
HAL Id: hal-03112799
https://hal.science/hal-03112799v1

Submitted on 17 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite volume simulation of the Gatenby-Gawlinski
model for acid-mediated tumor invasion with
heterogeneous diffusion and homogenization

Elisa Scanu, Corrado Mascia, Chiara Simeoni

To cite this version:
Elisa Scanu, Corrado Mascia, Chiara Simeoni. Finite volume simulation of the Gatenby-Gawlinski
model for acid-mediated tumor invasion with heterogeneous diffusion and homogenization. [Research
Report] Sapienza University of Rome, Italy. 2020, 82 p. �hal-03112799�

https://hal.science/hal-03112799v1
https://hal.archives-ouvertes.fr


Research Report :
finite volume simulation of the

Gatenby-Gawlinski model for acid-mediated
tumor invasion with heterogeneous diffusion

and homogenization

Elisa Scanu, Corrado Mascia

Dipartimento di Matematica G. Castelnuovo, Sapienza Università di Roma
piazzale Aldo Moro 2 - 00185 Roma (Italy)

e.scanu@qmul.ac.uk – corrado.mascia@uniroma1.it

Chiara Simeoni

Laboratoire de Mathématiques J.A. Dieudonné CNRS UMR 7351
Université Côte D’Azur, Parc Valrose - 06108 Nice Cedex 2 (France)

chiara.simeoni@univ-cotedazur.fr

September 30th, 2020



Contents

Introduction 2

1 Modelling and analysis 4
1.1 Nondimensionalised system and the Fisher-KPP equation . . . . . . . . . . . . . . 4
1.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Analysis of slow waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Uniform approximation for w . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Uniform approximation for u as function of the parameter d . . . . . . . . . 13
1.3.3 Uniform approximation for v . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.4 An estimate of the width of the interstitial gap . . . . . . . . . . . . . . . . 18

2 Numerical approximation 20
2.1 The numerical algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Short appendix: why have we used finite volumes? . . . . . . . . . . . . . . 24
2.2 Space-averaged propagation speed approximation . . . . . . . . . . . . . . . . . . . 25
2.3 Numerical simulations with homogeneous diffusion A . . . . . . . . . . . . . . . . . 25

2.3.1 Modifying the parameter c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Numerical simulations with heterogeneous piecewise constant diffusion A . . . . . . 33

2.4.1 A with single jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.2 Modifying the parameter r . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Numerical simulations with periodic diffusion A . . . . . . . . . . . . . . . . . . . . 46
2.5.1 Modifying the frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.2 Modifying the amplitude and the intensity . . . . . . . . . . . . . . . . . . . 49
2.5.3 Modifying the parameter r . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5.4 Homogenization: is that possible in the long run? . . . . . . . . . . . . . . . 59

2.6 Convergence and consistency of the numerical scheme . . . . . . . . . . . . . . . . 73
2.6.1 Consistency order for regular solutions . . . . . . . . . . . . . . . . . . . . . 73
2.6.2 Numerical order of convergence . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.7 Final remarks and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography 79

1



Introduction

Nowadays, cancer research is one of the most active and interdisciplinary investigation fields
[30, 31], and it allows for useful application of several mathematical results. A lot of effort is
made in order to improve the actual strategies: in the past few years, the role of mathematics
has been crucial to support experimental studies [2, 12, 10, 21, 28], although such models have
often several limitations, so that they are becoming indispensable for designing new therapies and
preventive measures.

We focus on the so-called Warburg effect and its mathematical modelling by means of the
acid-mediated invasion hypothesis, namely the typical strategy of acidity increasing against the
environment operated by tumours to regulate their growth, which has already been translated
into a system of reaction-diffusion equations [7, 10, 11, 21]. Starting from the seminal work by
Gatenby-Gawlinsky [10, 11, 12], the main theoretical issues are the existence of travelling wave
solutions and the numerical simulation of experimental results.

Before starting the investigation, it is worth framing the biomedical context behind the model,
by illustrating characteristics of the Warburg effect [28, 29]. This phenomenon concerns the
metabolism of cancer cells, essentially providing their glucose uptake rates: indeed, it has been
firstly observed by Otto Warburg in the 1920s, and afterwards confirmed through many experi-
ments, that tumour cells tend to rely on glycolytic metabolism even in presence of huge oxygen
amounts. From a strictly biomedical point of view, it is important noticing that normal cells
undergo glucose metabolism by employing oxidative phosphorylation pathways, which is the most
effective process in terms of adenosine triphosphate production (ATP) and requires oxygen as

Figure 1: Pathaways of healthy and cancer cells metabolism
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main resource. Tumour cells behaviour seems to forbear the conventional pathway and appeals
instead to glycolysis, thus inducing lactic acid fermentation, a product generally released in hy-
poxia regimes (see Figure 1).

Although the Warburg effect has been intensely studied during the past twenty years, how this
phenomenon happens and affects cancer proliferation is partly an open problem. For example,
the passage from normal to glycolytic metabolism done by cancer cells is still object of researches
[23, 26]. Moreover, by exploiting a combination of modelling and in vitro experiments, it has
been shown how cancer metabolic changes are able to define a micro-environment where the
better adapted malignant cells overwhelm the others and spatial structures are created [1, 23].

In this work, we suppose that carcinogenesis has already happened. The early growth stages
of a primary tumour are a consequence of successive divisions of their initial cells. Then, when
a critical size (of about 104 cells) is reached, a further growth requires aggressive action on the
surrounding healthy tissue. This is done in different ways, one of which consists in coopting blood
vessels to provide oxygen and nutrients to the expanding colony [4] and another strategy consists
in releasing products, such as the lactic acid, which favour the death of healthy cells.

As regards the mathematical analysis, we make a crucial assumption, namely that acidification
caused by lactic acid production is advantageous for the spread of cancer cells, whilst it destroys
healthy cells. Hence, the original modelling based on reaction-diffusion equations developed by
Gatenby and Gawlinski [10, 11, 12] is suitable to perform numerical investigation and to analyse
travelling wave solutions, because it takes into account all the previously explained behaviours of
healthy and cancer cells in an acid environment.

The manuscript is organised as follows.
In the first chapter, we present analytical results for the Gatenby-Gawlinsky model, including its
non-dimensionalized version and the analysis of travelling wave solutions, and we illustrate the
passages leading to an approximation for various biological regimes. In the second chapter, which
constitutes the original part of the manuscript, we introduce the numerical algorithm, together
with its consistency and convergence analysis, and we simulate many different cases depending on
the biological context. Finally, we make considerations on a possible homogenisation in the long
run of travelling front solutions and we provide a comparison between analytical and numerical
approximations.

Acknowledgements
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Chapter 1

Modelling and analysis

The model, firstly proposed by Gatenby and Gawlinski [10, 11, 12], is developed in order
to reproduce cancer cells invasion within a healthy tissue, starting from a stage in which the
carcinogenesis has already happened and, then, it is not further taken into account. The attention
is on the interaction between malignant and healthy cells occurring at the tumour-host interface,
where a significant role is played by the lactic acid production and spreading, because of glycolytic
metabolism exploited by the tumour cells.

From a mathematical point of view, we analyse the following system:
Ut = ρ1U

(
1− U

κ1

)
− δ1UW

Vt = ρ2V
(
1− V

κ2

)
+D2

[(
1− U

κ1

)
Vx
]
x

Wt = ρ3V − δ3W +
(
D3Wx

)
x

(1.1)

where D3 = D3(x) is a heterogeneous positive diffusion function. From a biological point of view,
the function D3 accounts for the different physical composition of tissues (see Figure 1.1), which
typically are not homogeneous structurally diversified according to their function and position
[16].

The boundary and initial conditions for the system (1.1) will be specified later on.

1.1 Nondimensionalised system and the Fisher-KPP equation

The system (1.1) is a mathematical model for the growth, diffusion and chemical action of
tumour cells against the surrounding environment. We adopt a non-dimensionalisation technique
starting from (1.1), where U and V are the healthy and tumour tissue concentrations with carrying
capacities κ1 and κ2, respectively, and W is the excess of H+ ions concentration induced by the
tumour cells metabolism [28, 29].
A logistic-type growth is assumed in the first and second equation with steady states U = 0
and V = 0 which are unstable so that small perturbations drive the concentrations towards the
stable states U = κ1 and V = κ2, with growth rates ρ1 and ρ2, respectively. The diffusion
rate for lactic acid depends on the heterogeneous function D3 it has been experimentally found
that the diffusion rate for tumours typically depends on the concentration of healthy cells in
the surrounding environment [28], which is translated into the nonlinear (possibly degenerate)
diffusion term in the second equation of system (1.1).

4



(a) epithelial tissue (b) connective tissue

(c) muscular tissue (d) nervous tissue

Figure 1.1: Microscope images of different types of biological tissues. Source: [33, 34, 35, 36]

The destructive effects of acidity on the healthy tissue are described by the reaction term in the
first equation, while the (linear) production of lactic acid constant rate ρ3, and its loss due to
deactivation kinetics, with constant rate δ3 are included into the third equation.
We consider the nondimensionalised system, where u, v and w correspond to nondimensionalised
rescaled concentrations of healthy tissue, tumour cells and excess H+ ions, respectively, which
satisfy 0 ≤ u, v, w ≤ 1. We introduce the following rescaled variables and parameters:

u =
U

κ1
, v =

V

κ2
, w =

δ3

ρ3κ2
W,

d =
δ1ρ3κ2

δ3ρ1
, r =

ρ2

ρ1
, c =

δ3

ρ1
.

In our case, we have taken D3 as a inhomogeneous diffusion function, hence we adimensionalise
with respect to maxD3 and we introduce the normalised diffusion function A. Thus, the other
variables for the system are

t 7−→ ρ1t, x 7−→
√

ρ1

maxD3
x,

D =
D2

maxD3
, A =

D3

maxD3

Although in the case of constant diffusion the adimensionalisation would lead to a known value
of A = 1, we prefer to explicitly indicating A in the system for future applications in the inhomo-
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geneous case. Thus, we obtain the non-dimensionalised system
ut = u(1− u)− duw
vt = rv(1− v) +D[(1− u)vx]x

wt = c(v − w) + (Awx)x

(1.2)

which is used for the analysis performed in the following sections.
Focusing on the biological interpretation of the model (1.2), the parameter r denotes the

reproduction rate of tumour tissue and c the production of H+ ions. The variation of the tumour
cells concentration is a consequence of its internal population dynamics and the diffusion term of
the second equation.
It is worthwhile noticing that if u ≡ 0, namely to the absence of healthy tissue, then the second
equation becomes a reaction-diffusion Fisher-KPP equation

vt = rv(1− v) +Dvxx (1.3)

which exhibits front-type solutions connecting the equilibrium states given by f(v) = 0 with
f = rv(1−v). The model (1.3) typically occurs in phase transition problems; in particular, Ronald
Fisher proposed this equation in 1937 [9] in the context of population dynamics to describe the
spatial spread of an advantageous allele and explored its travelling wave solutions. Indeed, it can
be proven that for every wave speed θ ≥ 2

√
rD there exists a propagating front which switches

from the equilibrium state v(+∞) = v+ = 0 to the equilibrium state v(−∞) = v− = 1 (decreasing
profile). On the other hand, no monotone invasion front exist for θ < 2

√
rD. Moreover, each

travelling wave solution has a unique shape profile and it is stable against near-field perturbations
[13, 25].
For the parameters of the system (1.2), we assume 0 < D � 1, because its form derives from the
ratio D2

D3
between the diffusivity of malignant cells and that of the H+ ions. Then it is reasonable

to take D3 much larger than D2. Finally, d measures the destructiveness of the lactic acid on the
healthy tissue, which can be interpreted as the tumour aggressiveness.

In this section, we focus on the analysis of travelling waves solutions for the Gatenby-Gawlinski
model (1.1), which are special solutions of the form:

φ(x, t) = Φ(x− θt) (1.4)

where θ is a constant wave speed and the profile Φ propagates along the real line (usually nor-
malised according to the problem context). If Φ is required to satisfy boundary conditions of the
form

Φ(−∞) = φ− and Φ(+∞) = φ+

then the solution is also called propagating front.
We point out that propagating fronts are a particular case of travelling wave solutions, which are
especially interesting for our work.

In order to analyse the front-type solutions, we use the change of variables z = x− θt where
θ is the wave speed and we make a slight abuse of notation by assuming that

u(x, t) = u(z) v(x, t) = v(z) w(x, t) = w(z)

6



By substitution to the system (1.2) and by taking A homogeneous we obtain
θu′ + u(1− u)− duw = 0

D[(1− u)v′]′ + θv′ + rv(1− v) = 0

Aw′′ + θw′ + c(v − w) = 0

(1.5)

where the derivatives are referred to the variable z.
We point out that we have taken an homogeneous diffusion term for the lactic acid in order to
avoid an analytical problem in (1.5). Indeed, it is not easy to calculate the z-derivative for A in
the heterogeneous case, as the system is not autonomous, because the dependence of A on the
spatial variable makes the wave lose their invariance by translations.

In order to be consistent with the biological model, we consider θ > 0 and the following
asymptotic conditions:

(u, v, w)(−∞) = (0, 1, 1), (u, v, w)(+∞) = (1, 0, 0) for d ≥ 1 (1.6)

or
(u, v, w)(−∞) = (1− d, 1, 1), (u, v, w)(+∞) = (1, 0, 0) for 0 < d < 1 (1.7)

together with the asymptotic conditions (u′, v′, w′)(±∞) = 0 which correspond to the steady
states of the underlining dynamical system (1.5). In particular, if d ≥ 1, then the solutions (1.7)
behind the tumour front, due to the strong acidity effects, describe a process, called homogeneous
invasion, where the healthy tissue is completely destroyed, whilst if 0 < d < 1, then the solutions
(1.6) describe a situation, called heterogeneous invasion, with a residual concentration of healthy
tissue given by the value 1− d.
Moreover, the profiles u, v, w are assumed to be monotonic, increasing in the case of u and
decreasing in the case of v and w.
It is important to point out that no rigorous proof of the existence of front-type solutions for the
system (1.2) is presently available, and this issue remains an open problem.

1.2 Preliminary results

Following the approach by Fasano et al. [7], in this section, we introduce some technical
lemmas which are used for the analysis of travelling wave solutions to system (1.2).
We remark that, although the results in [7] apply to the case of homogeneous (constant) diffusion
D3, we decide to trace the rescaled value A of this coefficient for some prospective comments
(refer to Chapter 2).

Lemma 1.2.1. Let A, θ, c > 0 and f a bounded continuous function. Then the equation:

AW ′′ + θW ′ − cW = f (1.8)

admits the solution:
W (z) =

1

r2 − r1
[I1(z) + I2(z)] (1.9)

where

r1 =
−θ +

√
θ2 + 4Ac

2A
> 0,

r2 =
−θ −

√
θ2 + 4Ac

2A
< 0

(1.10)
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and

I1(z) =
1

A

∫ +∞

z
e−r1(s−z)f(s) ds, I2(z) =

1

A

∫ z

−∞
e−r2(s−z)f(s) ds. (1.11)

Moreover, if lim
z→±∞

f(z) = f(±∞) = f± both exist, then

I1(+∞) =
f(+∞)

Ar1
, (1.12)

together with

I1(−∞) =

{
0 if

∫ +∞
−∞ e−r1sf(s) ds is finite

f(−∞)
Ar1

if
∫ +∞
−∞ e−r1sf(s) ds is not finite

(1.13)

I2(−∞) =
f(−∞)

Ar2
, (1.14)

and together with

I2(+∞) =

{
0 if

∫ +∞
−∞ e−r2sf(s) ds is finite

−f(+∞)
Ar2

if
∫ +∞
−∞ e−r2sf(s) ds is not finite

(1.15)

Proof. The outcome is achieving by using the standard formula of variation of constants for the
equation (1.8), which provides

W (z) =
er1z

A

[
c1 −

1

r2 − r1

∫ z

0
e−r1sf(s) ds

]
+
er2z

A

[
c2 +

1

r2 − r1

∫ z

0
e−r2sf(s) ds

]
where r1 and r2 are given in (1.10), while c1 and c2 are arbitrary constants. Therefore, we choose

c1 =
1

r2 − r1

∫ +∞

0
e−r1s

f(s)

A
ds, c2 =

1

r2 − r1

∫ 0

−∞
e−r2s

f(s)

A
ds,

since f is bounded and both these integrals converge. Hence we obtain (1.9)-(1.11).
A direct calculation also gives:

I1(+∞) = lim
z→+∞

∫ +∞
z e−r1sf(s) ds

Ae−r1z
= lim

z→+∞

e−r1zf(z)

−r1Ae−r1z

and we obtain (1.12). If
∫ +∞
−∞ e−r1sf(s) ds is finite, then I1(−∞) = 0. On the other hand, if∫ +∞

−∞ e−r1sf(s) ds is not finite, then

I1(−∞) = lim
z→−∞

∫ +∞
z e−r1sf(s) ds

Ae−r1z
= lim

z→−∞

−e−r1zf(z)

−r1Ae−r1z

and hence (1.13) holds. The case for I2 is similar, so the proof of (1.14)-(1.15) is omitted.

Lemma 1.2.2. Let φ(z) = e−
∫ z
0 g(s) ds, for a continuous function g with bounded limits at infinity,

namely lim
z→±∞

g(z) = g(±∞) = g± both exist. Assuming l > 0 it holds that
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1. if g(+∞) = l, then φ(+∞) = 0

2. if g(+∞) = −l, then φ(+∞) = +∞

3. if g(−∞) = l, then φ(−∞) = +∞

4. if g(−∞) = −l, then φ(−∞) = 0

Proof. Only the case 1. is given, because the others are similar.
If g(+∞) = l > 0, then there exists M > 0 such that |g(s) − l| < l/2 for all s > M . Hence, for
all z > M we have that

0 ≤ φ(z) = e−
∫M
0 g(s) dse−

∫ z
M g(s) ds ≤ e−

∫M
0 g(s) dse−l(z−M)/2

which finally implies φ(z) → 0 as z → +∞.

We make use of the previous results to deduce an equivalent system corresponding to (1.5)
with asymptotic conditions (1.6)-(1.7). We start by recalling the second equation of system (1.5)
as following

0 = D[(1− u)v′′ − u′v′] + θv′ + rv(1− v)

v(−∞;D) = 1, v(+∞;D) = 0.
(1.16)

Then, we apply Lemma 1.2.1 to the third equation, with f(s) = −cv(s;D), and we obtain

w(z;D) =
c

A(r1 − r2)

[
er1z

∫ +∞

z
e−r1sv(s;D) ds + er2z

∫ z

−∞
e−r2sv(s;D) ds

]
(1.17)

and r1 and r2 as defined in (1.14).
Moreover, since f(+∞) = −cv(+∞;D) = 0, we have I1(+∞) = I2(+∞) = 0, and hence
w(+∞;D) = 0. On the other hand, since

−c
∫ +∞

−∞
e−r1sv(s;D) ds = −∞

we deduce from (1.13) and (1.14) that

w(−∞;D) =
c

A(r1 − r2)

[
er1(−∞)

∫ +∞

−∞
e−r1sv(s;D) ds

+ er2(−∞)

∫ −∞
−∞

e−r2sv(s;D) ds
]

= 1

The first equation of system (1.5) is a Bernoulli equation, and it can be solved explicitly to obtain

u(z;D) =
θ φ(z;D)∫ +∞

z φ(s;D) ds
,

φ(z;D) = e−
∫ z
0 [1−dw(s;D)]/θ ds

(1.18)

Let g(s) = [1 − dw(s;D)]/θ. then g(+∞) = 1/θ > 0 and φ(+∞;D) = 0 by using Lemma 1.2.2.
It follows that

u(+∞;D) = θ lim
z→+∞

φ(z;D)∫ +∞
z φ(s;D) ds

= θ lim
z→+∞

−φ(z;D)g(z)

−φ(z;D)
= θg(+∞) = 1

9



for all d > 0. Furthermore, g(−∞) = (1− d)/θ. If 0 < d < 1, then φ(−∞;D) =∞ from Lemma
1.2.2,

∫∞
−∞ φ(s;D) ds = +∞ and

u(−∞;D) = θ lim
z→−∞

φ(z;D)∫ z
−∞ φ(s;D) ds

= θ lim
z→−∞

−φ(z;D)g(z)

−φ(z;D)
= 1− d.

If d > 1, then φ(−∞;D) = 0 from Lemma 1.2.2, together with

0 <

∫ +∞

−∞
φ(s;D) ds ≤ +∞

and
u(−∞;D) =

θφ(−∞;D)∫∞
−∞ φ(s;D) ds

= 0.

Finally, in d = 1, then g is a non-negative monotone increasing function satisfying g(−∞) = 0.
Although we can not apply Lemma 1.2.2, we notice that 0 < φ(−∞;D) ≤ ∞ and therefore∫ +∞
−∞ φ(s;D) ds = +∞, so that it is straightforward to show that u(−∞;D) = 0. Thus, we have
proven the equivalence of the travelling waves model (1.5) with (1.6)-(1.7) with (1.16)-(1.18).

We conclude this section by enunciating two results (without proof) which are useful for
analysing the asymptotic behaviour of the travelling wave solutions later on.

Lemma 1.2.3. Let φ be a continuous function and α, sL, sR ∈ R, with α > 0. We consider
I(D) =

∫ sR
sL

eφ(s)/Dα ds as D → 0+.
Then the following statements hold:

1. if φ′(s) < 0 for all sL ≤ s < sR, then

I(D) ' −D
αeφ(sL)/Dα

φ′(sL)

where the symbol ' denotes the approximation approximation neglecting higher orders of D;

2. if φ′(s) > 0 for all sL < s ≤ sR, then

I(D) ' Dαeφ(sR)/Dα

φ′(sR)
;

3. if φ has a unique maximum at some point sL < s∗ < sR (thus φ′(s∗) = 0 and φ′′(s∗) < 0),
then

I(D) '
√

2πDα/2eφs∗/Dα√
−φ′′(s∗)

;

The proof follows from a standard application of Laplace’s method to approximate integrals
containing a large parameter [3].

Lemma 1.2.4. Let d, c, A, θ0 > 0 and let us define

φ−(z) =
1

θ0

[
(d− 1)z +

d

2
√
c/A

(1− e
√
c/Az)

]
,

φ+(z) =
1

θ0

[ d

2
√
c/A

(1− e−
√
c/Az)− z

]
.

Then the following properties hold:
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1. φ−(0) = φ+(0) = 0.

2. the first and second order satisfy

φ′−(z) =
1

θ0

(
d− 1− d

2
e
√
c/Az

)
, φ′′−(z) = −

d
√
c/A

2θ0
e
√
c/Az,

φ′+(z) =
1

θ0

(d
2
e
√
c/Az − 1

)
, φ′′−(z) = −

d
√
c/A

2θ0
e−
√
c/Az,

3. if

z− =
1√
c/A

log
2(d− 1)

d
< 0 for 1 < d < 2

then φ−(z−) > 0, φ′−(z−) = 0 and φ′′−(z−) < 0.

4. if

z+ =
1√
c/A

log
d

2
> 0 for d > 2

then φ+(z+) > 0, φ′+(z+) = 0 and φ′′+(z+) < 0

1.3 Analysis of slow waves

Following the definition by Fasano et al. [7], a slow travelling wave is a solution (u, v, w) to
the system (1.1) whose components are positive and such that θ = θ0D

α with θ0, α > 0 and
θ0 = O(1) as D → 0+, in contrast to fast travelling waves for which θ = O(1).

We focus our attention on the analysis of slow waves solutions for (1.5). Indeed, since the
choice of initial data designed to reproduce in vitro experiments is such that the data for the
tumour is compactly supported on the right, then the existence of fast waves is not expected.
However, from a biological and diagnostic point of view, fast waves are equally critical, therefore
in future works it will be important to analyse them. Our forthcoming analysis makes use of
matched asymptotic expansions method [3, 15].

We assume that the wave profiles possess two different regions: an outer region, corresponding
to |z| � 1, where the solution and its derivatives do not exhibit large variations; an inner region,
corresponding to a neighborhood of z = 0, where the derivatives undergo considerable changes.
Furthermore, the branches of solution in inner and outer regions are matched in a sufficient smooth
way.

We deal with the auxiliary system (1.16)-(1.18), which has been proven to be equivalent to
(1.5).
Let us define:

u(z;D) = U(ξ;D), v(z;D) = V (ξ;D), w(z;D) = W (ξ;D),

where ξ = z/Dα denotes a rescaled variable suitable for the analysis inside the inner region.
Substituting to (1.16)-(1.18) and taking the derivative with respect to ξ, we obtain

0 = D1−2α[(1− U)V̈ − U̇ V̇ ] + θ0V̇ + rV (1− V ), (1.19)
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U(ξ;D) =
θ0D

αφ(Dαξ;D)∫ +∞
Dαξ φ(s;D) ds

, (1.20)

W (ξ;D) =
c

A(r1 − r2)

[
er1D

αξ

∫ +∞

Dαξ
e−r1sV

( s

Dα
;D
)
ds

+ er2D
αξ

∫ Dαξ

−∞
e−r2sV

( s

Dα
;D
)
ds,

] (1.21)

where the derivatives are taken with respect to ξ together with the following boundary conditions

U(±∞;D) = u(0±;D), V (±∞;D) = v(0±;D), W (±∞;D) = w(0±;D).

which are deduced from the matching requirement between inner and outer regions.

1.3.1 Uniform approximation for w

We define the outer solution as

uout(z) = u(z; 0), vout(z) = v(z; 0), wout(z) = w(z; 0),

while inner solution is given by

Uin(ξ) = U(ξ; 0), Vin(ξ) = V (ξ; 0), Win(ξ) = W (ξ; 0).

Looking at the equation for v in (1.16), we remark that the choice D = 0 leads to

vout(z) =

{
1 if z < 0

0 if z > 0

Therefore, we can write the outer solution corresponding to the H+ ions concentration as follows

wout(z) =

√
c

2
√
A

[
e
√
c/Az

∫ ∞
z

e−
√
c/Asvout(s) ds + e−

√
c/Az

∫ z

−∞
e
√
c/Asvout(s) ds

]
,

and hence

wout(z) =

{
1− 1

2e
√
c/Az if z < 0

1
2e
−
√
c/Az if z > 0

For the inner solution, putting D = 0 in equation (1.21) and using the fact that Vin(+∞) =
vout(0+) = 0 and Vin(−∞) = vout(0−) = 1, we obtain

Win(ξ) =

√
c

2
√
A

[ ∫ ∞
0

e−
√
c/AsVin(∞) ds +

∫ 0

−∞
e
√
c/AsVin(−∞) ds

]
=

1

2

for any ξ ∈ R.
We also consider the overlapping region where the value of w is the same for the inner and outer
solution which is give by wc = Win(±∞) = wout(0±) = 1

2 . In order to construct a uniform
approximation for w, we add the inner and outer branches and then subtract the value in the
overlapping region and we conclude that

w(z;D) ' wout(z) +Win

( z

Dα

)
− wc =

{
1− 1

2e
√
c/Az if z < 0

1
2e
−
√
c/Az if z > 0

(1.22)
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1.3.2 Uniform approximation for u as function of the parameter d

By substituting the uniform approximation (1.22) into the equation (1.18) we get

φ(z;D) '

{
eφ−(z)/Dα if z < 0

eφ+(z)/Dα if z > 0

and consequently, we deduce that

u(z;D) '


θ0Dαe

φ−(z)/Dα∫ 0
z eφ−(s)/Dα ds+

∫∞
0 eφ+(s)/Dα ds

if z < 0,

θ0Dαe
φ+(z)/Dα∫∞

z eφ+(s)/Dα ds
if z < 0,

(1.23)

where φ+ and φ− are defined as in Lemma (1.2.4).
Now, we analyse three different cases, according to the value of the parameter d.

Case 0 < d < 1

Suppose that z > 0. Then for any z ≤ s <∞ we have

φ′+(s) =
1

θ0

(
d

2
e−
√
c/As − 1

)
<

1

θ0

(
d

2
− 1

)
< 0.

Using Lemma (1.2.3) 1. we obtain the approximation∫ ∞
z

eφ+(s)/Dα ds ' −D
αeφ+(z)/Dα

φ′+(z)

and by substituting in to (1.23), for z > 0 we get

u(z;D) ' −θ0φ
′
+(z) = 1− d

2
e−
√
c/Az. (1.24)

Suppose that z < 0. Then for any 0 ≤ s <∞ we have

φ′+(s) =
1

θ0

(d
2
e−
√
c/As − 1

)
≤ 1

θ0

(d
2
− 1
)
< 0.

Using Lemma (1.2.3) 1. we obtain the approximation∫ ∞
0

eφ+(s)/Dα ds ' −D
αeφ+(0)/Dα

φ′+(0)
=

2θ0D
α

2− d
.

Moreover, for any z ≤ s < 0 we have

φ′−(s) =
1

θ0

(
d− 1− d

2
e
√
c/As

)
<
d− 1

θ0
< 0.

and using Lemma (1.2.3) 1. we obtain the approximation∫ 0

z
eφ−(s)/Dα ds ' −D

αeφ−(z)/Dα

φ′−(z)
.
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Adding the two approximations and recalling that φ−(z) > 0 for z < 0 and 0 < d < 1, we get for
all z < 0 ∫ 0

z
eφ−(s)/Dα ds+

∫ +∞

0
eφ+(s)/Dα ds ' −D

αeφ−(z)/Dα

φ′−(z)
.

Finally, by substituting this formula to (1.23) we conclude for z < 0 that

u(z;D) ' −θ0φ
′
−(z) = 1− d+

d

2
e
√
c/Az (1.25)

We notice that the value of u in the inner region is

U(ξ;D) = u(Dαξ;D) '

{
1− d+ d

2e
√
c/ADαξ if ξ < 0

1− d
2e
−
√
c/ADαξ if ξ > 0

Hence, setting D = 0, we have Uin(ξ) = 1− d
2 for ξ ∈ R.

Case 1 < d < 2

We skip the details of the analysis for the case z > 0 because it is the same as for 0 < d < 1,
hence we conclude that

u(z;D) ' 1− d

2
e−
√
c/Az

together with ∫ ∞
0

eφ+(s)/Dα ds ' 2θ0D
α

2− d
.

Suppose z < 0 and take z− as defined in Lemma (1.2.4). Then, we distinguish two sub-cases.
Let z− < z < 0. For any z ≤ s < 0, then s > z− and

φ′−(s) =
1

θ0

(
d− 1− d

2
e
√
c/As

)
<

1

θ0

(
d− 1− d

2
e
√
c/Az

)
= 0.

Using Lemma (1.2.3) 1. we obtain the approximation∫ 0

z
eφ−(s)/Dα ds ' −D

αeφ−(z)/Dα

φ′−(z)

and hence, using the fact that φ−(z) < z for all z− < z < 0, we get∫ 0

z
eφ−(s)/Dα ds +

∫ ∞
0

eφ+(s)/Dα ds ' −D
αeφ−(z)/Dα

φ′−(z)
.

Therefore, from (1.23) we obtain for z− < z < 0 that

u(z;D) ' −θ0φ
′
−(z) = 1− d+

d

2
e
√
c/Az. (1.26)

Let z < z−. Using Lemma (1.2.3) 3. and Lemma (1.2.4) 3., we have that φ−(z−) > 0 and thus
we obtain ∫ 0

z
eφ−(s)/Dα ds '

√
2πDα/2eφ−(z−)/Dα√

−φ′′−(z−)
=

√
2πθ0√

c/A(d− 1)
Dα/2eφ−(z−)/Dα

14



so that ∫ 0

z
eφ−(s)/Dα ds +

∫ ∞
0

eφ+(s)/Dα ds

'
√

2πθ0√
c/A(d− 1)

Dα/2eφ−(z−)/Dα .

Therefore, for z < z− we conclude that

u(z;D) '

√√
c/A(d− 1)θ0

2π
Dα/2e[φ−(z)−φ−(z−)]/Dα (1.27)

We notice that the value of u in the inner region is

U(ξ;D) = u(Dαξ;D) '

{
1− d+ d

2e
√
c/ADαξ if ξ < 0

1− d
2e
−
√
c/ADαξ if ξ > 0

Hence, setting D = 0, we have Uin(ξ) = 1− d
2 for ξ ∈ R.

Case d > 2

Suppose z > 0 and take z+ as defined in Lemma (1.2.4). Then, we distinguish two sub-cases.
Let z > z+. For any z ≤ s <∞, then s > z+ and

φ′+(s) =
1

θ0

(
d

2
e−
√
c/As − 1

)
<

1

θ0

(
d

2
e−
√
c/Az − 1

)
= 0.

Using Lemma (1.2.3) 1. we obtain the approximation∫ ∞
z

eφ+(s)/Dα ds ' −D
αeφ+(z)/Dα

φ′+(z)

and hence, for all z > z+, we get

u(z;D) ' −θ0φ
′
+(z) = 1− d

2
e−
√
c/Az. (1.28)

Let 0 < z < z+. Using Lemma (1.2.3) 3. and Lemma (1.2.4) 4., we obtain∫ ∞
z

eφ+(s)/Dα ds '
√

2πDα/2eφ+(z+)/Dα√
−φ′′+(z+)

=

√
2πθ0√
c/A

Dα/2eφ+(z+)/Dα

Thus, for 0 < z < z+ we conclude that

u(z;D) '

√√
c/Aθ0

2π
Dα/2e[φ+(z)−φ+(z+)]/Dα

Now, suppose z < 0. Using Lemma (1.2.3) 3. and Lemma (1.2.4) 4. we have that∫ ∞
0

eφ+(s)/Dα ds '
√

2πDα/2eφ+(z+)/Dα√
−φ′′+(z+)

=

√
2πθ0√
c/A

Dα/2eφ+(z+)/Dα
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and also for any z < s ≤ 0,

φ′−(s) =
1

θ0

(
d− 1− d

2
e
√
c/As

)
≥ 1

θ0

(
d− 1− d

2

)
=
d− 2

2θ0
> 0

Using Lemma (1.2.3) 2. we obtain∫ 0

z
eφ−(s)/Dα ds ' Dαeφ−(0)/Dα

φ′−(0)
=

2θ0D
α

d− 2

and using the fact that φ+(z+) > 0 from Lemma (1.2.4) 4. we have that∫ 0

z
eφ−(s)/Dα ds +

∫ ∞
0

eφ+(s)/Dα ds '
√

2πθ0√
c/A

Dα/2eφ+(z+)/Dα

Thus, for z < 0 we conclude that

u(z;D) '

√√
c/Aθ0

2π
Dα/2e[φ−(z)−φ+(z+)]/Dα (1.29)

We notice that the value of u in the inner region is

U(ξ;D) = u(Dαξ;D) '


√√

c/Aθ0
2π Dα/2e[φ−(Dαξ)−φ+(z+)]/Dα if ξ < 0√√
c/Aθ0
2π Dα/2e[φ+(Dαξ)−φ+(z+)]/Dα if ξ > 0

In order to prove that Uin(ξ) = U(ξ; 0) = 0 for all ξ ∈ R, we compute

φ−(Dαξ)

Dα
=

1

θ0

[
(d− 1)ξ +

d

2
√
c/A

.
1− e

√
c/ADαξ

Dα

]
=

1

θ0

[
(d− 1)ξ +

d

2
√
c/A

.
−
√
c/AξDα − (

√
c/Aξ)2D2α/2! +O(D2α)

Dα

]
=

(d− 2)ξ

2θ0
+O(Dα).

Then for ξ < 0 we have

lim
D→0+

φ−(Dαξ)

Dα
=

(d− 2)ξ

2θ0

and hence Uin(ξ) = 0 for ξ < 0 since φ+(z+) > 0 from Lemma 1.2.4 4.
We can use a similar approach to claim that

lim
D→0+

φ+(Dαξ)

Dα
=

(d− 2)ξ

2θ0

and hence Uin(ξ) = 0 for ξ > 0 and Uin(0) = 0.
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Limit cases d = 1 and d = 2

We deal with these two limit cases by taking the lateral limits of the previous cases.
If we take the limit as d → 1− in (1.25) we obtain

u(z;D) '

{
1
2e
√
c/Az if z < 0

1− 1
2e
−
√
c/Az if z > 0.

and we obtain the same approximation if we take the limit as d → 1+ which implies z− → −∞
in (1.27).
In the inner region we get

U(ξ;D) = u(Dαξ;D) '

{
1
2e
√
c/ADαξ if ξ < 0

1− 1
2e
−
√
c/ADαξ if ξ > 0

and putting D = 0 we conclude that Uin(ξ) = 1
2 for all ξ ∈ R.

If we take the limit as d → 2− which implies z− → 0 in (1.27) we obtain

u(z;D) '


√√

c/Aθ0
2π Dα/2eφ−(z)/Dα if z < 0

1− e−
√
c/Az if z > 0

and we obtain the same approximation if we take the limit as d → 2+ which implies z+ → 0 in
(1.29) we get the same approximation.
In the inner region we get

U(ξ;D) = u(Dαξ;D) '


√√

c/Aθ0
2π Dα/2eφ−(Dαξ)/Dα if ξ < 0

1− e−
√
c/ADαξ if ξ > 0

and putting D = 0 we conclude that Uin(ξ) = 0 for all ξ ∈ R.
As a matter of fact, the value Uin is constant for all d > 0.

1.3.3 Uniform approximation for v

Finally, we consider the equation for the tumour cells concentration v. Putting D = 0 in
(1.16), we can distinguish two cases.
If α > 1/2, then V̈in = 0, because the first order derivatives and the growth term are asymptoti-
cally null, therefore the second derivative has also to be null when 1 − 2α < 0, This means that
Vin(ξ) is a linear function, and hence the conditions Vin(−∞) = vout(0−) = 1 and Vin(+∞) =
vout(0+) = 0 can not be satisfied simultaneously.
If α < 1/2, then Vin satisfies the following Bernoulli equation

θ0V̇in + rVin(1− Vin) = 0

with boundary conditions:
Vin(−∞) = 1, Vin(+∞) = 0,
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hence the solution is
Vin(ξ) =

1

1 + erξ/θ0
.

If α = 1/2, then Vin satisfies the following Fisher-KPP equation

KV̈in + θ0V̇in + rVin(1− Vin) = 0

with boundary conditions
Vin(−∞) = 1, Vin(+∞) = 0.

where K = d/2 if 0 < d ≤ 2 and K = 1 if d > 2. Therefore, there exists a solution of the form
Vin(ξ) = φF (ξ; θ0) for all θ0 ≥ 2

√
rK [9].

We also consider the overlapping region where the value of v is the same for the inner and outer
solution which is given by vc = Vin(+∞) = vout(0+) = 0 for z > 0 and vc = Vin(−∞) =
vout(0−) = 0 for z < 0. We construct a uniform approximation for v by adding the inner and
outer approximations and then we subtract the value in the overlapping region and hence we
conclude that

v(z;D) ' vout(z) + Vin

(
z

Dα

)
− vc

=

{
1

1+erz/(θ0D
α) if α < 1/2

φF ( z√
D

; θ0) if α = 1/2.

(1.30)

We notice that we do not have valid solutions for α > 1/2, as illustrated at the beginning of
this section.

1.3.4 An estimate of the width of the interstitial gap

From a mathematical point of view, an interstitial gap for the system (1.5) is an interval I
such that, for all z ∈ I it holds

u(z;D) + v(z;D)� 1.

For the case d > 2, from the results in Section 1.3 it is clear that I ' (0, z+) and hence the
width of the gap is estimated by the value

z+ =
1√
c/A

log
d

2
, (1.31)

whilst for 0 < d ≤ 2 this gap does not exist. Indeed, when 0 < z < z+, we have

v(z;D) ' vout(z) = 0

and

u(z;D) '

√
θ0

√
c/A

2π
Dα/2e[φ+(z)−φ+(z+)]/Dα = O(Dα/2e−C/D

α
)

for some C = C(z) > 0 (using the fact that φ′+(z) > 0 for 0 < z < z+).
Nevertheless, for the case a < d < 2 we can also give an interpretation of the value z−. Indeed,

v(z;D) ' vout(z) = 1 for z < 0. For z < z−, u is almost zero because

u(z;D) '

√√
c/A(d− 1)θ0

2π
Dα/2e[φ−(z)−φ−(z−)]/Dα = O(Dα/2e−C/D

α
)
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where C = C(z) > 0 since φ−(z) > 0 for z < z−. For z− < z < 0 we have that u(z;D) = O(1)
and it leaves z = 0 with a positive derivative.
Therefore, the interval (z−, 0) can be considered as an overlapping region where healthy and
cancer tissues can be simultaneously found for 1 < d < 2 and hence the width of this region is
z−.

Remark 1.3.1. We compare the estimate (1.31) for the width of the interstitial gap with the
value proposed in [21] which is given for A homogeneous and a� 1 by the approximation

z+ '
1√
c

log
d

2
+

√
θ√
c

(1.32)

Despite no details are provided on the derivation of the above formula in [21], it is remarkable
that estimate (1.31) is in excellent agreement with (1.32) not only for a� 1, but also for smaller
values a > 2.
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Chapter 2

Numerical approximation

For the numerical investigation we consider the non-dimensionalized system:
ut = u(1− u)− duw
vt = rv(1− v) +D[(1− u)vx]x

wt = c(v − w) + (Awx)x

(2.1)

and the experimental domain is assumed to be the one-dimensional interval [−L,L], with L > 0.
This resultant version allows to operate with fewer (positive) parameters d, r, D and c , thus
reducing their original range and coping with scaled functions u, v, w and A. For the numerical
simulation, we consider the homogeneous Neumann boundary conditions.

The numerical results we will show are consistent with those illustrated in [7], together with
an application of the analytical approach to the model.

Remark 2.0.1. We observe that the diffusion term in the third equation of (2.1) can be rewritten
as

(Awx)x = Axwx +Awxx

however, this alternative is not useful for the numerical simulation, as we will discuss later in
Section 2.1.

2.1 The numerical algorithm

We adopt a numerical strategy based on the finite volume method, which guarantees con-
sistency and stability in terms of closeness to the physics of the model [32]. The algorithm is
semi-implicit in time and employs a non-uniform discretization mesh in space.

Let Ci = [xi− 1
2
, xi+ 1

2
) be the (one-dimensional) finite volume centred in xi =

x
i− 1

2
+x

i+ 1
2

2 , for
i = 1, 2, . . . , N , where N is the number of vertices, which is fixed. Let ∆xi = |xi+ 1

2
− xi− 1

2
| be

the variable cells’ size, hence |xi− xi−1| = ∆xi−1

2 + ∆xi
2 is the length of an interfacial interval (see

Figure 2.1).
We build a piecewise constant approximation of the function A(x) by means of its integral cell-
averages, namely

Ai =
1

∆xi

∫
Ci

A(x) dx .
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Figure 2.1: Piecewise constant reconstruction on non-uniform mesh

and we perform the same projection also for the solution to the system (2.1) by defining

ui(t) =
1

∆xi

∫
Ci

u(x, t) dx ,

for example.
Firstly, we consider the equation for the healthy tissue concentration u and its finite volume

integral version given by

1

∆xi

∫
Ci

ut dx =
1

∆xi

∫
Ci

u(1− u) dx − d

∆xi

∫
Ci

uw dx,

so that we obtain the following approximation

u′i = ui(1− ui)− duiwi (2.2)

where the time dependence on t is dropped for shortness (with an abused of notation for the
symbols of the numerical variables).
Then, we consider the equation for the malignant tissue concentration v and its finite volume
integral version given by

1

∆xi

∫
Ci

vt dx =
r

∆xi

∫
Ci

v(1− v) dx +
D

∆xi

∫
Ci

[
(1− u)vx

]
x
dx

Hence, we need a specific approach for the discretization of the nonlinear diffusion term. We
proceed by evaluating the differential term at the mesh interfaces, as suggested by the theorem of
the divergence (which is actually the fundamental theorem of integral calculus in one dimension),
and we make use of interfacial differences to approximate the derivatives as follows

D

∆xi

[
(1− ui)∆xi + (1− ui+1)∆xi+1

∆xi + ∆xi+1
.
vi+1 − vi

∆xi
2 + ∆xi+1

2

−(1− ui−1)∆xi−1 + (1− ui)∆xi
∆xi−1 + ∆xi

.
vi − vi−1

∆xi−1

2 + ∆xi
2

] (2.3)

where the other interfacial quantities are approximated by building weighted averages whose
weights are the size of the adjacent finite volumes, so that ∆xi/∆xi+1 and ∆xi−1/∆xi are em-
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ployed at the interfaces x1+ 1
2
and xi− 1

2
respectively. Therefore, we obtain

v′i = rvi(1− vi) +
D

∆xi

[
(1− ui)∆xi + (1− ui+1)∆xi+1

∆xi + ∆xi+1
.
vi+1 − vi

∆xi
2 + ∆xi+1

2

−(1− ui−1)∆xi−1 + (1− ui)∆xi
∆xi−1 + ∆xi

.
vi − vi−1

∆xi−1

2 + ∆xi
2

] (2.4)

Finally, we consider the equation for the lactic acid concentration w and its finite volume integral
version given by

1

∆xi

∫
Ci

wt dx =
c

∆xi

∫
Ci

v dx − c

∆xi

∫
Ci

w dx+
1

∆xi

∫
Ci

(
Awx

)
x
dx,

and proceeding as for (2.3) we obtain

w′i = c(vi − wi) +
1

∆xi

(
Ai∆xi +Ai+1∆xi+1

∆xi + ∆xi+1
.
wi+1 − wi

∆xi
2 + ∆xi+1

2

−Ai−1∆xi−1 +Ai∆xi
∆xi−1 + ∆xi

.
wi − wi−1

∆xi−1

2 + ∆xi
2

) (2.5)

For the case of a uniform mesh with ∆xi = ∆x for all i = 1, 2, . . . , N , the semi-discrete system
is simplified as follows

u′i = ui(1− ui)− duiwi, (2.6)

v′i = rvi(1− vi) +
D

∆x

[
2− ui − ui+1

2
.
vi+1 − vi

∆x

−2− ui−1 − ui
2

.
vi − vi−1

∆x

]
,

(2.7)

w′i = c(vi − wi) +
1

∆x

(
Ai +Ai+1

2
.
wi+1 − wi

∆x

−Ai−1 +Ai
2

.
wi − wi−1

∆x

)
.

(2.8)

Remark 2.1.1. The use of the arithmetic average for dealing with diffusive equations is not
standard in numerical analysis, and the harmonic mean is instead preferable for practical reasons.
Hence, for instance, we can consider the following alternative version of the equation (2.8) for the
diffusion function A of the lactic acid concentration:

w′i = c(vi − wi) +
1

∆x

(
2AiAi+1

Ai +Ai+1
.
wi+1 − wi

∆x

− 2Ai−1Ai
Ai−1 +Ai

.
wi − wi−1

∆x

)
.

(2.9)

Nonetheless, it is important to observe that choosing harmonic mean leads to numerical issues
when dealing with degenerate diffusion functions [20], so that the use of harmonic mean for
diffusive equations with singularities can be pursued with advanced techniques and artifacts. For
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example, in the case of equation (2.7) for tumour cells density, as soon as the (nonlinear) diffusion
function (1−u) becomes null somewhere. Then, the diffusion matrix which defines the numerical
scheme becomes singular and, unfortunately, this is precisely the case of our simulations. Thus,
we can not straightforwardly apply the harmonic average and we finally recurred to the arithmetic
mean, although this issue will be better discussed in the future.

Remark 2.1.2. We point out that the equation (2.8) can be rewritten as follows

w′i = c(vi − wi) +
1

2∆x2

[
Ai(wi+1 − 2wi + wi−1)

+Ai+1(wi+1 − wi)−Ai−1(wi − wi−1)
]

which actually corresponds to the analytical splitting of the derivative (Awx)x in Axwx + Awxx,
as observed in Remark 2.0.1, and analogous considerations can be done for the nonlinear diffusion
term in the equation (2.10).

For the time discretization of the ordinary differential system obtained by grouping (2.6), (2.7)
and (2.8) we employ a semi-implicit strategy by considering a time step ∆tn = |tn+1 − tn| for
n = 0, 1, . . . . In particular, the reaction terms are treated explicitly, whilst the differential terms
on the right-hand side can be approximated implicitly, so that we obtain the following system

un+1
i = uni + ∆t

(
uni (1− uni )− duni wni

)
vn+1
i = vni + r∆t vni (1− vni )

+D
∆t

∆x

(
2− un+1

i − un+1
i+1

2
.
vn+1
i+1 − v

n+1
i

∆x

−
2− un+1

i−1 − u
n+1
i

2
.
vn+1
i − vn+1

i−1

∆x

)
wn+1
i = wni + c∆t(vni − wni )

+
∆t

∆x

(Ai +Ai+1

2
.
wn+1
i+1 − w

n+1
i

∆x

− Ai−1 +Ai
2

.
wn+1
i − wn+1

i−1

∆x

)

(2.10)

The boundary conditions are the Neumann-type vn1 = vn2 , wn1 = wn2 and vnN = vnN−1,
wnN = wnN−1, for n = 1, 2, . . . .
This implicit-explicit (IMEX) mixed approach allows to make less expensive choices for the time
step, compared to fully explicit algorithms which would be heavily conditioned by stability re-
strictions and consequently slower in computational time [24].

Remark 2.1.3. In practical applications, we need to impose boundary conditions also for u,
namely un1 = un2 and unN−1 = unN , even if the equation for the healthy tissue is indeed purely
ordinary one. In order to be consistent with the biological context, a diffusion term should
be considered also for the normal cells population, but the diffusivity of u would be extremely
slower than those for v and w, hence it can be omitted in the Gatenby-Gawlinski model (1.1).
Nevertheless, this simplification has to be taken into account when imposing numerical boundary
conditions for all the three equations to efficiently solve the fully discrete system (2.10).
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2.1.1 Short appendix: why have we used finite volumes?

There are essentially two methods for the discretization of derivatives, namely finite differences
and finite volumes [24]. In the one dimensional case, these two methods typically lead to the same
results, but the procedure through which they are obtained are significantly different. In order to
explain this point, we analyse the two approaches applied to the system (2.1) and in particular to
the equation for w by focusing on the functional (Awx)x with A replaced by its piecewise constant
projection on the spatial mesh (see Figure 1).
Firstly, we rewrite this term by splitting the derivatives as done in Remark 2.1.2

(Awx)x = Axwx +Awxx.

Thus, the finite volume integral formulation of the right-hand side is

1

∆x

∫ x
i+ 1

2

x
i− 1

2

Axwx dx+
Ai
∆x

∫ x
i+ 1

2

x
i− 1

2

wxx dx (2.11)

where we have considered a uniform spatial mesh. We notice that we took out Ai from the second
integral because it is constant inside each finite volume (see Figure 1). We discretize the second
integral as follows

Ai
∆x

(
wi+1 − wi

∆x
− wi − wi−1

∆x

)
=

Ai
∆x2

(
wi+1 − 2wi + wi−1

)
(2.12)

where the derivatives are approximated at the interfaces i − 1
2 and i + 1

2 respectively. Then, we
discretize the first integral in (2.11) as follows, for instance

1

2

Ai −Ai−1

∆x
.
wi − wi−1

∆x
+

1

2

Ai+1 −Ai
∆x

.
wi+1 − wi

∆x
(2.13)

where the products of derivatives are approximated with the average values at the interfaces i− 1
2

and i + 1
2 respectively and the ∆x in the denominator is simplified with the one resulting from

the length of the integral interval.
Finally, we can come back to recover the original discretization of (Awx)x as done in (2.10).

Now let us apply the finite differences for discretizing Awxx, so that we obtain

Ai
wi+1 − 2wi + wi−1

∆x2
.

which is the same as done in (2.12).
The difference occurs for the product Axwx, which is typically discretized by centred finite differ-
ences as follows

Ai+1 −Ai−1

∆x
.
wi+1 − wi−1

2∆x

and, therefore, it seems not to be possible to recover from the sum of these two parts any (consis-
tent) finite difference discretization of the compact form (Awx)x, differently from finite volumes
approach.
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2.2 Space-averaged propagation speed approximation

Once the numerical framework has been established, the natural step to proceed with experi-
ments and simulations consists in defining a wave speed estimation for the numerical solution.
Therefore, with the aim of providing a numerical approximation for the wave speed at time tn, we
employ the space-averaged estimate proposed in [19] and successfully applied to the case of a re-
active version of the Goldstein- Kac model for correlated reaction-diffusion systems in [17, 18, 22].
We briefly derive the main analytical concepts behind its formulation: let φ be a differentiable
function describing the travelling front profile, then we can write∫

R

[
φ(ξ + h)− φ(ξ)

]
dξ = h

∫
R

∫ 1

0

∂φ

∂ξ
(ξ + θh) dθdξ = h

∫ 1

0

∫
R

∂φ

∂µ
(µ) dµ dθ

= h

∫ 1

0

[
φ(+∞)− φ(−∞)

]
dθ = h

(
φ+ − φ−

)
where h > 0 is an increment, φ+ and φ− are two different asymptotic states for the function φ
(heteroclinic travelling front). Setting h = −s∆t, we deduce the following integral equation for
the wave speed

s =
1(

φ+ − φ−
)
∆t

∫
R

[
φ(ξ)− φ(ξ − s∆t)

]
dξ. (2.14)

We recall that travelling front are computed by imposing the change of variable ξ = x− st in the
system (2.1). For instance, if we focus on the invasion front with speed s > 0 of the tumour cells
density, hence φ(ξ) corresponds to v(x, t) in the original variables and the discrete version of the
space averaged wave speed estimation (2.14) over a uniform spatial mesh at time tn is given by
the LeVeque-Yee formula ([19])

sn =
∆x

∆t
.

1(
v+ − v−

) N∑
i=1

(
vni − vn+1

i

)
, (2.15)

with v+ and v− the stationary states of v in the system (2.1).
It is important to underline the strength of estimate (2.15) lying on its independence from the
dynamics of the solution provided by the differential model (2.1), thus being always numerically
computable.

2.3 Numerical simulations with homogeneous diffusion A

In order to validate the numerical algorithm, several simulations have been performed using
the scheme (2.10), with a uniform spatial mesh.

In this section, we are interested in recovering computational results described in the literature,
therefore the experiments are carried out with the parameters available in [7], as listed in Table
2.1, and then with the parameters in [21], as listed in Table 2.2. We assume T as the final time and
L the semi-length of the space interval [−L,L], while the spatio-temporal mesh is built by fixing
∆x = 0.005 and ∆t = 0.01. We point out that the choice of the spatial mesh indeed depends on
the tissues structure and geometry since the space-step ∆x should be small enough to capture the
inhomogeneities of the lactic acid diffusion function (refer to Section 2.1. This numerical issue
becomes even more crucial in multidimensional simulations, for which unstructured nonuniform
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Figure 2.2: Initial profiles for the numerical simulations

meshes are usually adopted to account for different geometrical characteristics (see Figure 1.1)
without penalising the computational time.
On the other hand, the choice of the time step ∆t depends not only on biological and physical
considerations, but also on the numerical stability which is established by the CFL condition [24].

The diffusion function A for the lactic acid concentration is assumed to be uniform with A > 0
constant. This assumption means that the tissues are completely homogeneous without structural
or functional differentiation, which represents a restrictive hypothesis typically far in vivo and in
vitro situation.
However, such case is considered mainly for numerical issues, in order to validate the scheme
(2.10) in view of more complex applications.

d r D c A L T

{0.5, 1.5, 2.5, 3, 12.5} 1 4 · 10−5 70 1 1 20

Table 2.1: Numerical values for the simulation parameters

For the choice of the initial profiles, a piecewise linear decreasing density is taken into account
for the cancer cells extending out from its core, where v = 1, and getting towards zero; for the
healthy cells density, the starting profile is simply obtained through a reflection, by imposing a
complementary behaviour with respect to the cancer cells density; finally, the extracellular lactic
acid concentration is initially equal to zero. The corresponding graphs are shown in Figure 2.2.

The results reported in Figure 2.4 demonstrate two different types of behaviours, which are
regulated by the parameter dmeasuring the destructive influence of the environment acidity on the
healthy tissue, and so taken as an indicator of the tumour aggressiveness. From a qualitative point
of view, all solutions evolve as forward propagation fronts moving from left to right with positive
wave speed. The plot displayed in Figure 2.4 (a) corresponds to a phenomenological regime
known as heterogeneous invasion, which turns out to happen when d < 1. It is characterized by
the coexistence of tumour and healthy tissue behind the wavefront, because a group of normal
cells survives to the low aggressiveness of the tumour. On the other hand, when d� 1, a different
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Figure 2.3: Microscope images of tumour-host interstitial gap. Source: [10]

evolution shape takes place, the so-called homogeneous invasion shown in Figure 2.4 (d), which
is the most aggressive configuration. Indeed, the healthy tissue is being completely destroyed
behind the advancing tumour cells wavefront because of the intensity of acidity induced into the
environment. A narrow overlapping zone actually persists for increasing values of d > 1, which
produces hybrid congurations as shown in Figure 2.4 (b) and Figure 2.4 (c).

We point out the presence of the so-called tumour-host hypocellular interstitial gap (Figure
2.3) in the homogeneous invasion which is a separation zone practically depleted of cells between
the healthy and cancer populations (see Figure 2.4 (d)). Such modelling prediction has been ex-
perimentally verified in both unfixed in vitro experiments and in flash-frozen tissues, by providing
stronger evidence to this phenomenon [10].

From a mathematical point of view, the strong dissimilarity in terms of steepness of the wave
profiles for u and v observed in Figure 2.4 is justified by the fact that somehow u inherits the
parabolic regularity of the lactic acid concentration w through the reaction term (see the fist
equation of the system (2.1), whereas the diffusion constant D of the neoplastic tissue is typically
very small (see Table 2.1). In fact, when passing from the system (1.1) to its non-dimensionalized
version (2.1), that parameter is deduced as D = D2/D3 and it is physically relevant to assume
the value of D3 larger than D2 [10].

For theoretical issues, we also consider the case with A � 1 and the formation of the gap
emerges for values greater than d = 12.5, because the acid diffusion is slower and hence the
tumour is less invasive (see in Figure 2.5).

Another effect on the shape of the wave profile can be appreciated dealing with the adimen-
sional parameter r, which is expected to be greater than 1 since deduced as r = ρ2/ρ1 from
physical considerations (refer to Section 1.1). Numerical simulations of such kind are significant,
since an increasing of the tumour cells reproduction rate r results in a different spatial invasion,
because the value of r actually modifies the wave propagation speed (see Figure 2.6).
Indeed, the second equation of system (2.1) with a logistic reaction term belongs to the class of
the Fisher-KPP equations [9], for which there exist travelling wave solutions if and only if their
wave speed is greater than 2

√
rD with r and D the corresponding reaction and diffusion rate,

respectively (refer to Section 1.1). Therefore, the propagation speed of the tumour front increases
together with the value of r and moreover this modification affects also the lactic acid and healthy
tissue concentration. We point out that, in order to appreciate the faster propagation dynamics,
we have widened to the right the spatial interval of the numerical simulations (see Figure 2.6).
Finally, it can be observed that the wave profile of the tumour front is steeper when r is larger.
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(a) heterogeneous invasion, d = 0.5 (b) hybrid configuration, d = 1.5

(c) hybrid configuration, d = 2.5 (d) homogeneous invasion, d = 12.5

Figure 2.4: Different configurations of the numerical solution: comparison between heterogeneous
evolution (a) and existence of the spatial interstitial gap within the homogeneous invasion (d)

Figure 2.5: Numerical solution still exhibiting a heterogeneous invasion for d = 12.5 and A = 0.1
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(a) moderate growth r = 1 (b) uncontrolled growth r = 10

Figure 2.6: Qualitative analysis of tumour propagation fronts and spatial invasion as function of
the adimensional growth rate (for d = 3)

(a) moderate growth, r = 1, (b) uncontrolled growth, r = 10

Figure 2.7: Wave speed approximation for different values of the adimensional growth rate r (for
d = 3)

Another substantial difference between the two simulation settings in Figure 2.6 is observed
when evaluating the wave speed approximation for tumour front, referring to the LeVeque-Yee
formula (2.14). We construct the graphs in Figure 2.7 by fixing the time scale on the x-axis, while
the values of the approximate wave speed s are reported on the on the y-axis.

It is evident that the more r is large, the more the wave speed is high and in both cases it
is possible to recognize the convergence towards an asymptotic threshold: the asymptotic wave
speed is estimated s∗ = 0.0111 for r = 1 and s∗ = 0.0387 for r = 10. Furthermore, the transient
time required before achieving the asymptotic propagation speed is smaller for larger r values and
a higher velocity is measured at the beginning: these are common features of dynamical systems
involving travelling front solutions [22].
More precisely, the wave speed asymptotic value is estimated as 0.01 for r = 1 and 0.038 for
r = 10, thus previous consideration about the crucial role of r in determining the wave speed are
confirmed. The trend of the wave speed approximation for increasing r values is plotted in Figure
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Figure 2.8: Numerical trend of the asymptotic wave speed (taken at time T = 20) for increasing
values of the adimensional growth rate r (for d = 3).

2.8, where the graph has been constructed by interpolating the asymptotic wave speed value for
r = 1 to r = 10 with evaluation step ∆r = 0.5.

Then, we consider other numerical simulations using the parameters listed in Table 2.2 and
we are interested in tracking the formation of the interstitial gap, whose appearance is expected
for d > 2 [7].

In particular, the reason for a different choice of parameters is to investigate the effects of
reducing the production of lactic acid by the cancer cells (whose rate is represented by c). Taking
a smaller value for c consequently implies to increase the length of the spatial interval [−L,L] in
order to better observe the asymptotic behaviour of the solution far from the origin, because the
stronger effects of diffusion with respect to reaction terms in the third equation of system (2.1).

d r D c A L T

{1.5, 2.5, 4} 1 4 · 10−5 2 1 5 20

Table 2.2: Numerical values for the simulation parameters

The graphs displayed in Figure 2.9 actually confirm such prediction, although some discrepancies
are revealed with respect to the results in [7] especially concerning the smoothness of the wave
profile for the healthy cells density, thus determining a smaller size for the gap separating the
host and tumour populations.

As done for the experimental data in Table 2.1, we consider the case with A � 1, since
diminishing the value of diffusion coefficient for the acid affects the gap width as shown by the
comparison illustrated in Figure 2.10.
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(a) hybrid configuration, d = 1.5 (b) threshold regime, d = 2.5

(c) homogeneous invasion, d = 4 (d) homogeneous regime, d = 7

Figure 2.9: Numerical simulation of the spatial interstitial gap formation from heterogeneous
evolution (a) to homogeneous invasion (c)-(d)

(a) homogeneous invasion (d = 12.5) for A = 1 (b) homogeneous invasion (d = 12.5) for A = 0.1

Figure 2.10: Comparison between different regimes of the lactic acid diffusion coefficient with
respect to the gap formation.
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(a) homogeneous invasion for c = 70 and d = 12.5 (b) homogeneous invasion for c = 2 and d = 12.5

Figure 2.11: Comparison between homogeneous configuration obtained with the same value for d
and different one for the production rate of lactic acid c

2.3.1 Modifying the parameter c

The rescaled parameter c appears in the reaction term c(v−w) of the third equation of system
(2.1)) and represents the production of lactic acid by the cancer cells. Thus, it is predictable that
changes in the value of c affect considerably the final configuration of the numerical solution.
Figure 2.11 (a) and (b) display two simulations obtained for d = 12.5 and the initial profile
in Figure 2.2, using the parameters of Table 2.1 and Table 2.2, respectively, with homogeneous
diffusion A = 1.

It is evident that the width of the spatial interstitial gap is much larger in the case c = 2
and this fact could appear paradoxical, since diminishing the lactic acid production is expected
to negatively affect the cancer spread.
However, looking at the non-dimensionalized Gatenby-Gawlinsky model (2.1), we observe that
the value of c determines a linear increase of the lactic acid concentration but also an exponential
decrease, since the solution of a homogeneous ODE of the form

dw

dt
= −cw

is actually w(t) = e−ct. Consequently, if c is smaller, the tumour produces acid at slow rate but
the physiological reabsorption is slow too; conversely, if c is larger, the cancer cells spread a higher
quantity of acid, which is nonetheless is absorbed at a much faster rate. Hence, the results in
Figure 2.11 are intrinsic to our model.
Finally, in Figure 2.12, we compare the two wave speed profiles related to the simulations in Figure
2.11, obtained using the LeVeque-Yee formula (2.14). It can be seen that c affects the propagation
speed and its asymptotic value, which is estimated as s∗ = 0.0124 for (a) and s∗ = 0.0156 for (b),
thus a smaller rate of acid production results in a faster velocity of the fronts.
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(a) homogeneous invasion (d = 12.5) for c = 70 (b) homogeneous invasion (d = 12.5) for c = 2

Figure 2.12: Wave speed trends for the same value for d and different production rate of lactic
acid c

2.4 Numerical simulations with heterogeneous piecewise constant
diffusion A

In this section, we provide numerical simulations for the system (2.1) by applying the scheme
(2.10), in presence of a heterogeneous diffusion coefficient A(x). We simplify the framework by
taking a piecewise constant function.
There are biological and physical reasons behind this particular choice: indeed, we suppose that A
represents the diffusion of the lactic passing from a specific tissue or organ to another one, hence
the diffusivity changes with the different nature and geometry of the environment. We aim at
investigating the effects of this transition on the motility of lactic acid, the consequences for the
consumption of healthy tissue and, finally, the modification occurring to the tumour propagation
fronts.

We assume the parameters d, r, D and c as described in the previous sections, T as the final
time and L the length of the spatial interval [0, L], with the spatio-temporal mesh built by fixing
∆x = 0.005 and ∆t = 0.01. As already discussed, the value of ∆x depends on the particular
organ or tissue considered, whilst ∆t has to be chosen also according to the CFL condition [24].
We deal with different initial profiles either piecewise constant or piecewise linear and different
values of A, so that we distinguish two main cases with relative subcases.
The first type of initial data is composed by a decreasing piecewise constant density for the cancer
cells extending out from its core, where v = 1, and having a jump at x = L

4 ; for the healthy cells
density, the starting graph is simply obtained through a reflection, by imposing a complementary
behaviour with respect to v; finally, the extracellular lactic acid concentration is initially equal to
zero. The corresponding graph are shown in Figure 2.13 (b), referring to the spatial interval [0, 1]
whilst the second type is similar to that used in the previous Subsection as shown in Figure 2.13
(a).
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(a) piecewise constant (b) piecewise linear

Figure 2.13: Initial profiles for the numerical simulations

2.4.1 A with single jump

As diffusion function A, we choose

A(x) =

{
a1 if x ∈ [0, 5

8L]

a2 if x ∈ [5
8L,L]

as illustrated for example in Figure 2.14.
We initially refer to the experimental data reported in Table 2.1 with the exception of A which

is not anymore homogeneous and we select a piecewise constant initial profile as shown in Figure
2.13 (a).
The results obtained with A strictly increasing a1 < a2 are displayed in Figure 2.15, specifically
for a1 = 0.1 and a2 = 1. We notice the formation of the spatial interstitial gap when d� 1, and
in particular for d = 35.
If we decrease the value of |a1− a2|, this modification of the diffusion inhomogeneity significantly
affects the formation of the gap, which occurs for smaller values of d (see Figure 2.16).

Remark 2.4.1. At this stage, we point out another advantage of using the finite volume method,
together with those already discussed in Subsection 2.1.1. Indeed, when considering a hetero-
geneous function A with discontinuities, the mathematical problem associated with system (2.1)
loses its regularity, since the characteristics of parabolicity are weaker, and this phenomenon is
quite clear from Figure 2.15. From an analytical point of view, this means that the functional
Axwx may not be well defined at x = 5

8L, which is the point of irregularity.
The integral formulation of the finite volume approach allows to correctly deal with this issue.

The results obtained with A strictly decreasing (a1 > a2) are displayed in Figure 2.17, specif-
ically for a1 = 1 and a2 = 0.1. We notice again the formation of the spatial interstitial gap when
d� 1, but in this case for d = 12.5 the gap is largely present.

It is also interesting to remark that the final profile on the healthy tissue density for hybrid and
heterogeneous regimes clearly manifests a discontinuity in its derivative, which is inherited from
the lactic acid configuration through the nonlinear reaction term in the first equation of system
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Figure 2.14: Profile of the lactic acid diffusion function with a1 = 0.1 and a2 = 1 in the spatial
interval [0, 1]

(2.1). The magenta vertical (dashed) line on the graphs of Figure 2.17 indicates the abscissa of
discontinuity for the diffusion function A, which passes exactly through the point where the lactic
acid and the healthy tissue concentrations have a discontinuity in their derivative (corner points).

Moreover, if we decrease the value of |a1 − a2|, this does not affect the formation and the
width of the gap, but the final profile of the lactic acid concentration is smoother and the corner
point is not anymore visible (see Figure 2.18).

Now we refer to the experimental data reported in Table 2.2 with the exception of A which
is not anymore homogeneous and we select a piecewise constant initial profile as shown in Figure
2.13 (a) on the spatial interval [0, 5]. As for the case of homogeneous diffusion in Section 2.3, we
increase the length of the spatial interval in order to better observe the asymptotic behaviour of
the propagating fronts when the production rate of H+ ions is smaller [21].
Firstly, we suppose A strictly increasing (a1 < a2) and we obtain the results shown in Figure 2.19,
where a1 = 0.1 and a2 = 1 have been chosen.

Then, we suppose A strictly decreasing (a1 > a2) and we obtain the results shown in Figure
2.20, where a1 = 1 and a2 = 0.1 have been chosen.

At the end of this Section, we make some comparisons and comments.
First of all, the presence of corner points in the solution profiles for u and w, which is observed
when A becomes discontinuous, obviously disappears in the case of homogeneous diffusion (see
Figure 2.4 and Figure 2.9).
Furthermore, the profile of solution u becomes smoother as d becomes larger enough for the
interstitial gap to emerge, as shown in Figure 2.17, because then the discontinuity point of A falls
into the region where the healthy tissue is null(see Figure 2.16).

Now we change the initial profile and we use the one displayed in Figure 2.13 (b). Performing
numerical simulations with the same data used above, we can see substantial differences only for
small values of d.

The results obtained for d = 0.5 and the other parameters of Table 2.1 are reported in Figure
2.21 with a comparison between the case of A strictly increasing a1 < a2 and strictly decreasing
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(a) heterogeneous invasion, d = 0.5 (b) hybrid configuration, d = 1.5

(c) hybrid configuration, d = 12.5 (d) homogeneous invasion, d = 35

Figure 2.15: Different configurations of the numerical solution in presence of heterogeneous dif-
fusion (a1 < a2): comparison between heterogeneous evolution (a) and existence of the spatial
interstitial gap within the homogeneous invasion (d)
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(a) hybrid configuration (d = 12.5) for a1 = 0.1 and
a2 = 1

(b) homogeneous invasion (d = 12.5) for a1 = 0.8 and
a2 = 1

(c) hybrid configuration, d = 12.5 for a1 = 0.1 and
a2 = 0.3

Figure 2.16: Homogeneous invasion with different values of the jump |a1 − a2|
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(a) heterogeneous invasion, d = 0.5 (b) hybrid configuration, d = 1.5

(c) hybrid configuration, d = 2.5 (d) homogeneous invasion, d = 12.5

Figure 2.17: Different configurations of the numerical solution in presence of heterogeneous dif-
fusion (a1 > a2): comparison between heterogeneous evolution (a) and existence of the spatial
interstitial gap within the homogeneous invasion (d)
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(a) homogeneous invasion (d = 12.5) for a1 = 1 and
a2 = 0.1

(b) homogeneous invasion (d = 12.5) for a1 = 1 and
a2 = 0.8

(c) homogeneous invasion (d = 12.5) for a1 = 0.3 and
a2 = 0.1

Figure 2.18: Homogeneous invasion with different values of the jump |a1 − a2|

39



(a) heterogeneous invasion, d = 0.5 (b) hybrid configuration, d = 1.5

(c) hybrid configuration, d = 2.5 (d) homogeneous invasion, d = 12.5

Figure 2.19: Different configurations of the numerical solution in presence of heterogeneous dif-
fusion (a1 < a2): comparison between heterogeneous evolution (a) and existence of the spatial
interstitial gap within the homogeneous invasion (d)
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(a) heterogeneous invasion, d = 0.5 (b) hybrid configuration, d = 1.5

(c) hybrid configuration, d = 2.5 (d) homogeneous invasion, d = 12.5

Figure 2.20: Different configurations of the numerical solution in presence of heterogeneous dif-
fusion (a1 > a2): comparison between heterogeneous evolution (a) and existence of the spatial
interstitial gap within the homogeneous invasion (d)
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(a) heterogeneous invasion with A strictly increasing
(a1 = 0.1 and a2 = 1)

(b) heterogeneous invasion with A strictly decreasing
(a1 = 1 and a2 = 0.1)

Figure 2.21: Configurations of the numerical solution starting from initial data in figure 2.13 (b)
in presence of heterogeneous piecewise constant diffusion function A for d = 0.5

(a1 > a2).
This suggests that if the tumour is not very aggressive (i.e. d is small), then the healthy tissue

is not completely destroyed.
There is a specific experimental purpose for the choice of two different initial profiles. Indeed,

the Riemann-type initial data in Figure 2.13 (a) reproduces many in vitro experiments where a
group of healthy cells is removed to inoculate a small colony of cancer ones, hence the initial
profile has a strong discontinuity which depends on sudden modifications of the environment.
On the other hand, the initial data in Figure 2.13 (b) refers to in vivo situations, where the
earlier development of cancer cells within a healthy tissue happens gradually without immediately
destroying the host environment.

In conclusion of this section, in Figure 2.22 we consider the data on Table 2.2 and we compare
A strictly increasing a1 < a2 with A strictly decreasing a1 > a2.

Remark 2.4.2. The numerical simulations presented in this section provide a support for strate-
gies to efficiently struggle against cancer spread in both experimental and clinical applications.
One may interfere with the tissue inhomogeneity to slow down the tumour front or rather act
pharmacologically only on regions where the cancer cells spread faster. Moreover, the fact that
some specific acid diffusion profiles lead to inefficient solutions could explain why some tissue
seems to be naturally tumour-free. For instance, soft tissue sarcomas of muscles, nerves and
blood vessels are very rare [14], maybe because of the fibrous tissues structure which obstructs
the destructive acid infiltration.

2.4.2 Modifying the parameter r

In this short section, we provide some examples about the behaviour of wavefront solutions
to the system (2.1) when the parameter r changes.
We assume a piecewise constant diffusion A with single jump, as illustrated in Figure 2.14 and
the piecewise linear initial profile in Figure 2.13 (b).
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(a) heterogeneous invasion and A strictly increasing
a1 < a2 (a1 = 0.1 and a2 = 1)

(b) heterogeneous invasion and A strictly decreasing
a1 > a2 (a1 = 1 and a2 = 0.1)

Figure 2.22: Configurations of the numerical solution starting from initial data in figure 2.13 (b)
in presence of heterogeneous piecewise constant diffusion function A for d = 0.5

The results of the comparison between small and bigger values of r are shown in Figure 2.23„
referring to Table 2.1 for the other numerical parameters and choosing d = 3. The inhomogeneous
function A is supposed to be strictly increasing or strictly decreasing with values a1 = 0.1 and
a2 = 1 and a1 = 1 and a2 = 0.1 respectively. The wave speed approximation for the tumour
front, computed by means of the LeVeque-Yee formula (2.14), is also plotted along with time in
Figure 2.24.
We observe that if r is larger, then the tumour cells invade the healthy tissue faster and this leads
to the shift of the wave front toward the right. Moreover, a reduction of the thickness of the
spatial interstitial gap is noticeable for larger r values.

As already noticed for the simulations with homogeneous diffusion A, the more r is large, the
more the wave speed is high: : for example, the wave speed asymptotic value is estimated as
0.001 for r = 1 and 0.0325 for r = 10 in Figure 2.24 (a) and (b) and in both cases it is possible to
appreciate the convergence towards the asymptotic threshold and this approach is faster in the
case of larger r, thus the previous considerations about the crucial role of r in determining the
wave speed are numerically confirmed.
Moreover, comparing there results with those obtained in Figure 2.7 for homogeneous A, we notice
that the behaviour of the wave speed is graphically similar, but the asymptotic value of velocity
changes. This suggests that the profile of A is determinant for the wave speed trend in the long
run.

As a matter of fact there are two main properties characterizing the tumour dynamics, namely
its aggressiveness and its invasiveness, which are represented in system (2.1) by the parameters
d and D respectively. For clinical application, the duality between highly aggressive but scarcely
invasive and rapidly extended but less aggressive tumours one constitutes a crucial issue [27].
The previous simulations suggest that fast growing tumours (i.e. large values of the growth rate
r) result also in enhanced invasiveness, hence these other properties are not independent. This
fact is extremely interesting for applied scientists and clinical researchers since finding optimal
strategies to control both these tumour parameters is still an open question [8].
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(a) moderated growth r = 1 and A strictly increasing (b) uncontrolled growth r = 10 and A strictly increasing

(c) moderate growth, r = 1 and A strictly decreasing (d) uncontrolled growth r = 10 and A strictly decreasing

Figure 2.23: Qualitative analysis of tumour front steepness and spatial invasion as function of
the adimensional growth rate in case of strictly increasing or decreasing diffusion function A (for
d = 3)
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(a) moderated growth r = 1 and A strictly increasing (b) uncontrolled growth r = 10 and A strictly increasing

(c) moderate growth r = 1 and A strictly decreasing (d) uncontrolled growth r = 10 and A strictly decreasing

Figure 2.24: Wave speed approximation trend of the tumour front for different values of the
adimensional growth rate r
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Another substantial difference between Table 2.1 and Table 2.2 is inherent to the value of c, the
parameter which measures the lactic acid production through the glycolitic metabolic process
adopted by the tumour. Therefore, a further critical question could be: does the modification
of lactic acid production affect the invasiveness and/or aggressiveness of the cancer cells? And if
yes, in which specific way?

2.5 Numerical simulations with periodic diffusion A

In this section, we provide numerical simulations for system (2.1)using the scheme (2.10), in
presence of a heterogeneous function A, which is supposed to be periodic.
This choice is related to the structure of most part of tissues, which are porous and heterogeneously
permeable and hence responsible of a non-uniform invasion by the lactic acid. Such a function A
may thus represent the effect of increased diffusivity for the H+ ions due to easy passage through
tissues for half its period, and the effect of reduction due to obstacles along the way [5].
It is worthwhile to underline that the choice of ∆x has to be made carefully, in order to avoid
trivial interpolations of the periodic diffusion function A if the space-step is too close to (a multiple
of) its period.

We choose the initial profiles in Figure 2.13 (b) on the spatial interval [0, 1] and we refer to
Table 2.1 for the numerical parameters (as the simulations referring to Table 2.2 are qualita-
tively similar) . We analyse different configurations for the diffusion function A by changing the
amplitude and frequency of its oscillations, according to the following expression

A(x) =
1

2
[a0(1− sin(ωx)) + α(1 + sin(ωx))]

=
1

2
(a0 + α) +

1

2
(α− a0) sin(ωx)

(2.16)

where α is the fixed amplitude of each oscillation and ω is the frequency (so that 1
ω is the period).

In order to be physically consistent with the non-dimensionalized model (2.1), it is assumed that
0 < a0 ≤ A(x) ≤ α for all x in the domain, thus a0 defining the uniformly positivity constant of
A.

2.5.1 Modifying the frequency

A modification of the parameter ω in (2.16) implies a change in the frequency of oscillations:
we suppose ω � 1 and we initially choose a0 = 0.1 and α = 1.
Numerical simulations with ω = 50 on the spatial interval [0, 1] with respect to the parameters of
Table 2.1 are displayed in Figure 2.25. The initial data are those illustrated in Figure 2.13 (b).

We propose three relevant considerations. First of all, despite the perturbations observed in
Figure 2.25 for the profiles u and w (with those for u inherited from w through the reaction term
−duw), the solutions still exhibit a front-type behaviour which is then very robust (such stability
is actually preserved for smaller values of the frequency).
Secondly, the value of ω affects the formation of the interstitial gap, which becomes visible for
d = 60.
Indeed, analogous simulations are reported in Figure 2.26, where we increase the frequency value
to ω = 100 and the appearance of the interstitial gap is again for d = 50.
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(a) Profile of A (b) heterogeneous invasion, d = 0.5

(c) hybrid configuration, d = 1.5 (d) hybrid configuration, d = 30

(e) hybrid configuration, d = 50 (f) homogeneous invasion, d = 60

Figure 2.25: Different configurations of the numerical solution in presence of periodic diffusion
A with frequency ω = 50 and existence of the spatial interstitial gap within the homogeneous
invasion (f)
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(a) Profile of A (b) heterogeneous invasion, d = 0.5

(c) hybrid configuration, d = 1.5 (d) heterogeneous invasion, d = 30

(e) hybrid configuration, d = 50 (f) heterogeneous invasion, d = 60

Figure 2.26: Different configurations of the numerical solution in presence of periodic diffusion
A with frequency ω = 100 and existence of the spatial interstitial gap within the homogeneous
invasion (e)-(f)
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(a) ω = 50 (b) ω = 100

Figure 2.27: Wave speed approximation for different values of the frequency ω (for d = 20)

Moreover, the perturbations are more intense for higher values of ω, whilst they are obviously
damped for larger values of d since the healthy tissue becomes null.

Finally, looking at the wave speed approximation given by the LeVeque-Yee formula (2.14) for
different frequencies of the diffusion function A (see Figure 2.27), we can infer that the value of
ω does not affect the propagation velocity (the solutions for ω = 50 and ω = 100 converge to the
same asymptotic value s∗ = 0.012).
This suggests to look for homogenization (see Section 2.5.4.

Before concluding this Section, we look at the spatial derivative of the numerical solutions for
ω = 100, which are represented in Figure 2.28. It can be noticed that, despite the perturbations
induced by the oscillatory diffusion function A, the front-type solution profiles continue to be
monotonic (increasing for u or decreasing for v and w) since their derivatives do not change sign.
Therefore, the profiles are not oscillatory.

2.5.2 Modifying the amplitude and the intensity

The amplitude and intensity of the diffusion function A also modifies the behaviour of the
numerical solution, especially when the value of ω is very large.
For the following simulations, we use the formula (2.16) with different values of α and a0.

Firstly, we choose α = 0.6 and a0 = 0.4, so that the amplitude is |α − a0| = 0.2, while the
other parameters are those in Table 2.1, with ω = 50. The numerical solutions displayed in Figure
2.29 are smoother with respect to Figure 2.25 and this characteristics do not depend on the values
of α and a0, but on their difference in absolute value, as shown in Figure 2.30 Figure 2.31 where
α = 1 and a0 = 0.8 and α = 0.3 and a0 = 0.1 are chosen respectively.

In Figure 2.32 and Figure 2.33 we choose a very small intensity for A, which is |α−a0| = 0.05
and we compare the case α = 1 and a0 = 0.95 with α = 0.06 and a0 = 0.01. It is observable that
the more the acid concentration is weak, the more the interstitial gap appears for large value of
d (see Figure 2.33 (e), where the gap is not yet present for d = 200).

An interesting fact is the front profile of numerical solution remains even if we increase the
value of ω. For example the results for ω = 200 and |α − a0| = 0.2 and for ω = 200 and

49



(a) heterogeneous invasion, d = 0.5 (b) hybrid configuration, d = 1.5

(c) hybrid configuration, d = 30 (d) homogeneous invasion, d = 50

(e) homogeneous invasion, d = 60

Figure 2.28: First order derivative of the numerical solution reported in Figure 2.26
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(a) Profile of A for α = 0.6 and a0 = 0.4 (b) heterogeneous invasion, d = 0.5

(c) hybrid configuration, d = 2.5 (d) homogeneous invasion, d = 20

Figure 2.29: Different configurations of the numerical solution in presence of periodic diffusion
with frequency ω = 50 and amplitude |a0 − α| = 0.2
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(a) Profile of A for α = 1 and a0 = 0.8 (b) heterogeneous invasion, d = 0.5

(c) hybrid configuration, d = 2.5 (d) homogeneous invasion, d = 20

Figure 2.30: Different configurations of the numerical solution in presence of periodic diffusion A
with frequency ω = 50 and amplitude |α− a0| = 0.2
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(a) Profile of A for α = 0.3 and a0 = 0.1 (b) heterogeneous invasion, d = 0.5

(c) hybrid configuration, d = 2.5 (d) hybrid configuration, d = 20

(e) homogeneous invasion, d = 30

Figure 2.31: Different configurations of the numerical solution in presence of periodic diffusion A
with frequency ω = 50 and amplitude |α− a0| = 0.2

53



(a) Profile of A for α = 1 and a0 = 0.95 (b) heterogeneous invasion, d = 0.5

(c) hybrid configuration, d = 2.5 (d) homogeneous invasion, d = 20

Figure 2.32: Different configurations of the numerical solution in presence of periodic diffusion A
with frequency ω = 50 and amplitude |α− a0| = 0.05
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(a) Profile of A for α = 0.06 and a0 = 0.01 (b) heterogeneous invasion, d = 0.5

(c) hybrid configuration, d = 2.5 (d) hybrid configuration, d = 20

(e) hybrid configuration, d = 200

Figure 2.33: Different configurations of the numerical solution in presence of periodic diffusion A
with frequency ω = 50 and amplitude |α− a0| = 0.05
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(a) Profile of A for α = 0.6 and a0 = 0.4 (b) heterogeneous invasion, d = 0.5

(c) hybrid configuration, d = 2.5 (d) homogeneous invasion, d = 20

Figure 2.34: Different configurations of the numerical solution in presence of periodic diffusion A
with frequency ω = 200 and amplitude |α− a0| = 0.2

|α − a0| = 0.05 are shown in Figure 2.34 and Figure 2.35 respectively, and, although the period
is very small, fluctuations on the solutions are not present.

Interesting observations can be made also concerning the wave speed approximation. In the
previous Section, we have proved with numerical simulations that the value of ω does not affect
the propagation velocity. Furthermore, looking at Figure 2.36 and Figure 2.37 for d = 20, where
ω = 50 and |α − a0| = 0.05, ω = 50 and |α − a0| = 0.2 have been chosen respectively, from a
first sight the two graphs could appear similar, but the asymptotic velocities are slightly different.
Indeed, the values of a0 and α affect the asymptotic speed, which is estimated s∗ = 0.0125 for
Figure 2.36 (a) and 0.0106 ≤ s∗ ≤ 0.0113 for Figure 2.36 (b), and s∗ = 0.0125 for Figure 2.37 (a)
and 0.0116 ≤ s∗ ≤ 0.011 for Figure 2.37 (b). The final time is T = 40 in order to really appreciate
the asymptotic behaviour.ì

56



(a) Profile of A for α = 1 and a0 = 0.95 (b) heterogeneous invasion, d = 0.5

(c) hybrid configuration, d = 2.5 (d) homogeneous invasion, d = 20

Figure 2.35: Different configurations of the numerical solution in presence of periodic diffusion A
with frequency ω = 200 and amplitude |α− a0| = 0.05
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(a) α = 1 and a0 = 0.95 (b) α = 0.06 and a0 = 0.01

Figure 2.36: Wave speed approximation of the tumour front v for different values of the oscillation
amplitude (for ω = 50)

(a) α = 1 and a0 = 0.8 (b) α = 0.21 and a0 = 0.01

Figure 2.37: Wave speed approximation of the tumour front v for different values of the oscillation
amplitude (for ω = 50)
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2.5.3 Modifying the parameter r

In order to investigate the variations of the wave speed propagation, we compare the approx-
imation provided by the LeVeque-Yee formula (2.14) for the case in Figure 2.25 (ω = 50 and
r = 1) with that in Figure 2.38, which is constructed using the same parameters, frequency and
amplitude but with a larger value r = 10. We have widen to the right the spatial interval in order
to see the swipe of fronts.

The results of the wave speed approximation are displayed in Figure 2.39 and Figure 2.40,
where we have used the final time T = 40 to better appreciate the asymptotic behaviour.

Two main considerations can be made. Firstly, it is evident that both d and r affect the
propagation speed, and in particular the fronts propagate faster for larger values of d and r (see
Figure 2.40). Secondly, we can observe that if d is small (for instance, d = 0.5 or d = 1.5), namely
if the final configuration is heterogeneous or hybrid, then the wave speed does not approach an
asymptotic threshold, but it seems almost periodic; moreover, the closer the final configuration
is to a homogeneous regime, the more this phenomenon attenuates. This behaviour could be
explained by the fact that, for the same frequency and amplitude, if the diffusion has greater
intensity, then the acid particles are so fast than their velocity is not affected by the tissue
inhomogeneity; on the contrary, if the acid diffusion is weak, then particles are possibly entrapped
in pores and their speed trend is oscillatory.

2.5.4 Homogenization: is that possible in the long run?

The aim of this Section is to find a (homogeneous) diffusion function A which may approximate
a periodic diffusive trend in the long run. We take a solution to system (2.1) with periodic function
A and we look for a constant Ã, called effective A, such that the new solution computed for this
homogeneous diffusion possibly exhibits the same asymptotic wave speed as the original one.

Since we are dealing with periodic diffusion functions, the harmonic mean seems a reasonable
choice to predict an approximate value instead of taking other types of averages such as the
geometric or weighted mean. The harmonic mean mh for any positive function A is defined as
follows

1

mh
=

1

T

∫ T

0

1

A(x)
dx (2.17)

where T is the period.
We compare the wave speed trends for different periodic diffusions A with the corresponding ones
obtained by assuming Ã = mh.

First, we analyse the case of piecewise constant periodic A. We take the function b : R 7−→ R
defined as

b(y) =

{
α if y ∈ (0, β)

a0 if y ∈ (β, 1)
(2.18)

where 0 < β < 1 is the discontinuity point. Then, we extend the function (2.18) by periodicity
and rescale it to the interval [0, 1] by using the following formula

A(x) = b

(
x

ε

)
(2.19)
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(a) uncontrolled growth, d = 0.5 (b) uncontrolled growth, d = 1.5

(c) uncontrolled growth, d = 30 (d) uncontrolled growth, d = 50

(e) uncontrolled growth, d = 60

Figure 2.38: Different configurations of the numerical solution in presence of periodic diffusion A
with frequency ω = 50 with r = 10
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(a) moderate growth, r = 1 and d = 0.5 (b) uncontrolled growth, r = 10 and d = 0.5

(c) moderate growth, r = 1 and d = 1.5 (d) uncontrolled growth, r = 10 and d = 1.5

(e) moderate growth, r = 1 and d = 30 (f) uncontrolled growth, r = 10 and d = 30

Figure 2.39: Wave speed approximation of the tumour front v for different values of r and d
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(a) moderate growth, r = 1 and d = 50 (b) uncontrolled growth, r = 10 and d = 50

(c) moderate growth, r = 1 and d = 60 (d) uncontrolled growth, r = 10 and d = 60

Figure 2.40: Wave speed approximation of the tumour front v for different values of r and d
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where ε is the number of oscillations inside the interval.
In this case, we can compute explicitly the harmonic mean and we have

mh =

(∫ 1

0

1

b(y)
dy

)−1

=

(∫ β

0

1

α
dy +

∫ 1

β

1

a0
dy

)−1

=

(
β

α
+

1− β
a0

)−1

=
αa0

a0β + (1− β)α

We report the numerical wave speed approximations, obtained by using the LeVeque-Yee formula
(2.14), with different values of α, β and ω = 2ε in order to verify if Ã = mh provides an effective
equivalent for the periodic diffusion function A.

In Figure 2.41, we show the results obtained with α = 1, a0 = 0.01 and ω = 100, together
with the profile of A. We notice that for the cases d = 0.5 and d = 1.5 the wave speed does not
converge asymptotically to any value, but rather oscillates between a minimun and a maximum,
while Ã seems to tend to the mean value between these two.

Interesting considerations can be made for the results in Figure 2.42 and Figure 2.43, where
we reduce the amplitude of oscillations taking α = 1, a0 = 0.95 and ω = 50 in the first case and
α = 0.6, a0 = 0.4 and ω = 50 in the second one: homogenisation occurs for every value of d used
in the simulations.

In Figure 2.44, we use the same parameters as for Figure 2.41 but with uncontrolled growth rate
r = 10. The results obtained are similar to the previous simulations and there is no homogenisation
for small values of d.

Now we consider a sinusoidal diffusion function A.
We point out that in general it is difficult to calculate analytically the formula for mh, thus we
construct a numerical approximation of the harmonic mean of A by using a quadrature formula
[24].
In Figure 2.45, we consider the periodic diffusion function A in (2.16) with the same param-
eters as Figure 2.41. We notice that, as for relative case with piecewise constant periodic A,
homogenisation occurs only for d� 1.

Then, in Figure 2.46, Figure 2.47 and Figure 2.48, we use the same parameters as Figure 2.42,
2.43 and 2.44 respectively and we make similar conclusions, since homogenisation occurs for all d
in the first and second case and for d� 1 in the third one.

Looking at the previous simulations, it is evident that a good agreement with Ã equal to
the harmonic mean of the periodic function A always occurs for homogeneous configurations (i.e.
when d is such that a spatial interstitial gap appears). This fact can be justified by observing that
the interstitial gap is actually an area where both u and v become null, therefore in this case the
equation for v in system (2.1) is a Fisher-KPP equation. It can be proven that homogenization
for Fisher-KPP equations is possible [6], thus we can expect a similar phenomenon to occur also
for the model (2.1) when we consider a homogeneous configuration.

Table 2.3 resumes all the parameters used in the Figures of this section, with the relative
outcome in terms of homogenisation.

It is evident that there are two special cases for which the two profiles for A have different
behaviours referring to homogenization: these are the ones for a0 = 0.01, α = 1, ω = 100 and
r = 1, 10 (see Figure 2.41 and 2.45 (c) and Figure 2.44 and 2.48(c)). The reasons seems to be found
in the final configurations: while in the piecewise constant case there is not a purely homogeneous
invasion, in the sinusoidal case the formation of the interstitial gap has already started.
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(a) d = 0.5 (b) d = 1.5

(c) d = 30 (d) d = 60

(e) Profile of A

Figure 2.41: Comparison between wave speed trends for piecewise constant periodic diffusion A
(red line) and for the average diffusion Ã (magenta line) obtained by the harmonic mean
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(a) d = 0.5 (b) d = 1.5

(c) d = 30 (d) d = 60

(e) Profile of A

Figure 2.42: Comparison between wave speed trends for piecewise constant periodic diffusion A
(red line) and for the average diffusion Ã (magenta line) obtained by the harmonic mean
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(a) d = 0.5 (b) d = 1.5

(c) d = 30 (d) d = 60

(e) Profile of A

Figure 2.43: Comparison between wave speed trends for piecewise constant periodic diffusion A
(red line) and for the average diffusion Ã (magenta line) obtained by the harmonic mean

66



(a) d = 0.5, uncontrolled growth (b) d = 1.5, uncontrolled growth

(c) d = 30, uncontrolled growth (d) d = 60, uncontrolled growth

Figure 2.44: Comparison between wave speed trends for piecewise constant periodic diffusion A
(red line) and for the average diffusion Ã (magenta line) obtained by the harmonic mean
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(a) d = 0.5 (b) d = 1.5

(c) d = 30 (d) d = 60

Figure 2.45: Comparison between wave speed trends for piecewise constant periodic diffusion A
(red line) and for the average diffusion Ã (magenta line) obtained by the harmonic mean
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(a) d = 0.5 (b) d = 1.5

(c) d = 30 (d) d = 60

Figure 2.46: Comparison between wave speed trends for piecewise constant periodic diffusion A
(red line) and for the average diffusion Ã (magenta line) obtained by the harmonic mean
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(a) d = 0.5 (b) d = 1.5

(c) d = 30 (d) d = 60

Figure 2.47: Comparison between wave speed trends for piecewise constant periodic diffusion A
(red line) and for the average diffusion Ã (magenta line) obtained by the harmonic mean
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(a) d = 0.5 (b) d = 1.5

(c) d = 30 (d) d = 60

Figure 2.48: Comparison between wave speed trends for piecewise constant periodic diffusion A
(red line) and for the average diffusion Ã (magenta line) obtained by the harmonic mean
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(a) final configuration, d = 30, r = 1, piecewise (b) final configuration, d = 30, r = 1, sinusoidal

(c) final configuration, d = 30, r = 10, piecewise (d) final configuration, d = 30, r = 10, sinusoidal

Figure 2.49: Comparison between final configurations for piecewise constant and sinusoidal peri-
odic diffusion A in the case of different behaviour relatively to homogenisation
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figure d r ω a0 α piecewise sinusoidal
constant

2.41, 2.45 (a) 0.5 1 100 0.01 1 NO NO
2.41, 2.45 (b) 1.5 1 100 0.01 1 NO NO
2.41, 2.45 (c) 30 1 100 0.01 1 NO HOM
2.41, 2.45 (d) 60 1 100 0.01 1 HOM HOM
2.42, 2.46 (a) 0.5 1 50 0.95 1 HOM HOM
2.42, 2.46 (b) 1.5 1 50 0.95 1 HOM HOM
2.42, 2.46 (c) 30 1 50 0.95 1 HOM HOM
2.42, 2.46 (d) 60 1 50 0.95 1 HOM HOM
2.43, 2.47 (a) 0.5 1 50 0.4 0.6 HOM HOM
2.43, 2.47 (b) 1.5 1 50 0.4 0.6 HOM HOM
2.43, 2.47 (c) 30 1 50 0.4 0.6 HOM HOM
2.43, 2.47 (d) 60 1 50 0.4 0.6 HOM HOM
2.44, 2.48 (a) 0.5 10 100 0.01 1 NO NO
2.44, 2.48 (b) 1.5 10 100 0.01 1 NO NO
2.44, 2.48 (c) 30 10 100 0.01 1 NO HOM
2.44, 2.48 (d) 60 10 100 0.01 1 HOM HOM

Table 2.3: Numerical parameters for the simulations. The values for D = 4 · 10−5 and c = 70 are
fixed and the spatial interval is [0, 1]

2.6 Convergence and consistency of the numerical scheme

2.6.1 Consistency order for regular solutions

We analyse the consistency of the numerical scheme (2.10) in the case of uniform mesh, by
assuming ∆x constant.
We consider the equations for u and for w, but we omit the computation for v, since its equation
is structurally similar to the one for w (although nonlinear) and it would give rise to further
complications.
We recall that the integral cell-average of the solution u on the spatial mesh is given by

ũj(t) =
1

∆x

∫
Cj

u(t, x) dx = u(t, xj) +O(∆x2) (2.20)

where Cj is the jth (finite volume) mesh cell. In particular, the numerical solution unj is supposed
to be an approximation of ũj(tn) for all j, namely

unj ' ũj(tn).

The ordinary differential equation for the healthy tissue concentration u is discretized as in (2.10)
and we recall the forward discretization of the first derivative in time, together with unj ' u(tn, xj),
hence we have

un+1
j − unj

∆t
' u(tn+1, xj)− u(tn, xj)

∆t
(2.21)
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By using the Taylor formula of order 2 centred in tn and assuming u regular enough, we obtain

u(tn+1, xj) = u(tn, xj) + ∂tu(tn, xj)∆t+
∂ttu(tn, xj)

2
∆t2 +O(∆t3) (2.22)

and substituting (2.22) to (2.21) we conclude that

u(tn+1, xj)− u(tn, xj)

∆t
= ∂tu(tn, xj) +

∂ttu(tn, xj)

2
∆t+O(∆t2)

therefore the numerical approximation for the first equation of system (2.10) has order 1 consis-
tency (in time).

Then, we consider the equation for w with (homogeneous) diffusion coefficient A = 1, which
is discretized as follows

wn+1
j − wnj

∆t
= c
(
vnj − wnj

)
+
wnj+1 − 2wnj + wnj−1

∆x2
(2.23)

where the last term is the standard discretization of the second order spatial derivative. By using
the Taylor formula of order 4 centred in xj and assuming w regular enough, we obtain

w(tn, xj+1) = w(tn, xj) + ∂xw(tn, xj)∆x+ ∂xxw(tn, xj)
∆x2

2

+ ∂xxxw(tn, xj)
∆x3

3!
+ ∂xxxxw(tn, xj)

∆x4

4!
+O(∆x5);

(2.24)

w(tn, xj−1) = w(tn, xj)− ∂xw(tn, xj)∆x+ ∂xxw(tn, xj)
∆x2

2

− ∂xxxw(tn, xj)
∆x3

3!
+ ∂xxxxw(tn, xj)

∆x4

4!
+O(∆x5);

(2.25)

and substituting (2.24) and (2.25) to (2.23) we conclude that

wnj+1 − 2wnj + wnj−1

∆x2
= ∂xxw(tn, xj) + ∂xxxxw(tx, xj)

2∆x2

4!
+O(∆x3)

therefore the numerical approximation for lactic acid concentration with homogeneous diffusion
A has order 1 consistency in time and order 2 in space.

Now we consider the equation for w with heterogeneous diffusion function A, which is dis-
cretized in (2.10) and we aim at recovering the split form (Awx)x = Axwx +Awxx.
We assume A regular enough and its Taylor expansion of order 1 centred in xj , thus we have

A(xj+1) = A(xj) + ∂xA(xj)∆x+O(∆x2); (2.26)

A(xj−1) = A(xj)− ∂xA(xj)∆x+O(∆x2); (2.27)

so that
A(xj) +A(xj+1)

2
= A(xj) +

∂xA(xj)∆x

2
+O(∆x2); (2.28)

A(xj) +A(xj−1)

2
= A(xj)−

∂xA(xj)∆x

2
+O(∆x2) (2.29)
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Using (2.24) and (2.25), the first order spatial derivatives of w can be rewritten as follows

w(tn, xj+1)− w(tn, xj)

∆x
= ∂xw(tn, xj) + ∂xxw(tn, xj)

∆x

2

+ ∂xxxw(tn, xj)
∆x2

3!
+ ∂xxxxw(tn, xj)

∆x3

4!
+O(∆x4);

(2.30)

w(tn, xj)− w(tn, xj−1)

∆x
= ∂xw(tn, xj)− ∂xxw(tn, xj)

∆x

2

+ ∂xxxw(tn, xj)
∆x2

3!
− ∂xxxxw(tn, xj)

∆x3

4!
+O(∆x4);

(2.31)

We collect the terms with common factor leader A(xj) and, using (2.29), (2.30) and (2.31) we
have

A(xj)∂xxw(tn, xj) + ∂xxxxw(tn, xj)∆x
2A(xj)

4!
+O(∆x3) (2.32)

Thus, since A is bounded by its definition (it is normalized in [0, 1]), then we conclude that the
discretization of the term Awxx has order 2 consistency.
The remaining quantities are

1

2
∂xA(xj)

(
∂xw(tn, xj) + ∂xxw(tn, xj)

∆x

2

+∂xxxw(tn, xj)
∆x2

3!
+ ∂xxxxw(tn, xj)

∆x3

4!
+O(∆x4)

)
+

1

2
∂xA(xj)

(
∂xw(tn, xj) + ∂xxw(tn, xj)

∆x

2

−∂xxxw(tn, xj)
∆x2

3!
+ ∂xxxxw(tn, xj)

∆x3

4!
+O(∆x4)

)
= ∂xA(xj)∂xw(tn, xj) + ∂xA(xj)∂xxw(xj)∆x+O(∆x2)

(2.33)

Thus, the discretization of the term Axwx has order 1 consistency and therefore the numerical
approximation for lactic acid concentration with heterogeneous diffusion function A has order 1
consistency both in time and in space.

2.6.2 Numerical order of convergence

We attempt at estimating the order of convergence by using the empirical method illustrated
below.

Let us consider system (2.1) with the parameters of Table 2.1 and the smallest spatial step
∆x which is tolerated by our computing architecture. We compute the numerical solution with
this value and we assume that it represents the exact solution for our system. Let us call it
z∗ = (u∗, v∗, w∗).
Then, we calculate the numerical solution with different ∆xk in order to evaluate the error

Ek =

( Nk∑
h=1

|z∗h − zkh|2 ∆xk

) 1
2

(2.34)
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where Nk is the number of points of the spatial mesh constructed with ∆xk and zk is the numerical
solution obtained with this spatial step. We have adopted the discrete L2-norm for the numerical
error.
The convergence order p is estimated for different ∆xi and ∆xj as follows

p = log ∆xi
∆xj

(
Ei
Ej

)
. (2.35)

Firstly, we consider a homogeneous diffusion A = 1 and d = 12.5 and the piecewise linear initial
profile in Figure 2.2. We choose N∗ = 1600 as the number of points of the finest mesh for z∗ and
we compare with the solutions for N1 = 800, N2 = 400, N3 = 200, N4 = 100 and N5 = 50. The
experimental results are the following:

p1 = log ∆x2
∆x1

(
E2

E1

)
= 0.765

p2 = log ∆x3
∆x2

(
E3

E2

)
= 2.26

p3 = log ∆x4
∆x3

(
E4

E3

)
= 1.52

p4 = log ∆x5
∆x4

(
E5

E4

)
= 1.23

Then, we consider a piecewise constant increasing diffusion function A with a1 = 0.1 and
a2 = 1, and the same data as above. The experimental results are the following:

p1 = log ∆x2
∆x1

(
E2

E1

)
= 0.696

p2 = log ∆x3
∆x2

(
E3

E2

)
= 2.27

p3 = log ∆x4
∆x3

(
E4

E3

)
= 1.48

p4 = log ∆x5
∆x4

(
E5

E4

)
= 1.3

From preliminary considerations on the values obtained above, it seems that using a dense
mesh is not always the best option to achieve optimal convergence rates, although further inves-
tigations are mandatory on these topics.
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2.7 Final remarks and perspectives

In this section, we provide numerical simulations of travelling wave solution to system (2.1)
in order to compare the results with the approximate width of the interstitial gap given by (1.31)
for the three different cases analysed in Section 1.3.

Let us start with 0 < d < 1. In Figure 2.50 we compare the numerical approximation (2.10)
with the analytical approximation one provided in Section 1.3. The simulation parameters are
those of Table 2.2 with d = 0.5 and the auxiliary parameter θ is assumed to be θ = 2 · 10−5.

(a) analytical approximation of slow waves (d = 0.5) (b) numerical approximation of slow waves (d = 0.5)

Figure 2.50: Comparison between analytical and numerical approximations of the travelling wave
solution to system (2.1) for 0 < d < 1

Then, we take 1 < d < 2. In Figure 2.51 we compare the numerical and analytical approxi-
mation for the parameters in Table 2.2 with d = 1.5. The parameters θ and α are assumed to be
θ = 3.4641 · 10−5 and α = 1

4 . Even if the two simulations are overall very similar, between z− and
0 the two solutions for the healthy tissue have a different shape: on the left, the blue line shows
a corner point in z− (there is a sharp change of u from 0 to positive values), whilst this is not
present in the plot on the right.

Finally, we take d > 2. In Figure 2.52 we compare the numerical and analytical approximations
for the parameters in Table 2.2 with d = 4. The parameters θ and α are assumed to be θ = 4·10−5

and α = 1
4 . Even if the two simulation are overall very similar, the width of the interstitial gap

is much larger in the plot on the left. The reason for this difference is in the shape of the healthy
tissue on the neighbourhood of z+. Hence, the numerical approximation for d > 2 is in agreement
with the theoretical results outside the neighbourhood of z+, but it also inherits the qualities of
the numerical scheme analysed in the previous section, and in particular a smoothing effect close
to singular points.

In conclusion, it is worthwhile to point out that the obtained results can be crucial for diag-
nostic and therapeutic applications, in particular for cancer forecasting and prevention.
However, some open problems deserve future studies. First of all, the issue of homogenization
must be analysed in terms of analytical convergence, especially taking into consideration the large
sensitivity of the model with respect to the parameter d. Furthermore, we emphasize that the use
of a non-uniform mesh could better model the homogeneity of human tissues, thus our numerical
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(a) analytical approximation of slow waves (d = 1.5) (b) numerical approximation of slow waves (d = 1.5)

Figure 2.51: Comparison between analytical and numerical approximation of the travelling wave
solution to system (2.1) for 1 < d < 2. The estimate of z− is z− = −0.287.

(a) analytical approximation of slow waves (d = 4) (b) numerical approximation of slow waves (d = 4)

Figure 2.52: Comparison between analytical and numerical approximation of the travelling wave
solution to system (2.1) for d > 2. The estimate of z+ is z+ = 0.49.

algorithm will be modified in order to be more consistent with the biological context. Finally, an
analytical approximation for inhomogeneous diffusion function A could lead to new results and
comparison with the numerical simulations which may be important for validating more our work.
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