\Sigma_0(p)$:

$$\gamma \cdot_k f(z) = (a + cz)^{k-2} f\left(\frac{b + dz}{a + cz}\right)$$

et on le note alors A_k . Si k est un entier ≥ 2 , on note $\mathbb{Q}[z]_{k-2}$ le sous-espace vectoriel de A_k des polynômes de degré inférieur ou égal à k-2. Il est stable par l'action de $\Sigma_0(p)$. Soit \mathcal{D}_k le dual continu de A_k ; pour $\mu \in \mathcal{D}_k$ et $f \in A_k$, on note indifféremment $\mu(f) = \int f d\mu$. On munit \mathcal{D}_k de l'action duale de $\Sigma_0(p)$:

$$\int f \, d\mu \mid_k \gamma = \int \gamma \cdot_k f \, d\mu.$$

Pour k entier supérieur ou égal à 2, définissons $\rho_k : \mathcal{D}_k \to \mathbb{Q}_p[X]_{k-2}$ par

$$\rho_k(\mu) = \int (1 - Xz)^{k-2} d\mu(z).$$

On a

$$\rho_k(\mu \mid_k \gamma)(X) = \int \left(a + cz - X(b + dz) \right)^{k-2} d\mu(z)$$

$$= (a - bX)^{k-2} \int \left(1 - \frac{-c + dX}{a - bX} z \right)^{k-2} d\mu(z)$$

$$= (a - bX)^{k-2} \rho_k(\mu) \left(\frac{-c + dX}{a - bX} \right).$$

D'où

$$\rho_k(\mu \mid_k \gamma) = {}^t \overline{\gamma} \cdot_k \rho_k(\mu) = \rho_k(\mu) \mid_k {}^t \gamma^*.$$

Proposition 1.1. On a le diagramme commutatif de $\Sigma_0(p)$ -modules

où la forme bilinéaire $\mathbb{Q}_p[X]_{k-2} \times \mathbb{Q}_p[z]_{k-2} \to \mathbb{Q}_p$ est donnée par

$$\left(\sum_{i} \mu_i X^i, \sum_{i} f_i z^i\right) \mapsto \sum_{j=0}^{k-2} (-1)^j \frac{\mu_j f_j}{\binom{k-2}{j}}.$$

Démonstration. Calcul explicite à partir de la formule

$$\rho_k(\mu) = \sum_{j=0}^{k-2} (-1)^j \binom{k-2}{j} \mu(z^j) X^j.$$

Soit $\mathcal{C}: \mathcal{D} \to \mathbb{Q}_p[[w]]$ la transformation de Cauchy formelle donnée par la série formelle

$$C(\mu) = \sum_{j=0}^{\infty} \mu(z^j) w^j = \mu\left(\frac{1}{1-zw}\right).$$

Soit \mathcal{H} le sous-anneau de $\mathbb{Q}_p[[w]]$ formé des fonctions analytiques sur tout disque $B(0,\rho)$ pour $\rho < 1$, c'est-à-dire dont les coefficients vérifient $\sup_n |a_n| \rho^n < \infty$ pour tout $\rho < 1$. Définissons les sous-modules de \mathcal{D} munis de l'action induite de \mathcal{D}_k

$$\mathbf{D}_k(\mathbb{Z}_p) = \mathcal{C}^{-1}(\mathbb{Z}_p[[w]]) \subset \mathbf{D}_k = \mathcal{C}^{-1}(\mathbb{Q}_p \otimes \mathbb{Z}_p[[w]]) \subset \mathbf{D}_k^{\dagger} = \mathcal{C}^{-1}(\mathcal{H}).$$

Lemme 1.2. Les sous-modules \mathbf{D}_k^{\dagger} et \mathbf{D}_k de \mathcal{D}_k sont stables par $\Sigma_0(p)$.

Démonstration. Si $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Sigma_0(p)$ et $\mu \in \mathcal{D}$, on a

$$\int z^{n} d(\mu \mid_{k} \gamma)(z) = \int (a + cz)^{k-2-n} (b + dz)^{n} d\mu(z)$$

$$= a^{k-2-n} \sum_{l=0}^{n} \sum_{j=0}^{\infty} {k-2-n \choose j} (c/a)^{j} {n \choose l} b^{n-l} d^{l} \mu(z^{j+l})$$
(1.1)

et donc

$$\mathcal{C}\left(\mu\mid_{k}\gamma\right)\left(w\right) = \sum_{n=0}^{\infty} a^{k-2-n} \left(\sum_{l=0}^{n} \sum_{j=0}^{\infty} \binom{k-2-n}{j} (c/a)^{j} \binom{n}{l} b^{n-l} d^{l} \mathcal{C}\left(\mu\right)_{j+l}\right) w^{n}.$$

Remarquons que les coefficients binomiaux $\binom{l}{j}$ pour $l \in \mathbb{Z}$ et $j \geq 0$ appartiennent à \mathbb{Z}_p . Si $\gamma \in \Sigma_0(p)$, p divise c et a est une unité en p.

Supposons que $\mu \in \mathbf{D}_k^{\dagger}$. On déduit facilement de la formule que

$$\|\mathcal{C}(\mu|_{k} \gamma)\|_{\rho} \leq \sup_{j \geq 0} \left(\frac{|c|_{p}}{\rho}\right)^{j} \|\mathcal{C}(\mu)\|_{\rho} \leq \|\mathcal{C}(\mu)\|_{\rho}$$

pour ρ vérifiant $|c|_p \leq \rho < 1$, donc pour tout $\rho < 1$. Ce qui montre que $\mu \mid_k \gamma$ appartient à \mathbf{D}_k^{\dagger} . Si $\mu \in \mathbf{D}_k$, le même calcul montre que

$$\|\mathcal{C}(\mu\mid_k\gamma)\|_{\rho} \leq \|\mathcal{C}(\mu)\|_1.$$

Donc $\mu \mid_k \gamma$ appartient à \mathbf{D}_k . On en déduit le lemme.

Lorsque c = 0, on a simplement

$$C\left(\mu\mid_{k}\begin{pmatrix}a&b\\0&d\end{pmatrix}\right)(w)=a^{k-1}\frac{1}{a-bw}C\left(\mu\right)\left(\frac{dw}{a-bw}\right).$$

Posons $\gamma_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Lemme 1.3. L'action de γ_1 sur \mathcal{D} ne dépend pas de k.

- 1. Il n'existe pas de distribution non nulle μ tel que $\mu \mid_k \gamma_1 = \mu$.
- 2. On a

$$\operatorname{ord}_{w}(\mathcal{C}(\mu)) < \operatorname{ord}_{w}(\mathcal{C}(\mu \mid (\gamma_{1} - 1))).$$

et $\mathcal{D}\mid_k (\gamma_1-1)$ est formé des distributions μ telles que $\int d\mu=0$, i.e. telles que le coefficient constant de $\mathcal{C}(\mu)$ est nul.

Démonstration. On a pour tout entier $k \in \mathbb{Z}$

$$C(\mu \mid_{k} \gamma_{1})(w) = \frac{1}{1-w}C(\mu)\left(\frac{w}{1-w}\right).$$

Soit $n \geq 0$ et f(w) un élément de $\mathbb{Q}_p[[w]]$ de la forme $w^n + \alpha w^{n+1} + O(w^{n+2})$ tel que $f(w) = \frac{1}{1-w} f(\frac{w}{1-w})$. On a

$$\frac{1}{1-w}f\left(\frac{w}{1-w}\right) = w^n(1+w)^{n+1} + \alpha w^{n+1}(1+w)^{n+1} + O(w^{n+2})$$
$$= w^n + (\alpha+n+1)w^{n+1} + O(w^{n+2}).$$

L'équation $f(w) = \frac{1}{1-w} f\left(\frac{w}{1-w}\right)$ implique que

$$w^{n} + \alpha w^{n+1} = w^{n} + (\alpha + n + 1)w^{n+1}$$

ce qui est impossible. D'où la première assertion. On a

$$C\left(\mu\mid_{k}(\gamma_{1}-1)\right) = \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n-1} \binom{n}{l} \int z^{l} d\mu\right) w^{n}.$$

Son terme constant est nul. Plus généralement, on obtient

$$\operatorname{ord}_{w}(\mathcal{C}(\mu)) < \operatorname{ord}_{w}(\mathcal{C}(\mu \mid (\gamma_{1} - 1))).$$

Finalement, l'équation $\mathcal{C}(\mu \mid_k (\gamma_1 - 1)) = \sum_{n>0} a_n w^n$ est équivalente à un système triangulaire :

$$\begin{cases} x_0 & = a_1 \\ x_0 + 2x_1 & = a_2 \\ \dots & \\ x_0 + nx_1 + \dots + nx_{n-1} & = a_n \\ \dots & \end{cases}$$

et a donc une solution, ce qui termine la démonstration du lemme.

On note \mathcal{U}_p l'opérateur de \mathbf{D}_k^{\dagger} défini par $\mathcal{U}_p(\mu) = \sum_{b=0}^{p-1} \mu \mid_k \beta_b^{(p)}$ avec $\beta_b^{(p)} = \begin{pmatrix} 1 & b \\ 0 & p \end{pmatrix}$.

Lemme 1.4. Si $\mu \in \mathbf{D}_k^{\dagger}$, alors $\mathcal{U}_p(\mu)$ appartient à \mathbf{D}_k et

$$\|\mathcal{C}\left(\mathcal{U}_p(\mu)\right)\|_1 \leq \|\mathcal{C}\left(\mu\right)\|_{p^{-1}}.$$

Si $\mu \in \mathbf{D}_k(\mathbb{Z}_p)$, alors $\mathcal{U}_p(\mu)$ appartient à $\mathbf{D}_k(\mathbb{Z}_p)$.

Démonstration. On a

$$\mathcal{C}\left(\mu \mid_{k} \beta_{b}^{(p)}\right)(w) = \frac{1}{1 - bw} \mathcal{C}\left(\mu\right) \left(\frac{pw}{1 - bw}\right) = \sum_{j=0}^{\infty} \mu(z^{j}) \frac{p^{j}w^{j}}{(1 - bw)^{j+1}}$$

$$= \sum_{j=0}^{\infty} p^{j} \mu(z^{j}) \sum_{i=0}^{\infty} {j \choose i} (-j - 1) (-b)^{i} w^{i+j}$$

$$= \sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} p^{j} \mu(z^{j}) {j \choose n-j} (-b)^{n-j} w^{n}\right).$$
(1.2)

Si $\mu \in \mathbf{D}_k^{\dagger}$, alors $|p^j \mu(z^j)|_p < \|\mathcal{C}(\mu)\|_{p^{-1}}$. On en déduit que $\|\mathcal{C}(\mathcal{U}_p(\mu))\|_1 \le \|\mathcal{C}(\mu)\|_{p^{-1}}$ et que $\mathcal{U}_p(\mu)$ appartient à \mathbf{D}_k .

Lemme 1.5. Le noyau de ρ_k est stable par \mathcal{U}_p . Si $\mu \in \mathbf{D}_k(\mathbb{Z}_p)$ est dans le noyau de ρ_k , alors $\mathcal{U}_p(\mu)$ appartient à $p^{k-1}\mathbf{D}_k(\mathbb{Z}_p)$.

Démonstration. On déduit la première assertion du fait que le noyau de ρ_k est formé des distributions μ tels que $\mathcal{C}(\mu)$ appartient à $w^{k-1}\mathbb{Q}_p[[w]]$ et que les opérateurs $\beta_a^{(p)}$ et \mathcal{U}_p stabilisent $w^n\mathbb{Q}_p[[w]]$ pour tout entier n. La formule (1.2) implique précisément que si $\mathcal{C}(\mu) \in w^n\mathbb{Z}_p[[w]]$, alors $\mathcal{C}(\mu \mid_k \beta_a^{(p)}) \in p^n w^n\mathbb{Z}_p[[w]]$. Ce qui montre la deuxième assertion en prenant n = k - 1.

Le lemme suivant ne nous sera pas utile. Nous le donnons pour être complet.

Lemme 1.6. Si ℓ est un nombre premier différent de p,

$$C\left(\mu\mid_{k}T_{\ell}\right) = \sum_{a=0}^{\ell-1} \frac{1}{1-aw} C\left(\mu\right) \left(\frac{\ell w}{1-aw}\right) + \ell^{k-2} C\left(\mu\right) \left(\frac{w}{\ell}\right).$$

2 Modules d'approximation

La filtration de \mathbf{D}_k^{\dagger} induite par $\mathcal{C}^{-1}(w^j\mathbb{Q}_p[[w]])$ n'est pas stable par l'action de Γ_0 . Introduisons comme dans [3] 1 les filtrations (Fil^M)_{M>0} sur \mathbf{D}_k^{\dagger} et $\mathbf{D}_k(\mathbb{Z}_p)$ définies par

$$\operatorname{Fil}^{0} \mathbf{D}_{k}^{\dagger} = \{ \mu \in \mathbf{D}_{k}^{\dagger} \text{ tel que } \mathcal{C}(\mu) \in w^{k-1} \mathbb{Q}_{p}[[w]] \},$$

$$\operatorname{Fil}^{M} \mathbf{D}_{k}^{\dagger} = \{ \mu \in \operatorname{Fil}^{0} \mathbf{D}_{k}^{\dagger} \text{ tel que } \mu(z^{k-2+j}) \in p^{M-j+1} \mathbb{Z}_{p} \text{ pour } j = 1, \cdots, M \}$$

$$= \{ \mu \in \mathbf{D}_{k}^{\dagger} \text{ tel que } \mathcal{C}(\mu) \in p^{M} w^{k-1} \mathbb{Z}_{p}[w/p] + w^{M+k-1} \mathbb{Q}_{p}[[w]] \},$$

$$\operatorname{Fil}^{0} \mathbf{D}_{k}(\mathbb{Z}_{p}) = \{ \mu \in \mathbf{D}_{k}^{\dagger} \text{ tel que } \mathcal{C}(\mu) \in w^{k-1} \mathbb{Z}_{p}[[w]] \} \subset \mathbf{D}_{k}(\mathbb{Z}_{p}),$$

$$\operatorname{Fil}^{M} \mathbf{D}_{k}(\mathbb{Z}_{p}) = \{ \mu \in \operatorname{Fil}^{0} \mathbf{D}_{k}(\mathbb{Z}_{p}) \text{ tel que } \mu(z^{k-2+j}) \in p^{M-j+1} \mathbb{Z}_{p} \text{ pour } j = 1, \cdots, M \},$$

$$= \{ \mu \in \mathbf{D}_{k}(\mathbb{Z}_{p}) \text{ tel que } \mathcal{C}(\mu) \in p^{M} w^{k-1} \mathbb{Z}_{p}[w/p] + w^{M+k-1} \mathbb{Z}_{p}[[w]].$$

¹Dans [7], une filtration légèrement différente est utilisée.

Soit $\operatorname{Gr}^M \mathbf{D}_k^{\dagger}$ la graduation associée. En particulier, $\operatorname{Gr}^0 \mathbf{D}_k^{\dagger}$ est isomorphe à $\mathbb{Q}_p[w]_{k-2}$. Les quotients $\operatorname{Gr}^M \mathbf{D}_k = \mathbf{D}_k(\mathbb{Z}_p) / \operatorname{Fil}^M \mathbf{D}_k(\mathbb{Z}_p) = \mathbf{D}_k^{\dagger} / \operatorname{Fil}^M \mathbf{D}_k^{\dagger}$ pour $M \geq 0$ sont des \mathbb{Z}_p -modules de type fini et l'application naturelle

$$\mu \mapsto \sum_{j=0}^{\infty} \mu(z^j) w^j \mapsto (\mu(z^j))_{0 \le j \le M-1}$$

induit un isomorphisme

$$\operatorname{Gr}^{M} \mathbf{D}_{k} \to \prod_{j=0}^{k-2} \mathbb{Z}_{p} \times \prod_{j=k-1}^{M-1} \mathbb{Z}/p^{M+1-j} \mathbb{Z}.$$

De plus, pour tout entier $s \geq -M$, on a l'inclusion

$$p^s \operatorname{Fil}^M \mathbf{D}_k^{\dagger} \subset \operatorname{Fil}^{M+s} \mathbf{D}_k^{\dagger}$$
 (2.1)

qui induit une application (multiplication par p^s)

$$\operatorname{Gr}^M \mathbf{D}_k \xrightarrow{p^s} \operatorname{Gr}^{M+s} \mathbf{D}_k.$$

Lemme 2.1. Les ensembles $\mathrm{Fil}^M \mathbf{D}_k(\mathbb{Z}_p)$ sont stables par l'action de Γ_0 .

 $D\'{e}monstration.$ Voir [3, Lemma 2]. C'est une conséquence de la formule (1.1) appliquée aux deux matrices $\left(\begin{smallmatrix}1&0\\c&1\end{smallmatrix}\right)$ et $\left(\begin{smallmatrix}a&b\\0&d\end{smallmatrix}\right)$ puisque

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ c/a & 1 \end{pmatrix} \begin{pmatrix} a & b \\ 0 & (ad - bc)/a \end{pmatrix}.$$

Lemme 2.2. Soit $\mu \in \operatorname{Fil}^M \mathbf{D}_k(\mathbb{Z}_p)$. Si $\beta = \begin{pmatrix} 1 & b \\ 0 & p^s \end{pmatrix}$ avec $b \in \mathbb{Z}_p$ et $s \geq 1$, on a

$$\mu \mid_k \beta \in p^{s(k-1)-t} \operatorname{Fil}^{M+t} \mathbf{D}_k(\mathbb{Z}_p)$$

pour $t \leq s(k-1)$. En particulier, pour $k \geq 2$ et s=t=1, on a

$$\mu \mid_k \beta \in p^{k-2} \operatorname{Fil}^{M+1} \mathbf{D}_k(\mathbb{Z}_p).$$

Démonstration. Soit g l'image par \mathcal{C} d'un élément μ de $\mathrm{Fil}^M \mathbf{D}_k(\mathbb{Z}_p)$. Comme

$$g \in p^{M} w^{k-1} \mathbb{Z}_p[w/p] + w^{M+k-1} \mathbb{Z}_p[[w]],$$

on a, pour $s \ge 1$ et pour $h \in \mathbb{Z}_p^{\times} + w\mathbb{Z}_p[[w]],$

$$g(p^{s}wh(w)) \in p^{M+s(k-1)}w^{k-1}\mathbb{Z}_{p}[w] + p^{s(M+k-1)}w^{M+k-1}\mathbb{Z}_{p}[[w]]$$
$$\subset p^{M+s(k-1)}w^{k-1}\mathbb{Z}_{p}[[w]].$$

Comme $\mathcal{C}(\mu|_k\beta)(w)=\frac{1}{1-bw}\mathcal{C}(\mu)(p^s\frac{w}{1-bw})$, on applique la formule précédente à $h(w)=p^s\frac{w}{1-bw}$, d'où

$$\mu \mid_k \beta \in p^{M+s(k-1)} \operatorname{Fil}^0 \mathbf{D}_k \subset p^{s_1} \operatorname{Fil}^{M+s_2} \mathbf{D}_k$$

pour tout couple d'entiers positifs (s_1, s_2) tel que $s_1 + s_2 = s(k-1)$.

Corollaire 2.3. Soit $\mu \in \operatorname{Fil}^M \mathbf{D}_k(\mathbb{Z}_p)$ et $s \geq 1$. Pour tout entier t inférieur ou égal à s(k-1), on a

$$\mathcal{U}_p^s(\mu) \in p^{s(k-1)-t} \operatorname{Fil}^{M+t} \mathbf{D}_k(\mathbb{Z}_p).$$

En particulier, si $s(k-1) \ge 2$,

$$\mathcal{U}_p^s(\mu) \in p \operatorname{Fil}^{M+1} \mathbf{D}_k(\mathbb{Z}_p).$$

3 Symboles modulaires à valeurs dans les distributions

Soit Δ_0 le sous-module de $\mathbb{Z}[\mathbb{P}^1(\mathbb{Q})]$ formé des diviseurs de degré 0. L'opérateur \mathcal{U}_p induit un endomorphisme de $\mathrm{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k)$. Comme Δ_0 est stable par $\mathrm{GL}_2(\mathbb{Q})$ et que Δ_0 est de type fini comme $\mathbb{Z}[\Gamma_0]$ -module, le corollaire 2.3 s'étend à $\mathrm{Hom}_{\Gamma_0}(\Delta_0, \mathrm{Fil}^M \mathbf{D}_k)$.

Proposition 3.1. L'image de $\operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k^{\dagger})$ par \mathcal{U}_p est contenue dans $\operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k(\mathbb{Z}_p))$. Démonstration. Se déduit du lemme 1.4.

Proposition 3.2 (Pollack-Stevens [7]). L'application $\pi_{0,*}$

$$\pi_{0,*}: \operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k^{\dagger}) \to \operatorname{Hom}_{\Gamma_0}(\Delta_0, \operatorname{Gr}^0 \mathbf{D}_k^{\dagger})$$

est surjective.

Démonstration. [7, §4]. Donnons ici la démonstration dans le cas où $\gamma_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ appartient à Γ_0 . Rappelons alors la structure de Δ_0 en tant que Γ_0 -module. Il existe $a_1 = (\infty, 0), \dots, a_t = (r_t, s_t)$ dans Δ_0 , une involution * sur l'ensemble \mathcal{V} des a_i et des éléments $\gamma_{a_1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\gamma_{a_2}, \dots, \gamma_{a_t}$ de Γ_0 tels que le Γ_0 -module Δ_0 soit engendré par les a_1, \dots, a_t avec les relations

$$\begin{cases} \sum_{i} a_{i} = 0 \\ a_{i} + \gamma_{a_{i}} a_{i}^{*} = 0 \text{ si } \gamma_{a_{i}} \text{ n'est pas d'ordre } 3 \\ a_{i} + \gamma_{a_{i}} a_{i} + \gamma_{a_{i}}^{2} a_{i} = 0 \text{ si } \gamma_{a_{i}} \text{ est d'ordre } 3 \end{cases}$$

Soit $\Psi \in \operatorname{Hom}_{\Gamma_0}(\Delta_0, \operatorname{Gr}^0 \mathbf{D}_k^{\dagger})$. Notons μ_{a_i} un relèvement de $\Psi(a_i)$ dans \mathbf{D}_k pour un système de représentants de \mathcal{V} modulo l'involution *. Si γ_{a_i} est elliptique d'ordre 3, $\beta = (1 + \gamma_{a_i} + \gamma_{a_i}^2)\mu_{a_i}$ appartient à $w^{k-1}\mathbf{D}_k^{\dagger}$ et vérifie $(\gamma_{a_i} - 1)\beta = 0$. On déduit de la relation $3 = x^2 + x + 1 - (x+2)(x-1)$ que $\beta = \frac{1}{3}(1+\gamma_{a_i}+\gamma_{a_i}^2)\beta$. On peut donc changer μ_{a_i} de manière à ce que $(1+\gamma_{a_i}+\gamma_{a_i}^2)\mu_{a_i}=0$. On peut de même supposer que si γ_{a_i} est elliptique d'ordre 2 (on a alors $a_i = a_i^*$), $(1+\gamma_{a_i})\mu_{a_i} = 0$. Passons à la première relation. Puisque $\Psi \in \operatorname{Hom}_{\Gamma_0}(\Delta_0, \operatorname{Gr}^0 \mathbf{D}_k^{\dagger})$, on a

$$\mu = \sum_{j=1}^{t} \mu_{a_j} \mid_k (\gamma_{a_j} - 1) \in \operatorname{Fil}^0 \mathbf{D}_k^{\dagger}.$$

Choisissons i_0 tel que $\gamma_{a_{i_0}} = \begin{pmatrix} a_0 & b_0 \\ c_0 & d_0 \end{pmatrix}$, avec a_0 différent de ± 1 et c_0 non nul (il existe car les γ_{a_i} engendrent Γ_0 ; notons que $i_0 \neq 1$). Nécessairement, c_0 est donc de valuation p-adique

strictement positive. Si $\mu^{(k-1)}$ est la distribution dont la transformée de Cauchy est w^{k-1} , on a

$$C(\mu^{(k-1)}|_k (\gamma_{i_0} - 1)) = \sum_{n>0} h_n w^n,$$

οù

$$h_n = \int (a_0 + c_0 z)^{k-2-n} (b_0 + d_0 z)^n d\mu^{(k-1)}.$$

Pour $n \le k - 2$, h_n est nul; on a

$$h_{k-1} = -1 + a_0^{-1} \sum_{j=0}^{k-1} (-1)^j (c_0/a_0)^j \binom{k-1}{j} b_0^j d_0^{k-1-j}$$

= $-1 + a_0^{k-2} (a_0 d_0 - b_0 c_0)^{k-1} = -1 + a_0^{k-2} \neq 0.$

Donc $\mathcal{C}(\mu) - \mathcal{C}(\mu_1 \mid_k (\gamma_{i_0} - 1)) = O(w^k)$ avec $\mu_1 = \frac{\mu(z^{k-1})}{h_{k-1}} \mathcal{C}(\mu^{(k-1)})$ et il existe $\mu_2 \in \operatorname{Fil}^0 \mathbf{D}_k^{\dagger}$ tel que $\mu = \mu_1 \mid_k (\gamma_{i_0} - 1) + \mu_2 \mid_k (\gamma_1 - 1)$. On remplace μ_{a_1} par $\mu_{a_1} - \mu_1$ et $\mu_{a_{i_0}}$ par $\mu_{a_{i_0}} - \mu_2$ sans changer leur projection dans $\operatorname{Hom}_{\Gamma_0}(\Delta_0, \operatorname{Gr}^0 \mathbf{D}_k^{\dagger})$ et on a alors la relation

$$\sum_{i=1}^{t} \mu_{a_j} \mid_k (\gamma_{a_j} - 1) = 0,$$

ce qui permet de définir un élément de $\operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k^{\dagger})$ dont l'image est Ψ .

Proposition 3.3. L'image par $\rho_{k,*}$ de $\operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k)$ contient $\operatorname{Hom}_{\Gamma}(\Delta_0, \mathbb{Q}_p[X]_{k-2})$.

 $D\acute{e}monstration$. Soit $\Phi \in \operatorname{Hom}_{\Gamma}(\Delta_0, \mathbb{Q}_p[X]_{k-2})$. Montrons que Φ appartient à l'image de \mathcal{U}_p . On a

$$\Phi \mid_k \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \beta_b^{(p)} = \Phi \mid_k \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix} = \Phi \mid_k \begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix}.$$

L'action de $\binom{p}{0}\binom{0}{p}$ est triviale sur Δ_0 et est la multiplication par p^{k-2} sur $\mathbb{Q}_p[X]_{k-2}$. Donc

$$\Phi' = p^{-(k-1)}\Phi \mid_k \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$$

appartient à $\operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbb{Q}_p[X]_{k-2})$ et vérifie $\mathcal{U}_p(\Phi') = \Phi$. Il existe $\mu' \in \operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k^{\dagger})$ tel que $\rho_{k,*}(\mu') = \Phi'$ par la proposition 3.2 et $\rho_{k,*}(\mathcal{U}_p(\mu')) = \Phi$ avec $\mathcal{U}_p(\mu') \in \operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k)$. \square

Pour M > M', les projections $\pi_{M,M'} : \operatorname{Gr}^M \mathbf{D}_k(\mathbb{Z}_p) \to \operatorname{Gr}^{M'} \mathbf{D}_k(\mathbb{Z}_p)$ induisent des opérateurs

$$\pi_{M,M',*}: \operatorname{Hom}_{\Gamma_0}(\Delta_0, \operatorname{Gr}^M \mathbf{D}_k(\mathbb{Z}_p)) \to \operatorname{Hom}_{\Gamma_0}(\Delta_0, \operatorname{Gr}^{M'} \mathbf{D}_k(\mathbb{Z}_p))$$

compatibles avec les actions de Σ_0 et de \mathcal{U}_p .

Lemme 3.4. L'application naturelle

$$\operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k(\mathbb{Z}_p)) \to \lim_{\stackrel{\leftarrow}{M}} \operatorname{Hom}_{\Gamma_0}(\Delta_0, \operatorname{Gr}^M \mathbf{D}_k(\mathbb{Z}_p))$$

est un isomorphisme.

Comme M. Greenberg [3], on étend l'opérateur \mathcal{U}_p en un endomorphisme de Fonct (Δ_0, V) par

$$\mathcal{U}_p(\Phi) = \sum_{b=0}^{p-1} \Phi \mid_k \beta_b^{(p)}$$

pour Φ fonction de Δ_0 dans V avec $V = \mathbf{D}_k(\mathbb{Q}_p)$ ou $V = \operatorname{Gr}^M \mathbf{D}_k(\mathbb{Q}_p)$. Cette extension dépend des matrices $\beta_b^{(p)}$ représentant les doubles classes de $\Gamma_0\left(\begin{smallmatrix} 1 & 0 \\ 0 & p \end{smallmatrix}\right)\Gamma_0$. Les propriétés d'intégralité montrées précédemment pour les $\beta_b^{(p)}$ (et donc pour cette extension de \mathcal{U}_p) restent vraies.

Soit D un \mathbb{Q}_p -espace vectoriel muni d'un automorphisme φ . On suppose qu'il existe un réseau L de D stable par φ^{-1} , un entier h et un réel positif λ tels que

$$\varphi^h L \subset p^{-\lambda} L.$$

On a donc $p^{\lambda}L \subset \varphi^{-h}L$.

Proposition 3.5. Supposons que $\lambda < h(k-1)$. Soit Φ un élément de $\operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbb{Q}_p[X]_{k-2} \otimes D)$ tel que $(\mathcal{U}_p \otimes \varphi)\Phi = \Phi$. Il existe un élément Φ_{∞} de $\operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k(\mathbb{Z}_p) \otimes D)$ qui vérifie $\rho_{k,*}\Phi_{\infty} = \Phi$ et $(\mathcal{U}_p \otimes \varphi)\Phi_{\infty} = \Phi_{\infty}$.

Commençons la démonstration. Quitte à multiplier Φ par une constante, on peut relever Φ par $\rho_{k,*}$ en un élément Φ_0 de $\operatorname{Hom}(\Delta_0, \mathbf{D}_k(\mathbb{Z}_p) \otimes L)$ tel que $\mathcal{C}(\Phi_0(\delta))$ appartienne à $p^{\lambda}\mathbb{Z}_p[w]_{k-2} \otimes L$ pour tout $\delta \in \Delta_0$, et tel que

$$(\mathcal{U}_p \otimes \varphi)\Phi_0 \in \text{Fonct}(\Delta_0, \mathbf{D}_k(\mathbb{Z}_p) \otimes L).$$

L'image $\overline{\Phi}_0$ de $(\mathcal{U}_p \otimes \varphi)\Phi_0$ dans $\operatorname{Fonct}(\Delta_0, \operatorname{Gr}^0 \mathbf{D}_k(\mathbb{Z}_p) \otimes L)$ est un relèvement de Φ par $\rho_{k,*}$. On relève $\overline{\Phi}_0$ en un élément $\widehat{\Phi}_0$ de $\operatorname{Fonct}(\Delta_0, \mathbb{Z}[w]_{k-2} \otimes L)$. Il vérifie la congruence

$$\mathcal{U}_p(\widehat{\Phi}_0) \equiv (1 \otimes \varphi^{-1})\widehat{\Phi}_0 \text{ mod Fonct}(\Delta_0, \operatorname{Fil}^0 \mathbf{D}_k(\mathbb{Z}_p) \otimes L).$$

Lemme 3.6. Supposons trouvé $\overline{\Phi}_{n-1}$ dans

Fonct
$$(\Delta_0, \mathbf{D}_k(\mathbb{Z}_p) / p^{h(k-2)(n-1)} \operatorname{Fil}^{h(n-1)} \mathbf{D}_k(\mathbb{Z}_p) \otimes L)$$

tel que

$$\mathcal{U}_p(\overline{\Phi}_{n-1}) \equiv (1 \otimes \varphi^{-1})\overline{\Phi}_{n-1} \bmod p^{h(k-2)(n-1)} \operatorname{Fonct}(\Delta_0, \operatorname{Fil}^{h(n-1)} \mathbf{D}_k(\mathbb{Z}_p) \otimes L).$$

 $Si \ \widehat{\Phi}_{n-1} \ est \ un \ relèvement \ dans \ Fonct(\Delta_0, \mathbf{D}_k(\mathbb{Z}_p) \otimes L) \ de \ \overline{\Phi}_{n-1}, \ alors \ \overline{\Phi}_n = \mathcal{U}_p^h(\widehat{\Phi}_{n-1}) \ v\'{e}rifie$

$$\begin{cases}
\overline{\Phi}_n & \equiv (1 \otimes \varphi)^{-h} \overline{\Phi}_{n-1} \bmod p^{h(k-2)(n-1)} \operatorname{Fonct}(\Delta_0, \operatorname{Fil}^{h(n-1)} \mathbf{D}_k(\mathbb{Z}_p) \otimes L) \\
\mathcal{U}_p(\overline{\Phi}_n) & \equiv (1 \otimes \varphi)^{-1} \overline{\Phi}_n \bmod p^{h(k-2)n} \operatorname{Fonct}(\Delta_0, \operatorname{Fil}^{hn} \mathbf{D}_k(\mathbb{Z}_p) \otimes L).
\end{cases}$$
(3.1)

Il ne dépend pas du relèvement choisi modulo

$$p^{h(k-2)n} \operatorname{Fonct}(\Delta_0, \operatorname{Fil}^{hn} \mathbf{D}_k(\mathbb{Z}_p) \otimes L) \subset \operatorname{Fonct}(\Delta_0, \operatorname{Fil}^{h(k-1)n} \mathbf{D}_k(\mathbb{Z}_p) \otimes L)$$

et son image dans $\operatorname{Fonct}(\Delta_0,\operatorname{Gr}^{h(k-1)n}\mathbf{D}_k(\mathbb{Z}_p))$ appartient à $\operatorname{Hom}_{\Gamma_0}(\Delta_0,\operatorname{Gr}^{h(k-1)n}\mathbf{D}_k(\mathbb{Z}_p))$.

Démonstration. La première congruence vient de l'hypothèse sur $\overline{\Phi}_{n-1}$ et de l'inclusion $\varphi^{-1}L \subset L$:

$$\overline{\Phi}_n = \mathcal{U}_p^h(\widehat{\Phi}_{n-1}) \equiv (1 \otimes \varphi)^{-h} \widehat{\Phi}_{n-1} \bmod p^{h(k-2)(n-1)} \operatorname{Fonct}(\Delta_0, \operatorname{Fil}^{h(n-1)} \mathbf{D}_k(\mathbb{Z}_p) \otimes L)$$
$$\equiv (1 \otimes \varphi)^{-h} \overline{\Phi}_{n-1} \bmod p^{h(k-2)(n-1)} \operatorname{Fonct}(\Delta_0, \operatorname{Fil}^{h(n-1)} \mathbf{D}_k(\mathbb{Z}_p) \otimes L).$$

En utilisant que

$$\mathcal{U}_p^h \operatorname{Fonct}(\Delta_0, \operatorname{Fil}^{h(n-1)} \mathbf{D}_k(\mathbb{Z}_p) \otimes L) \subset p^{h(k-2)} \operatorname{Fonct}(\Delta_0, \operatorname{Fil}^{hn} \mathbf{D}_k(\mathbb{Z}_p) \otimes L),$$

on a

$$\mathcal{U}_{p}(\overline{\Phi}_{n}) = \mathcal{U}_{p} \circ \mathcal{U}_{p}^{h}(\widehat{\Phi}_{n-1}) = \mathcal{U}_{p}^{h} \circ \mathcal{U}_{p}(\widehat{\Phi}_{n-1})$$

$$\equiv (\mathcal{U}_{p}^{h} \otimes \varphi^{-1})(\widehat{\Phi}_{n-1}) \bmod p^{h(k-2)n} \operatorname{Fonct}(\Delta_{0}, \operatorname{Fil}^{hn} \mathbf{D}_{k}(\mathbb{Z}_{p}) \otimes L)$$

$$\equiv (1 \otimes \varphi)^{-1} \overline{\Phi}_{n} \bmod p^{h(k-2)n} \operatorname{Fonct}(\Delta_{0}, \operatorname{Fil}^{hn} \mathbf{D}_{k}(\mathbb{Z}_{p}) \otimes L).$$

Pour deux relèvements F et F' de $\overline{\Phi}_{n-1}$, on a

$$(F - F')(\delta) \in \operatorname{Fil}^{h(k-1)n} \mathbf{D}_k(\mathbb{Z}_p) \otimes L$$

pour tout $\delta \in \Delta_0$ et donc

$$\mathcal{U}_p^h(F - F') \in \text{Fonct}(\Delta_0, p^{h(k-1)} \operatorname{Fil}^{h(k-1)(n-1)} \mathbf{D}_k(\mathbb{Z}_p))$$

 $\subset \operatorname{Fonct}(\Delta_0, \operatorname{Fil}^{h(k-1)n} \mathbf{D}_k(\mathbb{Z}_p))$

par le corollaire 2.3. Par unicité, on montre que $\overline{\Phi}_n$ est un homomorphisme de Δ_0 à valeurs dans $\operatorname{Gr}^{h(k-1)n} \mathbf{D}_k(\mathbb{Z}_p)$, invariant par Γ_0 , puis que

$$\mathcal{U}_p(\overline{\Phi}_n) = (1 \otimes \varphi)^{-1}\overline{\Phi}_n \in \operatorname{Hom}_{\Gamma_0}(\Delta_0, \operatorname{Gr}^{h(k-1)n} \mathbf{D}_k(\mathbb{Z}_p)).$$

Lemme 3.7. On reprend les notations des lemmes précédents. Supposons que $\lambda < h(k-1)$. La suite $\Phi_n = (1 \otimes \varphi)^{hn} \overline{\Phi}_n$ converge dans $\operatorname{Hom}(\Delta_0, \mathbf{D}_k^{\dagger} \otimes D)$. Sa limite Φ_{∞} est indépendante des choix faits, appartient à $\operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k^{\dagger} \otimes D)$ et vérifie $(\mathcal{U}_p \otimes \varphi)(\Phi_{\infty}) = \Phi_{\infty}$.

Démonstration. On déduit du lemme précédent et de ce que $\varphi^{-h}L \subset p^{-\lambda}L$ que

$$(1 \otimes \varphi)^{h(n+1)}\overline{\Phi}_{n+1} \equiv (1 \otimes \varphi)^{hn}\overline{\Phi}_n \bmod p^{h(k-2)n-\lambda(n+1)} \operatorname{Hom}(\Delta_0, \operatorname{Fil}^{hn} \mathbf{D}_k(\mathbb{Z}_p) \otimes L).$$

Donc,

$$(1 \otimes \varphi)^{h(n+1)}\overline{\Phi}_{n+1} \equiv (1 \otimes \varphi)^{hn}\overline{\Phi}_n \mod \operatorname{Hom}(\Delta_0, \operatorname{Fil}^{t_n} \mathbf{D}_k(\mathbb{Z}_p) \otimes L)$$

avec $t_n = h(k-1)n - \lambda(n+1) = (h(k-1) - \lambda)n - \lambda$. Pour $\lambda < h(k-1)$, la suite Φ_n converge donc dans $\text{Hom}(\Delta_0, \mathbf{D}_k(\mathbb{Z}_p) \otimes L)$, sa limite est invariante par Γ_0 et vérifie

$$(\mathcal{U}_p \otimes \varphi)(\Phi_{\infty}) = \Phi_{\infty}.$$

La proposition 3.5 se déduit des lemmes précédents. Remarquons que plus λ est petit, plus la convergence est rapide.

Proposition 3.8. Soient Φ_{∞} un élément de $\operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k(\mathbb{Z}_p) \otimes D)$ vérifiant $(\mathcal{U}_p \otimes \varphi)\Phi_{\infty} = \Phi_{\infty}$, Φ son image dans $\operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbb{Q}_p[X]_{k-2} \otimes D)$ par $\rho_{k,*}$ et μ_{Φ} la restriction à \mathbb{Z}_p^{\times} de $\tilde{\mu}_{\Phi} = \Phi_{\infty}((\infty, 0))$. Alors, pour $n \geq 1$ et $a \in \mathbb{Z}_p^{\times}$, on a

$$\int_{a+p^n \mathbb{Z}_p} f \, d\mu_{\Phi} = \varphi^n \Phi_{\infty} \mid_k \left(\begin{smallmatrix} 1 & a \\ 0 & p^n \end{smallmatrix} \right) ((\infty, 0))(f),$$
$$\int z^j \, d\mu_{\Phi} = (1 - p^j \varphi) \Phi_{\infty}((\infty, 0))(z^j).$$

Démonstration. Pour $a \in \mathbb{Z}_p$, notons $F = \mathbf{1}_{a+p^n\mathbb{Z}_p} \cdot f$. L'identité $(\mathcal{U}_p \otimes \varphi)(\Phi_\infty) = \Phi_\infty$ et le comportement de l'action de $GL_2(\mathbb{Q})$ impliquent que pour $\delta \in \Delta_0$,

$$(\mathcal{U}_{p} \otimes \varphi)^{n}(\Phi_{\infty})(\delta)(F) = \varphi^{n} \sum_{b=0}^{p^{n}-1} \Phi_{\infty} \mid_{k} \left(\begin{smallmatrix} 1 & b \\ 0 & p^{n} \end{smallmatrix}\right) (\delta)(F)$$

$$= \varphi^{n} \sum_{b=0}^{p^{n}-1} \Phi_{\infty}(\left(\begin{smallmatrix} 1 & b \\ 0 & p^{n} \end{smallmatrix}\right) \delta) \mid_{k} \left(\begin{smallmatrix} 1 & b \\ 0 & p^{n} \end{smallmatrix}\right) (F)$$

$$= \varphi^{n} \sum_{b=0}^{p^{n}-1} \Phi_{\infty}(\left(\begin{smallmatrix} 1 & b \\ 0 & p^{n} \end{smallmatrix}\right) \delta)(\left(\begin{smallmatrix} 1 & b \\ 0 & p^{n} \end{smallmatrix}\right) \cdot_{k} F).$$

Or,

$$\left(\left(\begin{smallmatrix} 1 & b \\ 0 & p^n \end{smallmatrix}\right) \cdot_k F\right)(z) = F(b+p^n z) = \begin{cases} f(a+p^n z) \cdot \mathbf{1}_{\mathbb{Z}_p}(z) & \text{si } a \equiv b \bmod p^n \\ 0 & \text{si } a \not\equiv b \bmod p^n. \end{cases}$$

Donc,

$$(\mathcal{U}_p \otimes \varphi)^n(\Phi_\infty)(\delta)(F) = \varphi^n \left(\Phi_\infty(\left(\begin{smallmatrix} 1 & a \\ 0 & p^n \end{smallmatrix}\right) \delta)(f(a+p^n z)) \right)$$
$$= \varphi^n \left(\Phi_\infty \mid_k \left(\begin{smallmatrix} 1 & a \\ 0 & p^n \end{smallmatrix}\right) (\delta)(f) \right).$$

Comme

$$\int_{a+p^n\mathbb{Z}_p} f \, d\widetilde{\mu}_{\Phi} = (\mathcal{U}_p \otimes \varphi)^n(\Phi_{\infty})((\infty,0))(F),$$

on a pour a premier à p et $n \ge 1$,

$$\int_{a+p^n\mathbb{Z}_p} f \, d\mu_{\Phi} = \int_{a+p^n\mathbb{Z}_p} f \, d\widetilde{\mu}_{\Phi} = \varphi^n \left(\Phi_{\infty} \mid_k \left(\begin{smallmatrix} 1 & a \\ 0 & p^n \end{smallmatrix} \right) ((\infty,0))(f) \right).$$

et pour a = 0 et n = 1,

$$\int_{p\mathbb{Z}_p} f \, d\widetilde{\mu}_{\Phi} = \varphi \left(\Phi_{\infty} \mid_k \left(\begin{smallmatrix} 1 & 0 \\ 0 & p \end{smallmatrix} \right) ((\infty, 0))(f) \right),$$

d'où

$$\int f d\mu_{\Phi} = \left(\Phi_{\infty} - (1 \otimes \varphi)\Phi_{\infty} \mid_{k} \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}\right) ((\infty, 0))(f).$$

On en déduit la proposition en utilisant le fait que $\begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix}(\infty, 0) = (\infty, 0)$.

Remarque 3.9. Pour $0 \le j \le k-2$, $\Phi_{\infty}(\delta)(z^j)$ est égal à $\Phi(\delta)(z^j)$ pour $\delta \in \Delta_0$.

4 Applications aux formes paraboliques

Prenons $\Gamma = \Gamma_0(N)$. Soit Ψ un élément de $\operatorname{Hom}_{\Gamma}(\Delta_0, \mathbb{Q}_p[X]_{k-2})$. Sous certaines conditions, nous allons le relever en un symbole à valeurs dans $\mathbf{D}_k(\mathbb{Z}_p)$.

4.1 Cas ordinaire

On suppose que N est premier à p et que Ψ est vecteur propre pour l'opérateur $T_p(N) = \mathcal{U}_p + V_p$ avec $V_p = \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$:

$$T_p(N)\Psi = a_p\Psi.$$

On a

$$\mathcal{U}_p(\Psi) = T_p(N)\Psi - \Psi \mid_k \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} = a_p \Psi - \Psi \mid_k \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$$
$$\mathcal{U}_p\left(\Psi \mid_k \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}\right) = p\Psi \mid_k \begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix} = p^{k-1}\Psi,$$

soit $(\mathcal{U}_p^2 - a_p \mathcal{U}_p + p^{k-1})\Psi = 0$. Supposons que $X^2 - a_p X + p^{k-1}$ a une racine dans \mathbb{Z}_p , i.e. $\operatorname{ord}_p(a_p) < (k-1)/2$, par exemple lorsque p ne divise pas a_p . On note α une racine de valuation λ minimale; le produit des deux racines étant p^{k-1} , on a

$$\lambda \leq \frac{k-1}{2} < k-1.$$

Alors,

$$\Phi = \Psi - \frac{1}{\alpha} \Psi \mid_k \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$$

appartient à $\operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbb{Q}_p[X]_{k-2})$ et vérifie $\mathcal{U}_p(\Phi) = \alpha \Phi$. On peut lui appliquer la proposition 3.5 avec $h = 1, D = \mathbb{Q}_p$ muni de la multiplication φ par $\alpha^{-1}, L = \mathbb{Z}_p$ et $\lambda = \operatorname{ord}_p(\alpha)$: il existe un élément $\Phi_{\infty} \in \operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k(\mathbb{Z}_p))$ vérifiant

$$\begin{cases} \rho_{k,*}(\Phi_{\infty}) &= \Phi = \Psi - \frac{1}{\alpha}\Psi \mid_{k} {p \choose 0} \\ \mathcal{U}_{p}(\Phi_{\infty}) &= \alpha \Phi_{\infty}. \end{cases}$$

$$(4.1)$$

4.2 Cas supersingulier

Plus généralement, en supposant toujours que N est premier à p et que Ψ est vecteur propre pour $T_p(N)$ de valeur propre a_p , soit $D = \mathbb{Q}_p e_1 \oplus \mathbb{Q}_p e_2$ le \mathbb{Q}_p -espace vectoriel de dimension 2 muni de l'endomorphisme φ donné dans la base (e_1, e_2) par la matrice de $M_2(\mathbb{Q})$ suivante :

$$\begin{pmatrix} 0 & p^{1-k} \\ -1 & p^{1-k} a_p \end{pmatrix}.$$

Son inverse φ^{-1} est de matrice $\begin{pmatrix} a_p & -1 \\ p^{k-1} & 0 \end{pmatrix}$ dans $M_2(\mathbb{Z})$ et on considère le réseau $L = \mathbb{Z}_p e_1 \oplus \mathbb{Z}_p e_2$, stable par φ^{-1} . L'endomorphisme φ vérifie $p^{k-1}\varphi^2 - a_p\varphi + \mathrm{Id} = 0$. Alors,

$$\Phi = \Psi e_1 - \Psi \mid_k \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \varphi e_1 = \Psi e_1 + \Psi \mid_k \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} e_2$$

appartient à $\operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbb{Q}_p[X]_{k-2} \otimes L)$ et vérifie $(\mathcal{U}_p \otimes \varphi)(\Phi) = \Phi$. La matrice de φ^2 est

$$p^{2-2k} \left(\begin{array}{c} -p^{k-1} & a_p \\ -p^{k-1} a_p & a_p^2 - p^{k-1} \end{array} \right),$$

ce qui montre que $\varphi^2 L \subset p^{-\lambda} L$ avec

$$\lambda = 2k - 2 - \min(k - 1, \operatorname{ord}_p(a_p)) = \begin{cases} k - 1 & \operatorname{si } \operatorname{ord}_p(a_p) \ge k - 1, \\ 2k - 2 - \operatorname{ord}_p(a_p) & \operatorname{sinon.} \end{cases}$$

En particulier, $\lambda = k - 1$ si $a_p = 0$. On applique la proposition 3.5 avec h = 2 et λ ainsi défini : il existe donc un élément $\Phi_{\infty} \in \operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k(\mathbb{Z}_p) \otimes D)$ tel que

$$\begin{cases} \rho_{k,*}(\Phi_{\infty}) &= \Psi e_1 - \Psi \mid_k \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} \varphi^{-1} e_1 \\ (\mathcal{U}_p \otimes \varphi)(\Phi_{\infty}) &= \Phi_{\infty}. \end{cases}$$

$$(4.2)$$

4.3 Cas semistable

On suppose maintenant que N est exactement divisible par p, Ψ étant toujours vecteur propre pour l'opérateur $T_p(N) = \mathcal{U}_p$. Dans ce cas, la valeur propre a_p est égale à ± 1 . On peut alors appliquer la proposition 3.5 à $\Phi = \Psi$, h = 1 et $D = \mathbb{Q}_p$ muni de la multiplication par a_p : il existe un élément $\Phi_{\infty} \in \operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathbf{D}_k(\mathbb{Z}_p))$ vérifiant

$$\begin{cases} \rho_{k,*}(\Phi_{\infty}) &= \Psi \\ \mathcal{U}_p(\Phi_{\infty}) &= a_p \Phi_{\infty}. \end{cases}$$
(4.3)

4.4 Fonctions L p-adiques

Soit F une forme parabolique pour $\Gamma_0(N)$ et $\mathcal{P}er(F)$ le symbole ² à valeurs dans $\mathbb{C}[X]_{k-2}$ qui lui est associé : on a donc pour tout rationnel r

$$\mathcal{P}er(F)((\infty, r)) = \int_{i\infty}^{r} F(t)(Xt + 1)^{k-2} dt = \sum_{j=0}^{k-2} {k-2 \choose j} \left(\int_{i\infty}^{r} F(t) t^{j} dt \right) X^{j}.$$

Il existe un \mathbb{Q} -sous-espace vectoriel Ω_F de \mathbb{C} de dimension 2 et un réseau \mathcal{L}_F de Ω_F tel que $\mathcal{P}er(F)(\Delta_0)$ soit contenu dans $\mathcal{L}_F \otimes \mathbb{Z}[X]_k$. Nous avons pris le parti de ne pas couper selon les parties + et -, ce qui signifie de travailler peut-être de manière osée dans un \mathbb{Q} -espace vectoriel de dimension finie qui n'est pas une droite. Nous laissons le lecteur faire les projections nécessaires par le choix de bases.

Plaçons-nous dans une des situations du paragraphe 4 pour $\mathcal{P}er(F)$ et notons $\mathcal{P}er^{(p)}(F)$ le symbole associé

$$\mathcal{P}er^{(p)}(F) \in \operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathcal{L}_F \otimes \mathbb{Q}_p[X]_{k-2} \otimes D).$$

Soit $\mathcal{P}er_{\infty}^{(p)}(F) \in \operatorname{Hom}_{\Gamma_0}(\Delta_0, \mathcal{L}_F \otimes \mathbf{D}_k(\mathbb{Z}_p) \otimes D)$ le symbole tel que

$$\rho_{k,*}(\mathcal{P}er_{\infty}^{(p)}(F)) = \mathcal{P}er^{(p)}(F)$$
$$(\mathcal{U}_p \otimes \varphi)(\mathcal{P}er_{\infty}^{(p)}(F)) = \mathcal{P}er_{\infty}^{(p)}(F).$$

Soit $\tilde{\mu}_{F,p}$ la distribution associée à valeurs dans $\mathcal{L}_F \otimes D : \tilde{\mu}_{F,p} = \mathcal{P}er_{\infty}^{(p)}(F)((\infty,0))$ et $\mu_{F,p}$ sa restriction à \mathbb{Z}_p . On a

$$\int_{a+p^n\mathbb{Z}_p} f \, d\tilde{\mu}_{F,p} = \varphi^n \mathcal{P}er_{\infty}^{(p)}(F) \mid_k \beta_a^{(p^n)}((\infty,0))(f).$$

Prenons $f(z) = (Xz + 1)^{k-2}$. On a en utilisant le fait que $\mathcal{P}er(F \mid_k \gamma) = \mathcal{P}er(F) \mid_k \gamma$,

$$\mathcal{P}er(F) \mid_{k} \beta_{a}^{(p^{n})}((\infty,0))(f) = \mathcal{P}er(F \mid_{k} \beta_{a}^{(p^{n})})((\infty,0))(f)$$

$$\mathcal{P}er(F) \mid_{k} \binom{p \ 0}{0 \ 1} \beta_{a}^{(p^{n})}((\infty,0))(f) = p^{k-2}\mathcal{P}er(F \mid_{k} \beta_{a}^{(p^{n-1})})((\infty,0))(f).$$

²Dans [2], il est à valeurs dans l'espace vectoriel $\mathbb{Q}[x,y]_{k-2}$ isomorphe à $\mathbb{Q}[X]_{k-2}$ par $P\mapsto P(X,1)$ de réciproque $P\mapsto y^{k-2}P(x/y)$.

Si g est une fonction périodique de \mathbb{Z} dans \mathbb{C} , on pose $L(F, s, g) = \sum_{n=1}^{\infty} g(n)a_n n^s$ où $\sum_{n\geq 1} a_n q^n$ est le q-développement de F. Pour g=1, on obtient la fonction L complexe L(F,s) de F. On note $L_{\{p\}}$ la fonction L incomplète en p:

$$L_{\{p\}}(F,s) = (1 - a_p p^{-s} + p^{k-1-2s}) L(F,s)$$

On a

$$\mathcal{P}er(F \mid_{k} \beta_{a}^{(p^{n})})((\infty,0))((Xz+1)^{k-2}) = p^{-n} \int_{i\infty}^{0} F(\frac{z+a}{p^{n}})(Xz+1)^{k-2}dz$$

$$= \int_{i\infty}^{0} F(z+\frac{a}{p^{n}})(p^{n}Xz+1)^{k-2}dz$$

$$= \sum_{j=0}^{k-2} {k-2 \choose j} p^{nj} \frac{\Gamma(j+1)}{(-2i\pi)^{j+1}} L(F,j+1,\epsilon_{a,p^{n}})X^{j}$$

où $\epsilon_{a,p^n}(x) = \exp(\frac{2i\pi ax}{p^n})$ est périodique sur \mathbb{Z} de période divisant p^n . Lorsque a est premier à p et que n est supérieur ou égal à 1, on a

$$\int_{a+p^n \mathbb{Z}_p} z^j d\mu_{F,p} = \frac{\Gamma(j+1)}{(-2i\pi)^{j+1}} p^{nj} \left(L(F,j+1,\epsilon_{a,p^n}) \varphi^n e_1 - p^{k-2-j} L(F,j+1,\epsilon_{a,p^{n-1}}) \varphi^{n+1} e_1 \right)$$

$$= \frac{\Gamma(j+1)}{(-2i\pi)^{j+1}} L(F,j+1,H)$$

avec une notation un peu osée

$$H = \left(\epsilon_{a,p^n} - p^{k-2-j}\epsilon_{a,p^{n-1}}\varphi\right)p^{nj}\varphi^n e_1.$$

On en déduit que si χ est un caractère de conducteur p^n avec n>0, on a

$$(p^{-j-1}\varphi)^{-n} \int_{\mathbb{Z}_p} \chi(z) z^j d\mu_{F,p} = \frac{\Gamma(j+1)}{(-2i\pi)^{j+1}} \frac{L_{\{p\}}(F,j+1,\overline{\chi})}{G(\overline{\chi})} e_1.$$

Pour n=0, on a de même

$$\int_{\mathbb{Z}_{p}} z^{j} d\widetilde{\mu}_{F,p} = \frac{\Gamma(j+1)}{(-2i\pi)^{j+1}} L(F,j+1) (1-p^{k-2-j}\varphi) e_{1},$$

d'où,

$$\int_{\mathbb{Z}_p} z^j d\mu_{F,p} = \frac{\Gamma(j+1)}{(-2i\pi)^{j+1}} L(F,j+1) (1-p^j\varphi) (1-p^{k-2-j}\varphi) e_1$$

La relation $\varphi^{-2} - a_p \varphi^{-1} + p^{k-1} \mathrm{Id} = 0$ implique que pour $0 \le j \le k-2$,

$$(1 - p^{k-2-j}\varphi)(1 - p^{-j-1}\varphi^{-1}) = 1 - a_p p^{-(j+1)} + p^{k-1-2(j+1)}.$$

On en déduit que

$$(1 - p^{j}\varphi)^{-1}(1 - p^{-j-1}\varphi^{-1}) \int_{\mathbb{Z}_p} z^{j} d\mu_{F,p} = \frac{\Gamma(j+1)}{(-2i\pi)^{j+1}} L_{\{p\}}(F, j+1) e_1.$$

Dans le cas ordinaire, φ est simplement la multiplication par α^{-1} . D'où (en prenant $e_1 = 1$)

$$(1 - p^{j}\alpha^{-1})^{-1}(1 - p^{-j-1}\alpha) \int_{\mathbb{Z}_p} z^{j} d\mu_{F,p} = \frac{\Gamma(j+1)}{(-2i\pi)^{j+1}} L_{\{p\}}(F, j+1)$$

et pour χ un caractère de conducteur p^n avec n > 0,

$$(p^{-j-1}\alpha)^{-n} \int_{\mathbb{Z}_p} \chi(z) z^j d\mu_{F,p} = \frac{\Gamma(j+1)}{(-2i\pi)^{j+1}} \frac{L_{\{p\}}(F,j+1,\overline{\chi})}{G(\overline{\chi})}.$$

Il y a plusieurs manières de définir la fonction L p-adique associée à une distribution. Si on la voit comme une fonction sur les caractères p-adiques de \mathbb{Z}_p^* , la fonction L p-adique associée à F est alors (à des normalisations près)

$$L_p(\chi) = \int_{\mathbb{Z}_p^*} \chi(z) d\mu_{F,p}(z).$$

On retrouve ainsi les formules usuelles reliant les fonctions L p-adiques aux fonctions L complexes (dans le cas supersingulier, voir par exemple [6]) une fois choisies les bases usuelles de Ω_F quand F est vecteur propre de tous les opérateurs de Hecke.

Références

- [1] Y. AMICE & J. VÉLU « Distributions p-adiques associées aux séries de Hecke », Astérisque, Soc. Math. France, Paris 24-25 (1975), p. 119–131.
- [2] D. Bernardi & B. Perrin-Riou « Symboles modulaires et produit de Petersson », Journal de Théorie des Nombres de Bordeaux 32 (2020), p. 795–859.
- [3] M. Greenberg « Lifting modular symbols of non-critical slope », *Israel Journal of Mathematics* **161** (2007), p. 141–155.
- [4] B. MAZUR, J. TATE & J. TEITELBAUM « On p-adic analogues of the conjectures of Birch and Swinnerton-dyer », *Inventiones mathematicae* 84 (1986), p. 1–48.
- [5] A. PANCHISHKIN « A new method of constructing *p*-adic *L*-functions associated with modular forms », *Mosc. Math. J.* **2** (2002), p. 313–328.
- [6] B. Perrin-Riou « Arithmétique des courbes elliptiques à réduction supersingulière en p », Experimental Mathematics 12 (2003), p. 155–186.

- [7] R. Pollack & G. Stevens « Overconvergent modular symbols and p-adic L-functions », Annales scientifiques de l'ENS 44 (2011), p. 1–42.
- [8] The PARI Group « PARI/GP version 2.13.0 », http://pari.math.u-bordeaux. fr, 2020.