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Abstract

In recent years, several techniques based on control charts have been
developed for the simultaneous monitoring of the time interval T and the
amplitude X of events, known as TBEA (Time Between Events and Am-
plitude) charts. However, the vast majority of the existing works have
some limitations. Firstly, they usually focus on statistics based on the
ratio X

T
and, secondly, they only investigate a reduced number of poten-

tial distributions, i.e. the exponential distribution for T and the Normal
distribution for X. Moreover, until now, very few research papers have
considered the potential dependence between T and X. In this paper, we
investigate three different statistics, denoted as Z1, Z2 and Z3, for mon-
itoring TBEA data in the case of three potential distributions (Gamma,
Normal and Weibull), for both T and X, using Copulas as a mechanism
to model the dependence. An illustrative example considering times be-
tween machine breakdowns and associated maintenance illustrates the use
of TBEA control charts.

Keywords: Amplitude. Copulas. Machine breakdowns. Statistical Process
Monitoring. Time between events.

1 Introduction

Control charts are one of the most effective techniques in Statistical Process
Monitoring (SPM) to monitor manufacturing processes or critical events E such
as the ones occuring in healthcare or in geological (earthquakes or volcanic
eruptions) applications. The definition of an event E clearly depends on the
situation considered. For instance, in the manufacturing industry, it means the
occurrence of a nonconforming product; in reliability engineering, it means the
failure of a specific system, etc. (see Wu et al. 1). In general, a critical event
is defined by two important characteristics: i) the time interval T measured
by the duration between two successive occurrences of the event E and, ii) its
amplitude (cost, number of casualties, ...) X which reflects the correspending
effect, see Cheng et al. 2 .

The problem of monitoring Time Between Events was introduced for the first
time by Calvin 3 . Lucas 4 and Vardeman and Ray 5 extended this work by
studying new control charts for the monitoring of Time Between Events (TBE).
From that moment, many TBE control charts have been developed. The TBE
exponential chart has been studied by Chan et al. 6 and Xie et al. 7 . Bourke 8

developed a geometric CUSUM chart for monitoring TBE data. Gan 9 , Borror
et al. 10 and Shafae et al. 11 investigated an exponential TBE cumulative sum
(CUSUM) control chart. An exponentially weighted moving average (EWMA)
control chart for monitoring the rate of occurrences of rare events has been de-
velopped by Gan 12 . Liu et al. 13 discussed the performance of continuous TBE
charts among the CQC, CQC-r, exponential EWMA and exponential CUSUM
charts. Zhang et al. 14 investigated a Gamma chart to monitor the TBE and
they developed a new method based on a random-shift model for calculating
the out-of-control ATS. Xie et al. 15 discussed the application of TBE control
charts for health management. Recently Fang et al. 16 proposed a generalized
group runs TBE chart for a homogenous Poisson failure process.
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As the effect of an event E is not only quantified by its frequency T but also by
its amplitude X, a combined scheme for monitoring the time interval using a T
chart and the amplitude using a X chart have been introduced by Wu et al. 17 .
The corresponding control chart is called a Time Between Events and Ampli-
tude (TBEA) chart. After the paper of Wu et al. 17 , several single TBEA charts
have been developed (see Wu and Qu 18 , Qu et al. 19 , Qu et al. 20). Very recently
Ali and Pievatolo 21 introduced a new control chart based on the assumption
of a renewal process with rewards, where the reward represents the magnitude,
and a magnitude-over-threshold condition represents the occurrence of an event.

All the TBEA control charts presented above assume that the time between
events T and their amplitudes X are independent variables. However, in prac-
tice, they may not necessarily be independent. More specifically, there are many
situations where it seems expectable (and logical) that when the time between
events becomes shorter, then the corresponding amplitude becomes larger. For
instance, small amplitude earthquakes may occur with a low frequency (large
time between events) and, suddenly, the frequency of the occurrence of these
earthquakes may increase (shorter time between events) with a correlated in-
crease in their amplitudes. As another example, some forest fires may occur
with a low frequency and small amplitude (surface burned) during the “humid
season” and, when the “dry season” comes, the time between the occurrence of
forest fires tends to become shorter and their amplitude tends to increase (see
the 2019 forest fires in Amazonia or Siberia). As the illustrative example will
show, the contrary may also happen, i.e. time between events becomes shorter
and amplitude becomes smaller. Whatever the situation, it seems important to
investigate the dependency between time between events T and their amplitudes
X. Until now, very few research papers have investigated TBEA control charts
by considering the potential dependence between the two variables. Cheng and
Mukherjee 22 were the first to investigate a TBEA control chart by taking into
account the dependence between the frequency and the amplitude using a T 2

chart based on transformed data. They have used a Smith-Adelfang-Tubbs
(SAT) bivariate Gamma distribution to model the joint probability of T and X
and they have shown that the proposed chart is more effecient when the shift
size is moderate to large. Then, Cheng et al. 2 developed a multivariate expo-
nentially weighted moving average (MEWMA) scheme also based on a bivariate
Gamma distribution, to jointly monitor the frequency and the amplitude of an
event. A comparison is conducted between three kinds of charts under eight
shift domains and the results show that the proposed MEWMA procedure out-
performs other charts in most scenarios. Very recently, Sanusi et al. 23 proposed
a Max-EWMA type chart using the maximum of the absolute values of two
EWMA statistics, one for controlling the magnitude and the other for the fre-
quency of an event. The limitation of those studies is that they only considered
the bivariate Gamma distribution to model the joint probability of T and X,
while in this paper, we propose a general mechanism based on Copulas that
allows a very flexible choice for the distribution of T and X.

In order to model the dependence between the time T and the amplitude X, in
this paper we suggest the use of Copulas (popularized by Sklar 24) which allow
the degree of association between these variables to be quantified without hav-
ing to actually assume anything concerning their distributions. For instance,
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Copulas have been used in the financial domain. Several researchers also used
Copulas for defining and implementing control charts. Fatahi et al. 25 proposed
a bivariate control chart based on Copulas. A Copula Markov CUSUM chart
for monitoring bivariate auto-correlated data has been developed by Dokouhaki
and Noorossana 26 . Busababodhin and Amphanthong 27 studied various types
of Copulas modeling for several multivariate control charts. Very recently, Suk-
parungsee et al. 28 proposed five different types of Copulas for the Hotelling’s T 2

control chart and they evaluated the statistical measures of performance using
Monte Carlo simulations.

In this paper we propose to extend the preliminary work in Rahali et al. 29 and
use three kinds of Copulas in order to investigate the properties of one-sided
Shewhart TBEA charts for three different statistics Z1, Z2 and Z3 which all
depend on T (time) and X (amplitude). The main limitations of this contribu-
tion are i) the fact that a parametric distribution has to be chosen for X and T
(without being exhaustive, this paper nevertheless investigates three distribu-
tions: Gamma, Normal and Weibull), ii) the parameters of these distributions,
as well as the Copulas dependence parameter have to be known or, at least,
accurately estimated.

Finally, it is important to note that the kind of events E we are interested in
are different from the so-called “recurrence data” that can be found in survival
analysis for which some right-censoring is likely to occur (i.e. at time t, the
interarrival time between the N(t)th event and the (N(t) + 1)th event is un-
observed and we only know that it is longer than t − SN(t), where Sk is the
occurrence time of the kth event), see for intance, Wang et al. 30 , Huang and
Wang 31 and Rondeau 32 . For example, in the case of cancer patients who have
already been treated, the time-between-events is the time between two cancer
recurrences. In this situation, right-censoring may (unfortunately) happen as,
for some patients of the sample, after several recurrences of the disease, the last
time-between-events is missing because they passed away (they never recovered
from the cancer or they died because of some other reasons). Moreover, recur-
rence data in survival analysis, usually involve a sample (group of patients with
the same disease, for instance) while, in our case, we only focus on a single phe-
nomena. In conclusion, in our case, right-censoring is not supposed to happen
because the kind of event E we are interested in (earthquakes, tsunamis, fires
and, even, machine breakdown occurences in our illustrative example) assumes
that i) no matter what the situation is, this event E will necessarily re-happen
“naturally” in the future, ii) it costs nothing to wait for the next occurence of
this event, iii) there is no sample to deal with.

The paper is structured as follows: in section 2 we introduce the dependence
structure between T and X using Copulas, we define the statistics Z1, Z2 and Z3

and derive their cumulative distribution functions, we define the upper control
limits of the corresponding TBEA charts and derive their time to signal proper-
ties. Then, in Section 3, we investigate the EATS properties of the three TBEA
charts for 8 distributional scenarios, 3 different Copulas and several levels of cor-
relation. Finally, in Section 4, we propose an illustrative example involving the
time between consecutive machine breakdowns and their associate maintenance
costs. Conclusions with comments and recommendations for future research are
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given in Section 5.

2 TBEA charts

Let T be the time interval between two consecutive occurrences of a specific
event E and let X be the corresponding magnitude of this event. In this pa-
per, we assume that (X,T ) ∈ R2

+ and their joint continuous c.d.f. (cumulative
distribution function) is

F(T,X)(t, x) = C(FT (t), FX(x)|θ), (1)

where FT (t) and FX(x) are the marginal c.d.f. of T andX, respectively, C(u, v|θ)
is a Copula containing all information on the dependence structure between T
and X while θ is a dependence parameter that measures the dependence between
the marginals. Let

f(T,X)(t, x) = c(FT (t), FX(x)|θ)fT (t)fX(x) (2)

be the joint p.d.f. (probability distribution function) of (X,T ) where fT (t) and

fX(x) are the marginal p.d.f.’s of T andX, respectively, and c(u, v|θ) = ∂C(u,v|θ)
∂u∂v

is the Copula density.

Let µT > 0 and µX > 0 be the (marginal) means of T and X, respectively. By
definition, when the process is in-control, we have µT = µT0

, µX = µX0
and,

when the process is out-of-control, we have µT = µT1 , µX = µX1 . In order
to not favor one random variable over the other one (their scale can be very
different), the new random variables T ′ and X ′ are introduced as the in-control
standardized counterparts of T and X, i.e.

T ′ =
T

µT0

, (3)

X ′ =
X

µX0

. (4)

By definition, when the process is in-control, E(T ′) = E(X ′) = 1. The marginal
c.d.f. of T ′ and X ′ are FT ′(t) = FT (tµT0

) and FX′(x) = FX(xµX0
). Let

F(T ′,X′)(t, x) and f(T ′,X′)(t, x) be the joint c.d.f. and p.d.f. of (X ′, T ′) ∈ R2
+,

respectively. It is easy to prove that

F(T ′,X′)(t, x) = C(FT (tµT0), FX(xµX0)|θ), (5)

f(T ′,X′)(t, x) = µT0µX0c(FT (tµT0), FX(xµX0)|θ)fT (tµT0)fX(xµX0). (6)

As in Rahali et al. 29 , in order to simultaneously monitor the time between
an event E and its amplitude, we investigate three different statistics Z =
Z(T ′, X ′), denoted as Z1, Z2 and Z3, all functions of T ′ and X ′, having the
following properties: i) Z ↑ if either T ′ ↓ or X ′ ↑, ii) Z ↓ if either T ′ ↑ or X ′ ↓.

A first possible choice for the statistic Z (denoted as the Z1 statistic) is

Z1 = X ′ − T ′. (7)

If we integrate over all the couples (X ′, T ′) ∈ R2
+ satisfying Z1 = X ′ − T ′ ≤ z,

then the c.d.f. FZ1
(z) of Z1 is equal to
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• if z < 0 (see Figure 1 (a), where the grey area represents the region
satisfying Z1 = X ′ − T ′ ≤ z < 0)

FZ1
(z) =

∫ ∞
0

∫ ∞
x−z

f(T ′,X′)(t, x)dtdx. (8)

• if z > 0 (see Figure 1 (b), where the grey area represents the region
satisfying Z1 = X ′ − T ′ ≤ z > 0)

FZ1
(z) =

∫ z

0

∫ ∞
0

f(T ′,X′)(t, x)dtdx+

∫ ∞
z

∫ ∞
x−z

f(T ′,X′)(t, x)dtdx,

= FX′(z) +

∫ ∞
z

∫ ∞
x−z

f(T ′,X′)(t, x)dtdx. (9)

Since FX′(z) = 0 when z < 0 and f(T ′,X′)(t, x) = 0 when either t < 0 or x < 0,
the last result can be generalized to z ∈ R.

A second possible choice for the statistic Z (denoted as the Z2 statistic) is

Z2 =
X ′

T ′
. (10)

The random variable Z2 is defined on [0,+∞) and its c.d.f. FZ2
(z) can be

obtained by integrating over all the couples (X ′, T ′) ∈ R2
+ satisfying Z2 =

X′

T ′ ≤ z (see Figure 1 (c), where the grey area represents the region satisfying

Z2 = X′

T ′ ≤ z), i.e.

FZ2
(z) =

∫ ∞
0

∫ ∞
x
z

f(T ′,X′)(t, x)dtdx. (11)

Finally, a possible third choice for the statistic Z (denoted as the Z3 statistic)
is

Z3 = X ′ +
1

T ′
. (12)

This statistic can be considered as a “hybrid” of the two previous ones. The
random variable Z3 is also defined on [0,+∞) and its c.d.f. FZ3(z) can be
obtained by integrating over all the couples (X ′, T ′) ∈ R2

+ satisfying Z3 =
X ′+ 1

T ′ ≤ z (see Figure 1 (d), where the grey area represents the region satisfying
Z3 = X ′ + 1

T ′ ≤ z), i.e.

FZ3(z) =

∫ z

0

∫ ∞
1

z−x

f(T ′,X′)(t, x)dtdx. (13)

The control limits LCLZ and UCLZ of the TBEA (Time Between Event and
Amplitude) charts based on the statistic Z ∈ {Z1, Z2, Z3} defined in equations
(7), (10) and (12) are equal to

LCLZ = F−1
Z (αL|µT0 , µX0) (14)

UCLZ = F−1
Z (1− αU |µT0

, µX0
), (15)
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X ′ − T ′ ≤ z

X ′

T ′

0

X ′ − T ′ ≤ z

X ′

T ′

0 z

(a) Region satisfying Z1 = X ′ − T ′ ≤ z < 0 (b) Region satisfying Z1 = X ′ − T ′ ≤ z > 0

X ′

T ′ ≤ z

X ′

T ′

0

X ′ +
1

T ′ ≤ z

z
X ′

T ′

0

(c) Region satisfying Z2 = X′

T ′ ≤ z (d) Region satisfying Z3 = X ′ + 1
T ′ ≤ z

Figure 1: Integration areas used for statistics Z1 = X ′ − T ′ ≤ z ((a) and (b)),

Z2 = X′

T ′ ≤ z (c) and Z3 = X ′ + 1
T ′ ≤ z (d).
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where F−1
Z (. . . |µT0

, µX0
) is the inverse c.d.f. of Z, αL = ξα and αU = (1− ξ)α

are the lower-sided and upper-sided components of the Type I error α, respec-
tively, with ξ being the detection power allocation factor defined as ξ = αL

αL+αU
.

Since it is important to consider the case of upward shift on Z, we will assume
that ξ = 0 and, consequently, we only have a single upper-sided control limit
UCLZ .

A performance characteristic for the TBEA charts is the the average time to
signal (ATS). The out-of-control ATS indicates the average time required to
signal an out-of control case, whereas the in-control ATS0 is used as a measure
of the false alarm rate. The Type II error β of the TBEA charts based on the
statistic Z ∈ {Z1, Z2, Z3} is equal to

β = FZ(UCLZ |µT , µX)− FZ(LCLZ |µT , µX). (16)

As the TBEA chart is a Shewhart type chart, the average run length, ARL =
E(RL) = 1

1−β . Let ` ∈ {1, 2, 3, · · · } and T1, T2, T3, . . . be the time between two
consecutive events. The Time to Signal, TS is equal to

TS =

RL∑
`=1

T`. (17)

The Average Time to Signal and the Standard-Deviation of the Time to Signal
are calculated by

ATS = E(TS) = E(T )E(RL) = µT ×ARL =
µT

1− β , (18)

SDTS = σ(TS) =
√
V (T )E(RL) + E2(T )V (RL),

=

√
σ2
T ×ARL + µ2

T × SDRL2,

=

√
σ2
T

1− β +
µ2
Tβ

(1− β)2
. (19)

When the process is in-control, we have 1− β = α and, consequently

ATS0 =
µT0

α
⇔ α =

µT0

ATS0
.

3 Numerical analysis

In this section, we consider three types of distribution for T and X that depend
on two parameters, a and b. We denote a0 and b0 as the in-control values of
these parameters, respectively.

• The Gamma distribution has parameters a > 0, b > 0 and p.d.f.

fG(x|a, b) =
exp(−xb )xa−1

baΓ(a)
. (20)
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• The Normal distribution has parameters a, b > 0 as in Rahali et al. 29 ,
instead of the conventional notation (µ, σ) and p.d.f. fN (x|a, b).

• The Weibull distribution has parameters a > 0, b > 0 and p.d.f.

fW (x|a, b) =
a

b

(x
b

)a−1

exp
(
−
(x
b

)a)
. (21)

To be more specific, in this paper, we have chosen to investigate

• the Gamma, Normal and Weibull distributions for the random variable X
(amplitude).

• only the Gamma and the Weibull distributions for the random variable T
(time). The Normal distribution is actually not the most suitable distri-
bution for time data and we have decided to not investigate it.

In order to fairly compare the three TBEA charts defined in Section 2, we
considered 8 in-control situations. Table 1 shows the in-control parameters a0

and b0 and the skewness coefficient γ0 corresponding to an in-control mean
µ0 = 10 and an in-control standard-deviation σ0 ∈ {1, 2, 5} (for the Normal
distribution we only consider σ0 ∈ {1, 2}). The formulae from which we obtain
the values of a0 and b0 from µ0 and σ0 are given below:

• For the Gamma distribution:

a0 =

(
µ0

σ0

)2

, b0 =
µ0

a0
. (22)

• For the Normal distribution:

a0 = µ0, b0 = σ0. (23)

• For the Weibull distribution: a0 is the solution of the equation (obtained
using a univariate root finder)

Γ( 2
a0

+ 1)

Γ2( 1
a0

+ 1)
=

(
σ0

µ0

)2

+ 1, (24)

and

b0 =
µ0

Γ( 1
a0

+ 1)
. (25)

For the sake of clarity, the distributions corresponding to these 8 cases (i.e.
Gamma with µ0 = 10 and σ0 ∈ {1, 2, 5}, Normal with µ0 = 10 and σ0 ∈ {1, 2}
and Weibull with µ0 = 10 and σ0 ∈ {1, 2, 5}) are displayed in Figure 2.

In this paper, we have chosen to investigate 3 types of bivariate Archimedean
Copula:
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Table 1: Distributions for T and X considered in this paper.

Distribution a0 b0 µ0 σ0 γ0

Gamma 100 0.1 10 1 0.2
25 0.4 10 2 0.4
4 2.5 10 5 1

Normal 10 1 10 1 0
10 2 10 2 0

Weibull 12.1534 10.4304 10 1 -0.7155
5.7974 10.7998 10 2 -0.3519
2.1013 11.2906 10 5 0.5664

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20

µ = 10, σ = 5

µ = 10, σ = 2

µ = 10, σ = 1

f
(x
)

x

(a) Gamma with µ0 = 10 and σ0 ∈ {1, 2, 5}

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20

µ = 10, σ = 2

µ = 10, σ = 1

f
(x
)

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20

µ = 10, σ = 5

µ = 10, σ = 2

µ = 10, σ = 1

f
(x
)

x

(b) Normal with µ0 = 10 and σ0 ∈ {1, 2} (c) Weibull with µ0 = 10 and σ0 ∈ {1, 2, 5}

Figure 2: Distributions considered in this paper (a) Gamma with µ0 = 10 and
σ0 ∈ {1, 2, 5}, (b) Normal with µ0 = 10 and σ0 ∈ {1, 2} and (c) Weibull with
µ0 = 10 and σ0 ∈ {1, 2, 5}.
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• The Frank 33 Copula defined as

C(u, v|θ) = −1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, (26)

where θ ∈ R\{0}. This Copula is symmetric and can be used to model
dependence structures with either positive or negative correlation. For
the Frank Copula, it can be proven that the Kendall’s rank correlation
coefficient τ is related to the dependence parameter θ through the following
equation

τ = 1 +
4(D1(θ)− 1)

θ
, (27)

where D1(θ) is the Debye function of the first kind defined as

D1(θ) =
1

θ

∫ θ

0

t

et − 1
dt. (28)

By solving (27) for θ, we can obtain the value of θ in the function of τ .

• The Clayton 34 Copula defined as

C(u, v|θ) = max(0, u−θ + v−θ − 1)−
1
θ , (29)

where θ ∈ [−1,∞)\{0}. This is an asymmetric Copula exhibiting a larger
dependence in the negative tail than in the positive one. For the Clayton
Copula, it can be proved that the Kendall’s rank correlation coefficient τ
is related to the dependence parameter θ through the following equation

τ =
θ

θ + 2
⇔ θ =

2τ

1− τ . (30)

• The Gumbel 35 (a.k.a. Gumbel-Hougard) Copula is defined as

C(u, v|θ) = exp
(
−
(
(− ln(u))θ + (− ln(v))θ

) 1
θ

)
, (31)

where θ ∈ [1,∞). This is also an asymmetric Copula exhibiting a larger
dependence in the positive tail than in the negative one. For the Gumbel
Copula, it can be proved that the Kendall’s rank correlation coefficient τ
is related to the dependence parameter θ through the following equation

τ = 1− 1

θ
⇔ θ =

1

1− τ . (32)

In order to facilitate the use of the Frank, Clayton and Gumbel Copulas, Ta-
ble 2 simply provides pre-computed values of θ for several selected values of the
Kendall’s rank correlation coefficient τ ∈ {0, 0.1, 0.2, . . . , 0.9}.

The upper control limits UCLZ1
, UCLZ2

and UCLZ3
of the 3 TBEA charts

based on the statistic Z ∈ {Z1, Z2, Z3} have been computed (and can be found in
Tables 3, 4 and 5 for the Frank, Clayton and Gumbel Copulas, respectively) for
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Table 2: Pre-computed values of θ for several selected values of τ ∈
{0, 0.1, 0.2, . . . , 0.9}

θ
τ Frank Clayton Gumbel

0.0 0.00 0.00 1.00
0.1 0.91 0.22 1.11
0.2 1.86 0.50 1.25
0.3 2.92 0.86 1.43
0.4 4.16 1.33 1.67
0.5 5.74 2.00 2.00
0.6 7.93 3.00 2.50
0.7 11.41 4.67 3.33
0.8 18.19 8.00 5.00
0.9 38.28 18.00 10.00

the scenarios described in Table 1 for T and X, and for 3 levels of the Kendall’s
coefficient τ ∈ {0.2, 0.5, 0.8} (corresponding to the dependence parameter θ in
Table 2). For comparison purpose, the in-control value of ATS is the same as in
Rahali et al. 29 , i.e. ATS0 = 370. For instance, in Table 3, if T follows a Gamma
distribution with σ0 = 5 and X follows a Normal distribution with σ0 = 2
(remember that µ0 = 10 for all the scenarios in Table 1) then UCLZ1 = 0.748,
0.592 and 0.438 when τ = 0.2, 0.5 and 0.8, respectively. From Tables 3–5, we
can draw the following conclusions:

• When the statistic Z ∈ {Z1, Z2, Z3}, the parameters in Table 1 and the
type of Copula are fixed, the larger τ (i.e. the dependence between T
and X), the smaller the control limit UCLZ . This remark remains valid
when a comparison is performed with Table 2 in Rahali et al. 29 where the
random variables T and X were assumed independent (which corresponds
to the case τ = 0).

• With the parameters in Table 1, the value of τ and the type of Copula
are fixed, the upper control limits of the statistic Z ∈ {Z1, Z2, Z3} always
satisfy UCLZ1

< UCLZ2
< UCLZ3

.

• With the parameters in Table 1, the value of τ and statistic Z ∈ {Z1, Z2, Z3}
are fixed, the upper control limits are more or less the same no matter the
type of Copula considered.

Since the upper control limit in (15) depends on the choice of the distribution
for T and X and also on the values for µT0

and µX0
, it is important to evaluate

the impact of the number m of Phase I data used for estimating them and to
provide some guidelines concerning the minimum acceptable value for m. Ta-
ble 6 gives the 95% confidence intervals [UCLinf

Z,m,UCLsup
Z,m] for UCLZ (obtained

using Monte Carlo simulations) and their relative differences

∆ =
UCLsup

Z,m −UCLinf
Z,m

UCLZ,∞
,

12



as a function of m ∈ {20, 50, 100, 200, 500, 1000, 2000,∞}, for the statistic Z ∈
{Z1, Z2, Z3}, for some combinations of the Gamma, Normal and Weibull distri-
butions and for the dependence parameter τ ∈ {0.2, 0.8} (Frank’s Copula only).
The smaller the value of ∆, the more “accurate” is the estimation of the upper
control limit UCLZ . The values of UCLZ,∞ have already been computed in
Table 3. As for the previous tables, we assume that µT0

= µX0
= 10. The

following conclusions can be drawn from Table 6:

• when m is small, the relative difference ∆ can be very large. For instance,
for the statistic Z2, for the case of Weibull (σT0 = 5) and Normal (σX0 =
1), we have ∆ = 4.138 when m = 20 and τ = 0.8. As expected, when m
becomes large, the relative difference ∆ converge to 0 (i.e. UCLinf

Z,m and
UCLsup

Z,m both converge to UCLZ,∞).

• The smaller the value of σT0
for T , the better. Taking the same example

(i.e. statistic Z2, m = 20 and τ = 0.8) but for the case of Gamma
(σT0 = 1) and Normal (σX0 = 2), we have ∆ = 0.251 (to be compared
with ∆ = 4.138).

• When σT0
is small, a better compromise is to choose the statistic Z3 which

yields smaller values for ∆, while when σT0
is large a better compromise

is to choose the statistic Z1.

• The value of the dependence parameter τ seems to have a medium impact
on ∆ (the difference between the cases τ = 0.2 and τ = 0.8 is not that
large). In most cases, if we want to estimate the upper control limit UCLZ
accurately (say ∆ ≤ 0.05), it seems that m should be very large and, at
least larger than 1000.

When an upward shift occurs for Z, three possible situations are likely to occur:

• an upward shift in the amplitude X from µX0
to µX1

= δXµX0
where

δX ≥ 1 is the parameter quantifying the change in the amplitude,

• a downward shift in the time T from µT0 to µT1 = δTµT0 where δT ≤ 1 is
the parameter quantifying the change in the time,

• or also a change in both the amplitude X from µX0
to µX1

= δXµX0
and

in the time T from µT0
to µT1

= δTµT0
.

As in Rahali et al. 29 , we suggest to evaluate the performance of the proposed
TBEA charts using

• the Expected Average Time to Signal, EATSX for X (assuming δT = 1)
defined as

EATSX =
∑

δX∈ΩX

fδX (δX)ATS(δX , 1), (33)

• the Expected Average Time to Signal, EATST for T (assuming δX = 1)
defined as

EATST =
∑

δT∈ΩT

fδT (δT )ATS(1, δT ), (34)

13
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Table 6: 95% confidence intervals for UCLZ and their relative differences ∆ as
a function of m, for the statistic Z ∈ {Z1, Z2, Z3}, for some combinations of the
Gamma, Normal and Weibull distributions and for the dependence parameter
τ ∈ {0.2, 0.8} (Frank’s Copula only)

Statistic Z1

T → Gamma (σT0
= 1) Weibull (σT0

= 5)
X → Normal (σX0

= 2) Normal (σX0
= 1)

m τ = 0.2 τ = 0.8 τ = 0.2 τ = 0.8
20 [0.170, 0.606], 1.132 [0.102, 0.438], 1.460 [0.468, 1.009], 0.698 [0.396, 0.818], 0.658
50 [0.280, 0.580], 0.779 [0.149, 0.417], 1.165 [0.622, 0.993], 0.478 [0.521, 0.784], 0.410
100 [0.300, 0.527], 0.589 [0.173, 0.351], 0.773 [0.658, 0.908], 0.322 [0.551, 0.752], 0.313
200 [0.320, 0.470], 0.389 [0.180, 0.306], 0.547 [0.695, 0.866], 0.220 [0.566, 0.719], 0.238
500 [0.337, 0.434], 0.251 [0.196, 0.275], 0.343 [0.718, 0.836], 0.152 [0.595, 0.685], 0.140
1000 [0.350, 0.418], 0.176 [0.206, 0.261], 0.239 [0.735, 0.814], 0.101 [0.606, 0.671], 0.101
2000 [0.357, 0.409], 0.135 [0.212, 0.252], 0.173 [0.743, 0.803], 0.077 [0.614, 0.664], 0.078
∞ [0.385, 0.385], 0.000 [0.230, 0.230], 0.000 [0.775, 0.775], 0.000 [0.641, 0.641], 0.000

Statistic Z2

T → Gamma (σT0 = 1) Weibull (σT0 = 5)
X → Normal (σX0 = 2) Normal (σX0 = 1)
m τ = 0.2 τ = 0.8 τ = 0.2 τ = 0.8
20 [1.170, 1.714], 0.386 [1.084, 1.387], 0.251 [2.067, 21.097], 4.053 [1.792, 18.804], 4.138
50 [1.287, 1.694], 0.289 [1.134, 1.379], 0.203 [2.748, 20.836], 3.852 [2.551, 18.738], 3.937
100 [1.313, 1.573], 0.184 [1.153, 1.305], 0.126 [3.094, 10.941], 1.671 [2.731, 8.690], 1.449
200 [1.332, 1.513], 0.128 [1.164, 1.267], 0.085 [3.494, 7.435], 0.839 [3.008, 6.659], 0.888
500 [1.358, 1.468], 0.078 [1.173, 1.243], 0.058 [3.757, 6.166], 0.513 [3.326, 5.504], 0.529
1000 [1.370, 1.452], 0.058 [1.183, 1.231], 0.039 [4.017, 5.737], 0.366 [3.526, 5.008], 0.360
2000 [1.380, 1.438], 0.041 [1.188, 1.222], 0.028 [4.196, 5.372], 0.250 [3.638, 4.637], 0.243
∞ [1.406, 1.406], 0.000 [1.206, 1.206], 0.000 [4.695, 4.695], 0.000 [4.111, 4.111], 0.000

Statistic Z3

T → Gamma (σT0
= 1) Weibull (σT0

= 5)
X → Normal (σX0

= 2) Normal (σX0
= 1)

m τ = 0.2 τ = 0.8 τ = 0.2 τ = 0.8
20 [2.199, 2.648], 0.187 [2.110, 2.453], 0.152 [2.927, 24.828], 3.736 [2.936, 24.298], 3.758
50 [2.284, 2.605], 0.133 [2.168, 2.444], 0.122 [4.027, 23.506], 3.323 [3.697, 24.143], 3.597
100 [2.312, 2.538], 0.094 [2.184, 2.360], 0.078 [4.162, 12.156], 1.363 [4.118, 12.259], 1.432
200 [2.331, 2.483], 0.063 [2.198, 2.327], 0.057 [4.542, 9.032], 0.766 [4.362, 8.795], 0.780
500 [2.354, 2.450], 0.040 [2.214, 2.293], 0.035 [4.876, 7.392], 0.429 [4.821, 7.415], 0.456
1000 [2.362, 2.434], 0.030 [2.224, 2.280], 0.024 [5.070, 6.912], 0.314 [4.969, 6.871], 0.334
2000 [2.374, 2.424], 0.020 [2.230, 2.271], 0.018 [5.289, 6.564], 0.217 [5.223, 6.400], 0.207
∞ [2.400, 2.400], 0.000 [2.247, 2.247], 0.000 [5.861, 5.861], 0.000 [5.683, 5.683], 0.000
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• the Expected Average Time to Signal, EATS for both X and T defined as

EATSXT =
∑

δX∈ΩX

∑
δT∈ΩT

fδX (δX)fδT (δT )ATS(δX , δT ), (35)

where ΩX and ΩT are the “range of possible shifts” for δX and δT , respectively,
and fδX (δX) and fδT (δT ) are the p.m.f. (probability mass functions) of the shifts
δX and δT over ΩX and ΩT , respectively. To study the effeciency of the upper-
sided TBEA control charts for an increase in the amplitudeX and / or a decrease
in the time between events T , we will use the same situation discussed in Rahali
et al. 29 with ΩX = {1.1, 1.2, . . . , 1.9, 2} and ΩT = {0.5, 0.55, . . . , 0.9, 0.95}.

As the results obtained in Tables 3–5 are quite similar, from now on, we will
only present the resuts for the Frank Copulas. Results for the Clayton and
the Gumbel Copulas have also been obtained (and can be requested from the
corresponding author) but due to a lack of space, they will not be presented
here. Results in Rahali et al. 29 showed that, for independent T and X, the
choice of the statistic (Z1, Z2 or Z3) to be monitored clearly depends on the
kind of expected shift:

• If the shift is due to a change in the amplitude X, the statistic Z1 is the
better choice as it allows us to obtain smaller EATSX values.

• If the shift is due to a change in the time between events T , the statistic
Z3 is more appropriate as it allows us to obtain smaller EATST values.

• If the shift is due to a change in the amplitude X and in the time between
events T , the overall best option is the statistic Z1 as it allows us to obtain
smaller EATSXT values.

Now, we would like to investigate if these findings remain valid when a depen-
dence exists between the time between events T and the corresponding ampli-
tude X using the Frank Copula. For the same scenarios as in Table 1 and for the
control limits in Table 3, the EATSXT values corresponding to τ ∈ {0.2, 0.5, 0.8}
(i.e. small, medium and strong dependence) have been computed and listed in
Tables 7, 8 and 9, respectively (results for EATSX and EATST are not pre-
sented here but can also be requested from the corresponding author). From
these tables, some interesting findings can be drawn:

• When the statistic Z ∈ {Z1, Z2, Z3} and the parameters in Table 1 are
fixed, the larger the τ , the smaller the values of EATSXT .

• For τ = 0.2 (see bold values in Table 7) the statistic Z1 seems to be the best
option as it gives the smallest EATSXT values (in 65% of the cases with
an average EATSXT value EATSXT = 14.46), followed by the statistic Z2

(in 35% of the cases with an average EATSXT value EATSXT = 22.08).

• For τ = 0.5 (see bold values in Table 8), the statistic Z1 produces the
smallest EATSXT values(in 67% of the cases with an average EATSXT
value EATSXT = 12.35), followed by the statistic Z2 (in 33% of the cases
with an average EATSXT value EATSXT = 16.34).
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• For τ = 0.8 (see bold values in Table 9), the most efficient statistic is Z1

(in 67% of the cases with an average EATSXT value EATSXT = 9.74),
followed by Z2 (in 33% of the cases with an average EATSXT value
EATSXT = 13.16).

These results clearly show that, irrespective of the level of dependence, for a
simultaneous change in the amplitude X and in the time between events T ,
the overall best option is the statistic Z1 or, eventually, the statistic Z2 but
the statistic Z3 cannot be considered as potential efficient monitoring statistic.
Whereas, in Rahali et al. 29 , the most efficient statistic is Z1 with an average
EATS value of EATS = 14.91, followed by Z2 with an average EATS value of
EATS = 29.15, and Z3 with an average EATS value of EATS = 11.74. This
also allows us to conclude that the statistic Z1 is the best option whether there
is a dependence between T and X or not.

In order to clarify how much the dependence between T and X has a negative
impact on the efficiency of the TBEA charts, we have also recomputed the
EATSXT in the case of a Frank Copula with τ = 0.5 using the control limits
obtained in Rahali et al. 29 (instead of the ones provided in this paper), i.e.
by assuming that T and X are actually independent random variables. The
results are presented in Table 10 and, with a simple comparison with the results
obtained in Table 8, it can be seen that neglecting the dependence between
T and X clearly increases the EATSXT values (by about 60% for Z1 and by
about 200% for Z2, on the average). Similar results have also been obtained for
τ = 0.2 and τ = 0.8 (these results are not presented in this paper but they can
be requested from the corresponding author). As expected, the larger τ is, the
stronger the negative impact on the TBEA charts. This clearly emphasizes the
fact that using specific control limits by taking into account of the dependence
between T and X, improves the efficiency of the TBEA charts.

4 Illustrative example

For one of its bottleneck machine, a company recorded (see Table 11) from
08/01/12 to 27/12/18 (format DD/MM/YY) all the breakdown dates (in days)
as well as the estimated corresponding incurred costs (Xi, in euros) which in-
clude all the repair and restart costs (spare parts, manpower) and the cost
of manufacturing disruption. From these dates, it is easy to obtain the times
between two consecutive breakdowns (Ti in days). For instance, the machine
started to operate on 08/01/12 for the first time, its first breakdown happened
on 10/03/12, i.e. T1 = 62 days later, and the costs incurred for reparing and
restarting the machine have been estimated as X1 = 4890 euros. The data in
Table 11 are divided into

• 30 breakdowns recorded for 5 years, from 2012 to 2016, and used here as
a Phase I data set.

• 14 breakdowns recorded for 2 years, from 2017 to 2018, and used here as
a Phase II data set.

In the reliability terminology, where the life of a machine is modeled as a “bath-
tub” curve, our Phase I must be considered as the constant failure rate period
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Table 7: EATSXT values for the 3 TBEA charts based on statistics Z ∈
{Z1, Z2, Z3}, Frank Copula, τ = 0.2

Statistic Z1

T X → Gamma Normal Weibull
↓ σ0 1 2 5 1 2 1 2 5

1 7.9 11.3 44.3 8.0 10.0 7.8 9.6 38.8
Gamma 2 9.6 12.8 48.8 9.7 12.2 9.4 11.5 37.3

5 16.1 17.3 49.2 15.89 18.4 16.1 17.9 43.3

1 8.2 11.3 50.8 8.1 10.6 8.2 9.8 36.5
Weibull 2 11.4 13.3 47.3 11.3 12.8 11.4 12.4 35.7

5 18.3 21.4 43.4 17.8 21.0 18.5 20.1 42.3

Statistic Z2

T X → Gamma Normal Weibull
↓ σ0 1 2 5 1 2 1 2 5

1 8.1 10.1 8.0 8.1 9.6 7.9 9.2 25.4
Gamma 2 11.2 13.2 27.3 11.1 12.5 11.1 12.4 26.2

5 32.5 31.2 38.8 30.7 34.1 32.6 32.1 38.0

1 8.6 10.3 28.4 8.5 9.9 8.5 9.5 24.2
Weibull 2 15.2 15.5 31.6 16.3 15.6 16.7 15.6 26.9

5 43.8 44.6 48.8 45.8 45.9 45.6 46.3 41.9

Statistic Z3

T X → Gamma Normal Weibull
↓ σ0 1 2 5 1 2 1 2 5

1 8.0 10.6 40.5 8.0 9.7 7.9 11.1 29.6
Gamma 2 11.5 13.5 37.0 11.3 12.5 12.0 12.2 26.5

5 50.2 47.9 49.9 55.9 49.3) 52.6 49.3 51.3

1 8.7 10.7 38.8 8.73 10.2 8.5 9.6 32.7
Weibull 2 18.2 17.4 37.7 17.7 17.6 17.9 16.8 29.3

5 73.4 84.9 72.4 78.3 72.4 75.3 68.8 72.3
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Table 8: EATSXT values for the 3 TBEA charts based on statistics Z ∈
{Z1, Z2, Z3}, Frank Copula, τ = 0.5

Statistic Z1

T X → Gamma Normal Weibull
↓ σ0 1 2 5 1 2 1 2 5

1 7.4 9.8 43.0 7.4 9.1 7.4 8.5 37.4
Gamma 2 8.4 9.4 43.9 8.5 9.2 8.5 9.0 29.8

5 14.1 13.4 31.9 14.1 13.9 14.1 13.8 27.6

1 7.6 10.1 43.3 7.5 9.2 7.6 8.6 34.4
Weibull 2 9.9 10.2 43.3 9.5 9.5 10.1 9.4 29.9

5 16.4 15.3 29.1 15.9 15.9 16.8 16.0 29.8

Statistic Z2

T X → Gamma Normal Weibull
↓ σ0 1 2 5 1 2 1 2 5

1 7.5 8.7 7.5 7.5 8.4 7.5 8.0 21.7
Gamma 2 9.9 9.8 22.6 9.4 9.3 9.6 9.3 18.3

5 30.6 26.2 24.1 29.1 26.5 27.7 26.9 23.9

1 7.7 8.9 26.9 7.7 8.4 7.6 8.2 20.4
Weibull 2 13.7 11.4 24.2 12.5 11.3 13.2 12.3 21.2

5 43.5 40.9 32.4 42.5 39.4 40.6 41.5 32.1

Statistic Z3

T X → Gamma Normal Weibull
↓ σ0 1 2 5 1 2 1 2 5

1 7.5 9.6 41.0 7.5 8.7 7.4 9.5 31.0
Gamma 2 10.5 10.0 30.8 10.2 9.9 10.5 9.9 27.9

5 47.6 47.8 55.5 51.3 42.3 54.9 45.8 43.8

1 7.9 9.8 37.9 7.7 8.9 7.7 8.3 34.6
Weibull 2 15.9 15.0 32.2 16.3 13.9 16.8 14.7 26.2

5 72.8 71.9 67.9 70.9 74.0 67.1 77.3 71.7
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Table 9: EATSXT values for the 3 TBEA charts based on statistics Z ∈
{Z1, Z2, Z3}, Frank Copula, τ = 0.8

Statistic Z1

T X → Gamma Normal Weibull
↓ σ0 1 2 5 1 2 1 2 5

1 7.3 8.6 40.7 7.3 8.1 7.3 7.7 31.9
Gamma 2 7.7 7.4 31.3 7.7 7.4 7.6 7.4 26.9

5 12.5 10.4 13.5 12.3 10.2 11.9 13.8 11.8

1 7.3 9.2 40.6 7.3 8.3 7.3 7.8 33.5
Weibull 2 8.9 7.9 37.5 8.6 7.6 8.2 7.4 30.1

5 14.5 12.4 13.3 14.6 11.4 13.5 11.4 11.8

Statistic Z2

T X → Gamma Normal Weibull
↓ σ0 1 2 5 1 2 1 2 5

1 7.3 7.9 7.3 7.3 7.6 7.3 7.5 19.9
Gamma 2 8.4 7.5 17.7 8.2 7.4 8.2 7.4 14.5

5 28.9 22.8 11.7 26.6 24.0 25.3 20.1 10.1

1 7.3 8.3 24.5 7.2 7.8 7.3 7.5 21.3
Weibull 2 11.3 8.4 20.6 10.7 7.9 10.2 7.8 16.3

5 39.0 34.8 18.0 42.9 32.8 37.1 32.9 14.8

Statistic Z3

T X → Gamma Normal Weibull
↓ σ0 1 2 5 1 2 1 2 5

1 7.3 8.4 41.9 7.3 8.0 7.3 9.1 32.6
Gamma 2 9.7 8.6 30.5 9.7 8.0 9.5 7.8 24.5

5 56.6 48.0 49.9 53.9 46.7 45.0 47.8 48.7

1 7.4 9.2 41.5 7.3 8.3 7.3 7.8 31.4
Weibull 2 16.1 11.8 35.9 14.6 12.0 14.9 10.9 24.7

5 70.8 73.6 75.1 72.7 65.3 66.8 71.6 70.9
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Table 10: EATSXT values for the 3 TBEA charts based on statistics Z ∈
{Z1, Z2, Z3} for a Frank Copula with τ = 0.5 using the control limits obtained
in Rahali et al. 29 , i.e. by assuming that T and X are actually independent
random variables

Statistic Z1

T X → Gamma Normal Weibull
↓ σ0 1 2 5 1 2 1 2 5

1 9.5 16.4 62.3 9.4 14.7 8.7 13.4 51.0
Gamma 2 13.8 29.6 81.7 13.4 29.3 12.6 26.5 74.0

5 22.4 60.7 188.2 22.7 54.8 22.4 52.2 197.3

1 10.2 16.9 58.9 10.2 15.4 9.7 14.2 50.8
Weibull 2 16.2 36.6 87.5 16.4 34.7 15.7 30.5 78.7

5 26.6 72.2 209.6 26.2 65.1 26.7 59.6 229.8

Statistic Z2

T X → Gamma Normal Weibull
↓ σ0 1 2 5 1 2 1 2 5

1 9.8 16.3 51.1 9.4 15.4 8.9 14.3 44.1
Gamma 2 14.5 28.9 98.9 14.4 27.2 14.4 24.8 99.3

5 37.9 45.9 108.8 37.7 47.6 38.3 46.3 110.1

1 10.9 18.0 49.7 10.8 17.1 10.4 16.4 45.9
Weibull 2 20.1 33.1 108.5 21.2 32.3 20.7 31.1 124.7

5 53.4 61.6 108.5 52.9 61.9 54.4 64.1 112.5

Statistic Z3

T X → Gamma Normal Weibull
↓ σ0 1 2 5 1 2 1 2 5

1 9.4 15.3 54.4 9.3 14.1 8.9 13.0 44.9
Gamma 2 15.1 22.6 66.9 14.8 22.8 14.5 21.9 63.5

5 53.2 58.2 75.6 54.7 58.2 54.9 59.9 75.0

1 10.7 16.2 51.8 10.7 15.3 10.5 14.6 45.4
Weibull 2 22.5 29.9 70.8 22.5 29.7 22.3 28.6 69.9

5 74.6 82.1 88.1 75.0 79.8 78.7 78.4 88.8
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of the machine, while our Phase II period will be considered as the beginning
of its potentially increasing failure rate period (this will be confirmed later on).
The first part of the “bathtub” curve, corresponding to a decreasing failure rate
period is not presented here, i.e. all the early failures have been fixed and there
is no report about this relatively short period.

The data, Ti and Xi in Table 11, have also been plotted in Figure 3 with
(◦) and (•) corresponding to Phases I and II, respectively. From the bottom-
most plot of Figure 3, a slight positive correlation between the time T between
consecutive breakdowns and the corresponding incurred costs X can be seen.
More precisely, it seems that when the time between consecutive breakdowns
T is smaller (larger), the corresponding cost seems to be also smaller (larger).
Investigations (during the period 2012 to 2016) about this phenomena have
shown that, when a breakdown occurs and is fixed, then if the next breakdown
occurs after a short period of time, it is often (but not always) due to similar
causes and, consequently, i) the time for searching the breakdown causes are
reduced and ii) the spare parts costs are also reduced as they have already
been purchased for the previous breakdown. On the contrary, when the next
breakdown occurs after a long period of time, the causes are usually different
from the previous breakdown and need i) more time to be searched and ii) new
spare parts to be purchased. In order to analytically confirm this fact, the
Kendall’s and Spearman’s rank correlation coefficients have been computed,
τ = 0.4657 and ρ = 0.6129 along with their correponding p-values 0.00035 and
0.00032, respectively, confirming a positive correlation between T and X. In the
case of a Frank Copula, the relationship between θ and τ is given by equations
(27) and (28). As a consequence, if τ is known, then θ can be obtained by
numerically solving the following equation:

τ − 1− 4

θ
×
(

1

θ

∫ θ

0

t

et − 1
dt− 1

)
= 0.

In our case, for τ = 0.4657, we have θ = 5.14. In Table 12, we provide the
estimated values for µT0

, σT0
, µX0

and σX0
, as well as the estimated values for

a0 and b0 for the distributions considered in Table 1. Based on the Kolmogorov-
Smirnov distance DKS (the smaller, the better) the Gamma distribution will
be chosen for the time T and the Weibull distribution for the cost X.

Assuming an in-control ATS value, ATS0 = 9125 days (i.e. 25 years), the
upper control limits of the 3 TBEA charts based on statistics Z1, Z2 and Z3

are equal to UCLZ1 = 0.57, UCLZ2 = 2.06 and UCLZ3 = 3.18, respectively.
The TBEA charts, corresponding to the statistics Z1, Z2 and Z3, are plotted
in Figure 4 along with the upper control limits UCLZ1

= 0.57, UCLZ2
= 2.06

and UCLZ3
= 3.18. As it can be seen, the Phase I part of these charts seems

to confirm the fact that during the period from 2012 to 2016, the time between
consecutive breakdowns and their corresponding costs were a stable process.
But, from 2017, things seems to have changed as several out-of-control situations
(see values in bold in Table 11) have been detected by the 3 TBEA charts on
14/05/18, 24/11/18 and 27/12/18 due to more frequent breakdowns and an
increasing maintenance cost (due to an aging machine). Every time an out-
of-control situation is detected, the production is stopped, the sources of the
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Table 11: Phase I and II data sets corresponding to the time (Ti in days) between
two consecutive breakdowns, amplitudes (Xi as the repair and restart cost in
euros) and the values of the statistics Z1, Z2 and Z3.

Phase I Phase II
Date i Ti Xi Z1,i Z2,i Z3,i Date i Ti Xi Z1,i Z2,i Z3,i

10/03/12 1 62 4890 -0.064 0.939 1.939 11/01/17 1 63 5080 -0.043 0.960 1.962
28/05/12 2 79 6180 -0.092 0.932 1.995 21/03/17 2 69 5350 -0.090 0.923 1.935
25/07/12 3 58 3730 -0.231 0.766 1.770 07/05/17 3 47 3770 -0.036 0.955 2.015
27/08/12 4 33 2930 0.032 1.057 2.377 15/07/17 4 69 4590 -0.243 0.792 1.782
20/11/12 5 85 7600 0.093 1.065 2.230 14/10/17 5 91 5940 -0.344 0.777 1.848
20/02/13 6 92 5580 -0.434 0.722 1.768 18/12/17 6 65 5420 -0.008 0.993 2.002
30/04/13 7 69 4570 -0.247 0.789 1.778 26/02/18 7 70 4580 -0.262 0.779 1.767
06/07/13 8 67 5230 -0.080 0.930 1.937 21/04/18 8 54 5430 0.181 1.197 2.189
18/08/13 9 43 4470 0.174 1.238 2.274 14/05/18 9 23 5740 0.770 2.972 3.721
28/09/13 10 41 3420 -0.005 0.993 2.128 27/06/18 10 44 6110 0.488 1.654 2.574
22/11/13 11 55 3460 -0.234 0.749 1.770 22/08/18 11 56 7340 0.533 1.561 2.536
08/02/14 12 78 5360 -0.241 0.818 1.839 29/10/18 12 68 8160 0.495 1.429 2.516
05/04/14 13 56 4470 -0.047 0.951 1.956 24/11/18 13 26 4800 0.529 2.199 3.236
28/05/14 14 53 4470 0.004 1.004 2.015 27/12/18 14 33 6570 0.768 2.371 3.113
08/07/14 15 41 3320 -0.025 0.964 2.108
27/09/14 16 81 4910 -0.382 0.722 1.720
29/10/14 17 32 5010 0.470 1.864 2.854
07/01/15 18 70 6630 0.152 1.128 2.182
30/03/15 19 82 5710 -0.238 0.829 1.873
20/05/15 20 51 5130 0.171 1.198 2.192
16/07/15 21 57 5330 0.110 1.114 2.111
01/09/15 22 47 5010 0.215 1.269 2.266
22/10/15 23 51 3660 -0.126 0.855 1.895
15/11/15 24 24 3340 0.268 1.657 3.129
12/01/16 25 58 3600 -0.257 0.739 1.743
14/03/16 26 62 5560 0.072 1.068 2.074
28/04/16 27 45 5760 0.401 1.524 2.473
25/06/16 28 58 6440 0.317 1.322 2.318
16/08/16 29 52 6310 0.393 1.445 2.408
09/11/16 30 85 6300 -0.169 0.883 1.967

Table 12: Estimated values for µT0
, σT0

, µX0
and σX0

as well as the estimated
values for a0 and b0 for the distributions in Table 1.

T X
µT0

= 58.9, σT0
= 17.28 µX0

= 4946, σX0
= 1165.43

a0 b0 DKS a0 b0 DKS

Gamma 11.6488 5.0562 0.0818 18.0107 274.6135 0.1228
Normal 58.9000 17.2573 0.1207 4946 1165.4349 0.1182
Weibull 3.8123 65.1584 0.1264 4.8472 5396.4958 0.1129
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Figure 3: Phase I (◦) and II (•) data corresponding to the time (T in days)
between breakdowns and amplitudes (X as the repair and restart cost in euros)
corresponding to the data set in Table 11.
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breakdown are searched for, analyzed and repaired. The machine is restarted
as soon as possible in order to decrease the manufacturing disruption.

5 Conclusions

In this paper, we investigated simple Shewhart type control charts for sev-
eral statistics and many distributional scenarios for simultaneously monitoring
TBEA data. The Frank Copulas has been used as a mechanism to model the
dependence between the time T and the amplitude X. The main result of this
paper is that, for a simultaneous change in the amplitude X and in the time
between events T , the overall best choice is the statistic Z1 followed by Z2,
regardless of the level of dependence. On the contrary, the statistic Z3 should
not be considered as a potentially efficient statistic for monitoring.

In terms of potential future research, TBEA type control charts could be ex-
tended, for instance, in order to be able to monitor resilience type data which
are known to depend on three characteristics: the time between disruptions (say
T1), the performance loss X and the time needed for recovery (say T2) (see36

and37). In this context, the idea would be to develop new TBEA type control
charts for which the time is no longer a univariate random variable but a bivari-
ate one T = (T1, T2) and the amplitude X remains the same as for traditional
TBEA type data.

Similar statistics to the ones used in this paper can also be investigated in
the case where time between events T is a univariate random variable and the
amplitude is no longer a univariate random variable X but is a multivariate
random vector X (containing the different types of amplitude corresponding to
a particular kind of negative event). In addition, other continuous distributions
like the Beta or Rayleigh distributions (as in Ali and Riaz 38 for instance), as
well as discrete distributions for the amplitude X like the Binomial or Poisson
distribution could also be considered.
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