
HAL Id: hal-03112810
https://hal.science/hal-03112810

Submitted on 17 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uncertainty and sensitivity analysis of laboratory test
simulations using an elastoplastic model

Fernando Lopez-caballero, Arézou Modaressi-Farahmand Razavi

To cite this version:
Fernando Lopez-caballero, Arézou Modaressi-Farahmand Razavi. Uncertainty and sensitivity analysis
of laboratory test simulations using an elastoplastic model. 7th European Conference on Numerical
Methods in Geotechnical Engineering, Jun 2010, Trondheim, Norway. �hal-03112810�

https://hal.science/hal-03112810
https://hal.archives-ouvertes.fr


Uncertainty and sensitivity analysis of laboratory test simulations using an
elastoplastic model

Fernando Lopez-Caballero & Arezou Modaressi-Farahmand-Razavi
Laboratoire MSS-Mat CNRS UMR 8579, Ecole Centrale Paris, France

ABSTRACT: The focus of the present paper is on Monte Carlo approaches to uncertainty and sensitivity anal-
ysis of laboratory test simulations. The soil behaviour is simulated using an elastoplastic multi-mechanism
model. The Fourier amplitude sensitivity test (FAST) method is performed in order to assess the influence of
input parameters on the response of the model following several loading paths. According to the sensitivity
indices derived by FAST method, each parameter has an important role following both the loading path and the
strain range.

1 INTRODUCTION

The role played by the soil behaviour is fundamental
in geotechnical analyses. The factors that constitute
the essential elements of a well modelling besides a
powerful method to solve the boundary value problem
are: necessary data, an appropriate constitutive model
and adequate model parameters. The necessary data
are obtained by laboratory tests or/and in-situ mea-
surements. In the case where they are not available,
correlations can be used.

In some geotechnical problems, the use of mod-
els based on the elastoplasticity theory to represent
the complex behaviour of soils is always suitable as
they represent a rational mechanical process (Pande
& Pietruszczak 1986). Unfortunately, one of the ob-
stacles in using such kind of models is the difficulty
in identifying their parameters added to the lack of
knowledge of soil properties. Thus, the uncertainty
associated with their parameter determination should
be considered simultaneously to the variability of
geotechnical data.

A good understanding of the simulation of soil be-
haviour could be addressed through local or global
sensitivity analyses, that is, the assessment of the im-
pact of individual input parameters or sets of input
parameters on the response of the model.

In this paper, a probabilistic analysis is performed
in order to illustrate the effect of uncertainty in both
soil properties and model parameters on the responses
of simulated soil laboratory tests. These analyses are
performed for modelling both monotonic and cyclic
tests. A number of sensitivity indices based on Monte

Carlo simulation techniques (e.g. Fourier amplitude
sensitivity test, FAST) will be presented.

The elastoplastic multi-mechanism model devel-
oped atÉcole Centrale Paris, know as ECP model,
(Aubry et al. 1982, Hujeux 1985) is used to repre-
sent the soil behaviour. This model can take into ac-
count the soil behaviour in a large range of deforma-
tions. Thus, the impact of several parameters concern-
ing both the elastic and plastic behaviour of the soil
will be studied.

2 CONSTITUTIVE MODEL
The ECP’s elastoplastic multi-mechanism model is
written in terms of effective stress. The representa-
tion of all irreversible phenomena is made by four
coupled elementary plastic mechanisms : three plane-
strain deviatoric plastic deformation mechanisms in
three orthogonal planes and an isotropic one.

The model uses a Coulomb type failure criterion
and the critical state concept. The evolution of hard-
ening is based on the plastic strain (deviatoric and
volumetric strain for the deviatoric mechanisms and
volumetric strain for the isotropic one). To take into
account the cyclic behaviour a kinematical hardening
based on the state variables at the last load reversal is
used.

The model is written in the framework of the incre-
mental plasticity, which assumes the decomposition
of the total strain increment in two, elastic and plas-
tic, parts. In what follows, a brief overview of the es-
sential aspects of the constitutive model for primary
loading paths is given.



The elastic part is supposed to obey a non-linear
elasticity behaviour, where the bulk (K) and the shear
(G) moduli are functions of the mean effective stress
(p′) :

K = Kref

(

p′

pref

)ne

and G = Gref

(

p′

pref

)ne

(1)

whereKref andGref are the bulk and shear moduli
measured at the mean reference pressure (pref ) and
ne is the degree of non-linearity.

Adopting the soil mechanics sign convention (com-
pression positive), the deviatoric primary yield sur-
face of thek plane is given by:

fk(σ, ε
p
v, rk) = qk − sinφ′

pp · p
′

k · Fk · rk (2)

with:

Fk = 1− b ln

(

p′k
pc

)

(3)

pc = pco exp(β εpv) (4)

where,φ′

pp is the friction angle at the critical state.
The parameterb controls the form of the yield surface
in the (p′, q) plane and varies fromb = 0 to 1 pass-
ing from a Coulomb type surface to a Cam-Clay type
one.β is the plasticity compression modulus andpco
represents the critical state stress corresponding to the
initial voids ratio.

The internal variablerk, called degree of mobi-
lized friction, is associated with the plastic deviatoric
strain. This variable introduces the effect of shear
hardening of the soil and permits the decomposi-
tion of the behaviour domain into pseudo-elastic, hys-
teretic and mobilized domains, its evolution law is
given by:

ṙk = λ̇pk
(1− rk)

2

a
(5)

whereλ̇pk is the plastic multiplier ofk mechanism.

a = a1 + (a2 − a1)αk(rk) (6)

where :

αk = 0 if relask < rk < rhysk

αk =
(

rk−r
hys

k

rmob
k

−r
hys

k

)m

if rhysk < rk < rmobk

αk = 1 if rmobk < rk < 1

(7)

wherea1, a2 andm are model parameters andrhys

and rmob designate the extend of the domain where
hysteresis degradation occurs. The isotropic yield sur-
face is assumed to be :

fiso = |p′| − d pc riso (8)

with :

ṙiso = ε̇pviso

(1− riso)
2

cmon
pc

pref

(9)

whered is a model parameter representing the dis-
tance between the isotropic consolidation line and the
critical state line in the (e− lnp′) plane andcmon con-
trols the volumetric hardening.

In the model, an associated flow rule in the devia-
toric plane (k) is assumed, and the Roscoe’s dilatancy
rule (Roscoe et al. 1958) is used to obtain the incre-
ment of the volumetric plastic strain of each devia-
toric mechanism so that :

ε̇pvk = λ̇pk · αψ · αk(rk)

(

sinψ−
qk
p′k

)

(10)

ψ is the characteristic angle andαψ a constant param-
eter.

The parameters of the model concern both the elas-
tic and plastic behaviour of the soil. We propose to
classify the model parameters with respect to their es-
timation method. In this scope, the parameters used
in the elastoplastic model are separated in two cate-
gories: those that can be directly measured from ei-
ther in-situor laboratory test results and those which,
cannot be directly measured (Table 1).

Table1. Classification of the Elastoplastic model parame-
ters

Directly Not-Directly
measured measured

Elastic Kref ,Gref
ne, pref

Critical State φ′pp, β b
and Plasticity pco, d

Flow Rule and ψ a1, a2, αψ,
Isotropic hardening m, cmon

Threshold rela, rhys

domains rmob, relaiso

3 FAST METHOD
The global sensitivity analysis is a method used in or-
der to decompose the uncertainty in the output of a
computational model according to the input sources
of uncertainty (Gatelli et al. 2009). In this kind of sen-
sitivity analysis, the space of the input factors is ex-
plored within aninfinite region (Saltelli et al. 1999).

Fourier amplitude sensitivity test (FAST), (Cukier
et al. 1973, Saltelli et al. 1999) is one the most robust



global sensitivity analysis techniques (Jacques 2005,
Helton et al. 2006, Xu & Gertner 2008, Mara 2009).
In this technique, all input parameters are sampled
from a periodic function with a different characteris-
tic frequency. Thus, the output model becomes a peri-
odic function. The Fourier spectrum is then calculated
on the model output at specific frequencies so as to
obtain the first-order sensitivity index (Si) of eachxi
parameter.

Let us consider a computer modelY =
f(x1, . . . , xp), where p is the number of inde-
pendent input parameters. The parametric curve
assigned to each input parameter is defined as:

xi(s) =
1

2
+

1

π
arcsin(sin(wi · s)) (11)

with xi(s) ∈ [0,1]p ands = 2 · π j−1

N
; ∀j = 1, . . . ,N .

TheY model is then evaluatedN times over the sam-
ple of sizeN . If the model outputY is expanded with
a Fourier series, the marginal variance (V ) can be ob-
tained as:

V ≃ 2
∞
∑

j=1

(A2

j +B2

j ) (12)

whereAj andBj are the Fourier coefficients defined
as:

Aj =
1

2π

∫ π

−π
f(x(s)) cos(js)ds (13)

Bj =
1

2π

∫ π

−π
f(x(s)) sin(js)ds (14)

The marginal partial variance of an individual input
parameter (Vi) is obtained from the Fourier coeffi-
cientsApwi

andBpwi
at the harmonics ofwi as fol-

lows:

Vi = 2
∞
∑

p=1

(A2

pwi
+B2

pwi
) (15)

combining equations 12 and 15, the first-order sensi-
tivity index (Si) of eachxi parameter is defined as:

Si =
Vi
V

(16)

Refer to Saltelli et al. (1999) and Xu & Gertner
(2008) among others for further details about the
FAST method.

4 PROBABILISTIC MODELLING OF MATE-
RIAL PROPERTIES

The sensitivity analysis method is illustrated through
its application to a loose sand (i.e. a relative den-
sity Dr < 50%) model parameters. The parameters

of the model concern both the elastic and plastic be-
haviour of the soil and they were determined with
the methodology explained in Lopez-Caballero et al.
(2003, 2007). The behaviour of the sand is studied by
simulating drained triaxial tests, drained cyclic shear
tests and undrained stress controlled cyclic shear tests.
All tests are simulated with the same set of parame-
ters. They are summarized in Table 2.

Table2. ECP model’s parameters for simulated sand
Elasticity
Kref [MPa] 628 ne 0.5
Gref [MPa] 290 pref [MPa] 1.0
Critical State and Plasticity
φ′pp[

◦] 30 d 2.0
β 33 b 0.2
p′co[kPa] 40
Flow Rule and Isotropic Hardening
ψ[◦] 30 αψ 1.0
a1 0.0001 a2 0.005
cmon 0.004 m 1.5
Threshold Domains
rela 0.03 rhys 0.04
rmob 0.8 relaiso 0.02

In our elastoplastic model, the variability on these
laboratory test results is obtained assuming that the
following parameters :Kref ,Gref , pco, β,φ′

pp,ψ, rhys,
cmon anda2 have a random character, while the other
model parameters are held constant. This set of pa-
rameters has been chosen because, as recalled before
(Section§ 2), they concern both physical and numer-
ical parameters and both the elastic and plastic be-
haviour of the soil (Table 1).

It is necessary to remark that in order to keep a
Poisson’s ratio (ν) value constant, the model parame-
terKref is assumed perfectly correlated withGref and
computed using the following relation from the elas-
ticity : Kref = (2 ·Gref · (1+ ν))/(3 · (1− 2 · ν)). Re-
gardingψ parameter, it represents the limit between
contracting and dilating behaviours in sands, which is
known as the “phase transformation state” (Ishihara
1993). The value of this parameter may be equal or
less thanφ′

pp. In this work, it is assumed thatψ = φ′

pp.
The mean values of random parameters used in the

computations are given in Table 2. For the sake of
brevity, all random parameters have a coefficient of
variation (VC) equal to 20% and it is assumed that all
of them are characterized statistically by an uniform
distribution. Other studies such as the effects of prob-
ability distribution type and other variation coefficient
values on the model response are not deemed in this
paper. They will be considered in further works.

Using the Monte Carlo approach (MCS) and the
FAST method described before, it is possible to take
into account the variability of random model param-



eters and thus to generate the uncertainty laboratory
test curves.

In the following figures, the mean, the± one stan-
dard deviation and the range of several test curves
determined by MCS are showed. These summarized
curves involve 1000 sample computations. An initial
confinement pressurep′o = 50kPa is used in all sim-
ulated tests. Figure 1 shows the response obtained by
the model in simulated drained triaxial tests. The re-
sponse is showed in theq− ε1 andεv − ε1 planes.
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Figure 1. Simulated probabilistic drained triaxial tests a)q− ε1,
b) εv − ε1.

The uncertaintyG/Gmax − γ curves generated by
the simulations are shown in Figure 2a. Finally, for
the purpose of assessing the influence of random
model parameters on the pore water pressure buildup,
a strain controlled cyclic triaxial test has been sim-
ulated. Figure 2b presents the results for the excess
pore water pressure ratio (U∗ = ∆pw/p

′

0
) as a func-

tion of γ after ten loading cycles during the strain-
controlled cyclic triaxial test.

Figure 3 illustrates the evolution of coefficient of
variation (VC) as a function of deformation for each
simulated test. It is interesting to note that in the case
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Figure 2 . Simulated probabilistic a)G/Gmax − γ and b)
∆pw/p

′

o − γ curves.

of triaxial test (Fig. 3a), even if all random input pa-
rameters have the sameVC value, the variation coeffi-
cient obtained forεv varies from 35% to 20% whenε1

increases. This is in contrast with theVC value forq,
which remains approximatively constant (i.e.≈ 20%).

A similar response is obtained in the case of cyclic
tests (Fig. 3). TheVC value forGmax increases (from
12% to 18%) whenγ increases (Fig. 3b). On the other
hand, concerning theVC value for∆pw, it presents a
peak forγ ≈ 1 · 10−4. According to Figure 2b, this de-
formation corresponds to the beginning of pore pres-
sure build-up in the test.

5 GLOBAL SENSITIVITY ANALYSIS

In this section, so as to assess the influence of the indi-
vidual input parameters on the output, the first-order
indices (Si) obtained for all simulated laboratory tests
are plotted in Figures 4 and 5. Figure 4a provides the
ε1 dependent sensitivity analysis results for uncertain
q curves. Accordingly, only theSi of the parameters
pco, φ′

pp and a2 seem to be nonzero. The outcome
shows that among those parameters, for small strains
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Figure 3. Variation coefficientVC versus deformation (ε1 or γ)
for a)q andεv, b)Gmax and∆pw.

(i.e. 1 · 10−2% < ε1 < 1 · 10−1%) the one with the
biggest influence isa2, followed byφ′

pp andpco. How-
ever, as expected, for large strains (i.e.ε1 > 1 · 100%)
the most influential parameter isφ′

pp.
Concerning the volumetric strain (εv), it is noted

that there is a strong relationship betweenεv andpco
parameter (Fig. 4b) forε1 < 5 · 10−1%. This is to
be expected, because the parameterpco represents the
initial state of the soil. From the same figure, it can
be also seen, that for large strains the most influential
parameters areφ′

pp anda2.
Regarding the effect on the shear modulus reduc-

tion G/Gmax values, Figure 5a illustrates the evolu-
tion of Si index as a function of shear strain (γ). This
shows thatpco parameter has a far smaller role in the
G/Gmax values. In fact, the model response is con-
trolled byGref at small shear strains and botha2 and
φ′

pp for largestγ values.
Finally, the resultingSi index values between

model parameters and the pore water pressure buildup
(∆pw) variable can be seen in Figure 5b. It is inter-
esting to note that forγ values between1 · 10−5 and
1 · 10−4 the most influential parameters areGref and
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Figure 4. First-order indices (Si) as a function ofε1 for uncer-
tain : a)q and b)εv values. Drained triaxial test.

rhys. Beyond this deformation value, parametersGref

anda2 have the biggest influence.

6 CONCLUSIONS
A series of soil mechanics laboratory tests were sim-
ulated with the ECP’s elastoplastic multi-mechanism
model in order to understand the behaviour of the
model and to assess how different parameters of the
model interplay. In this work a technique for global
sensitivity analysis is used to illustrate the effect of
each parameter following a particular loading path.

The main conclusions drawn from this study are as
follows:

1. According to the responses obtained with the
model and for the particular case considered
in this work (i.e. model parameters and initial
state), it can be concluded that the parameters
with the biggest influence on the model response
areGref , φ′

pp anda2.

2. As expected, the analyses showed that each pa-
rameter has an important role following both the
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Figure 5. First-order indices (Si) as a function ofγ for uncertain
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loading path and the strain range. However, it is
necessary to simulate other loading paths such as
consolidation test, so as to show the role played
by the parametersβ andcmon among others.

3. Further works are needed in order to assess the
influence of several probability distribution types
for each input parameter on the model response.
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