Dorra Rahali 
  
Philippe Castagliola 
email: philippe.castagliola@univ-nantes.fr.
  
Hassen Taleb 
  
Michael B C Khoo 
  
Evaluation of Shewhart Time-Between-Events-and-Amplitude Control Charts for Correlated Data

Keywords: Amplitude, Copulas, Machine breakdowns, Statistical Process Monitoring, Time between events Amplitude, Copulas, Machine breakdowns, Statistical Process Monitoring, Time between events

In recent years, several techniques based on control charts have been developed for the simultaneous monitoring of the time interval T and the amplitude X of events, known as TBEA (Time Between Events and Amplitude) charts. However, the vast majority of the existing works have some limitations. Firstly, they usually focus on statistics based on the ratio X T and, secondly, they only investigate a reduced number of potential distributions, i.e. the exponential distribution for T and the Normal distribution for X. Moreover, until now, very few research papers have considered the potential dependence between T and X. In this paper, we investigate three different statistics, denoted as Z1, Z2 and Z3, for monitoring TBEA data in the case of three potential distributions (Gamma, Normal and Weibull), for both T and X, using Copulas as a mechanism to model the dependence. An illustrative example considering times between machine breakdowns and associated maintenance illustrates the use of TBEA control charts.

Introduction

Control charts are one of the most effective techniques in Statistical Process Monitoring (SPM) to monitor manufacturing processes or critical events E such as the ones occuring in healthcare or in geological (earthquakes or volcanic eruptions) applications. The definition of an event E clearly depends on the situation considered. For instance, in the manufacturing industry, it means the occurrence of a nonconforming product; in reliability engineering, it means the failure of a specific system, etc. (see Wu et al. [START_REF] Wu | A Single Control Chart for Monitoring the Frequency and Magnitude of an Event[END_REF] ). In general, a critical event is defined by two important characteristics: i) the time interval T measured by the duration between two successive occurrences of the event E and, ii) its amplitude (cost, number of casualties, ...) X which reflects the correspending effect, see Cheng et al. [START_REF] Cheng | Simultaneously Monitoring Frequency and Magnitude of Events Based on Bivariate Gamma Distribution[END_REF] .

The problem of monitoring Time Between Events was introduced for the first time by Calvin [START_REF] Calvin | Quality Control Techniques for "Zero Defects[END_REF] . Lucas [START_REF] Lucas | Counted Data CUSUM's[END_REF] and Vardeman and Ray 5 extended this work by studying new control charts for the monitoring of Time Between Events (TBE). From that moment, many TBE control charts have been developed. The TBE exponential chart has been studied by Chan et al. [START_REF] Chan | Cumulative Quantity Control Charts for Monitoring Production Processes[END_REF] and Xie et al. [START_REF] Xie | Some Effective Control Chart Procedures for Reliability Monitoring[END_REF] . Bourke 8 developed a geometric CUSUM chart for monitoring TBE data. Gan [START_REF] Gan | Exact Run Length Distributions for One-Sided Exponential CUSUM Schemes[END_REF] , Borror et al. [START_REF] Borror | Robustness of the Time Between Events CUSUM[END_REF] and Shafae et al. [START_REF] Shafae | Cumulative Sum Control Charts for Monitoring Weibull-Distributed Time Between Events[END_REF] investigated an exponential TBE cumulative sum (CUSUM) control chart. An exponentially weighted moving average (EWMA) control chart for monitoring the rate of occurrences of rare events has been developped by Gan [START_REF] Gan | Designs of One-and Two-Sided Exponential EWMA Charts[END_REF] . Liu et al. [START_REF] Liu | CUSUM Chart with Transformed Exponential Data[END_REF] discussed the performance of continuous TBE charts among the CQC, CQC-r, exponential EWMA and exponential CUSUM charts. Zhang et al. [START_REF] Zhang | A Control Chart for the Gamma Distribution as a Model of Time Between Events[END_REF] investigated a Gamma chart to monitor the TBE and they developed a new method based on a random-shift model for calculating the out-of-control ATS. Xie et al. [START_REF] Xie | Monitoring Time-Between-Events for Health Management[END_REF] discussed the application of TBE control charts for health management. Recently Fang et al. [START_REF] Fang | Monitoring of Time-Between-Events with a Generalized Group Runs Control Chart[END_REF] proposed a generalized group runs TBE chart for a homogenous Poisson failure process.

As the effect of an event E is not only quantified by its frequency T but also by its amplitude X, a combined scheme for monitoring the time interval using a T chart and the amplitude using a X chart have been introduced by Wu et al. [START_REF] Wu | A Control Scheme for Monitoring the Frequency and Magnitude of an Event[END_REF] . The corresponding control chart is called a Time Between Events and Amplitude (TBEA) chart. After the paper of Wu et al. [START_REF] Wu | A Control Scheme for Monitoring the Frequency and Magnitude of an Event[END_REF] , several single TBEA charts have been developed (see Wu and Qu [START_REF] Wu | A Single Chart for Monitoring Frequency and Magnitude of Events[END_REF] , Qu et al. [START_REF] Qu | A CUSUM Scheme for Event Monitoring[END_REF] , Qu et al. [START_REF] Qu | A CUSUM Chart for Detecting the Intensity Ratio of Negative Events[END_REF] ). Very recently Ali and Pievatolo [START_REF] Ali | Time and Magnitude Monitoring Based on the Renewal Reward Process[END_REF] introduced a new control chart based on the assumption of a renewal process with rewards, where the reward represents the magnitude, and a magnitude-over-threshold condition represents the occurrence of an event.

All the TBEA control charts presented above assume that the time between events T and their amplitudes X are independent variables. However, in practice, they may not necessarily be independent. More specifically, there are many situations where it seems expectable (and logical) that when the time between events becomes shorter, then the corresponding amplitude becomes larger. For instance, small amplitude earthquakes may occur with a low frequency (large time between events) and, suddenly, the frequency of the occurrence of these earthquakes may increase (shorter time between events) with a correlated increase in their amplitudes. As another example, some forest fires may occur with a low frequency and small amplitude (surface burned) during the "humid season" and, when the "dry season" comes, the time between the occurrence of forest fires tends to become shorter and their amplitude tends to increase (see the 2019 forest fires in Amazonia or Siberia). As the illustrative example will show, the contrary may also happen, i.e. time between events becomes shorter and amplitude becomes smaller. Whatever the situation, it seems important to investigate the dependency between time between events T and their amplitudes X. Until now, very few research papers have investigated TBEA control charts by considering the potential dependence between the two variables. Cheng and Mukherjee [START_REF] Cheng | One Hotelling T 2 Chart Based on Transformed Data for Simultaneous Monitoring the Frequency and Magnitude of an Event[END_REF] were the first to investigate a TBEA control chart by taking into account the dependence between the frequency and the amplitude using a T 2 chart based on transformed data. They have used a Smith-Adelfang-Tubbs (SAT) bivariate Gamma distribution to model the joint probability of T and X and they have shown that the proposed chart is more effecient when the shift size is moderate to large. Then, Cheng et al. [START_REF] Cheng | Simultaneously Monitoring Frequency and Magnitude of Events Based on Bivariate Gamma Distribution[END_REF] developed a multivariate exponentially weighted moving average (MEWMA) scheme also based on a bivariate Gamma distribution, to jointly monitor the frequency and the amplitude of an event. A comparison is conducted between three kinds of charts under eight shift domains and the results show that the proposed MEWMA procedure outperforms other charts in most scenarios. Very recently, Sanusi et al. [START_REF] Sanusi | Simultaneous Monitoring of Magnitude and Time-Between-Events Data with a Max-EWMA Control Chart[END_REF] proposed a Max-EWMA type chart using the maximum of the absolute values of two EWMA statistics, one for controlling the magnitude and the other for the frequency of an event. The limitation of those studies is that they only considered the bivariate Gamma distribution to model the joint probability of T and X, while in this paper, we propose a general mechanism based on Copulas that allows a very flexible choice for the distribution of T and X.

In order to model the dependence between the time T and the amplitude X, in this paper we suggest the use of Copulas (popularized by Sklar 24 ) which allow the degree of association between these variables to be quantified without having to actually assume anything concerning their distributions. For instance,

Copulas have been used in the financial domain. Several researchers also used Copulas for defining and implementing control charts. Fatahi et al. [START_REF] Fatahi | A Bivariate Control Chart Based on Copula Function[END_REF] proposed a bivariate control chart based on Copulas. A Copula Markov CUSUM chart for monitoring bivariate auto-correlated data has been developed by Dokouhaki and Noorossana 26 . Busababodhin and Amphanthong 27 studied various types of Copulas modeling for several multivariate control charts. Very recently, Sukparungsee et al. [START_REF] Sukparungsee | Bivariate Copulas on the Hotelling's T 2 Control Chart[END_REF] proposed five different types of Copulas for the Hotelling's T 2 control chart and they evaluated the statistical measures of performance using Monte Carlo simulations.

In this paper we propose to extend the preliminary work in Rahali et al. [START_REF] Rahali | Evaluation of Shewhart Time-Between-Events-and-Amplitude Control Charts for Several Distributions[END_REF] and use three kinds of Copulas in order to investigate the properties of one-sided Shewhart TBEA charts for three different statistics Z 1 , Z 2 and Z 3 which all depend on T (time) and X (amplitude). The main limitations of this contribution are i) the fact that a parametric distribution has to be chosen for X and T (without being exhaustive, this paper nevertheless investigates three distributions: Gamma, Normal and Weibull), ii) the parameters of these distributions, as well as the Copulas dependence parameter have to be known or, at least, accurately estimated.

Finally, it is important to note that the kind of events E we are interested in are different from the so-called "recurrence data" that can be found in survival analysis for which some right-censoring is likely to occur (i.e. at time t, the interarrival time between the N (t)th event and the (N (t) + 1)th event is unobserved and we only know that it is longer than t -S N (t) , where S k is the occurrence time of the kth event), see for intance, Wang et al. [START_REF] Wang | Analyzing Recurrent Event Data with Informative Censoring[END_REF] , Huang and Wang 31 and Rondeau [START_REF] Rondeau | Statistical Models for Recurrent Events and Death: Application to Cancer Events[END_REF] . For example, in the case of cancer patients who have already been treated, the time-between-events is the time between two cancer recurrences. In this situation, right-censoring may (unfortunately) happen as, for some patients of the sample, after several recurrences of the disease, the last time-between-events is missing because they passed away (they never recovered from the cancer or they died because of some other reasons). Moreover, recurrence data in survival analysis, usually involve a sample (group of patients with the same disease, for instance) while, in our case, we only focus on a single phenomena. In conclusion, in our case, right-censoring is not supposed to happen because the kind of event E we are interested in (earthquakes, tsunamis, fires and, even, machine breakdown occurences in our illustrative example) assumes that i) no matter what the situation is, this event E will necessarily re-happen "naturally" in the future, ii) it costs nothing to wait for the next occurence of this event, iii) there is no sample to deal with.

The paper is structured as follows: in section 2 we introduce the dependence structure between T and X using Copulas, we define the statistics Z 1 , Z 2 and Z 3 and derive their cumulative distribution functions, we define the upper control limits of the corresponding TBEA charts and derive their time to signal properties. Then, in Section 3, we investigate the EATS properties of the three TBEA charts for 8 distributional scenarios, 3 different Copulas and several levels of correlation. Finally, in Section 4, we propose an illustrative example involving the time between consecutive machine breakdowns and their associate maintenance costs. Conclusions with comments and recommendations for future research are given in Section 5.

TBEA charts

Let T be the time interval between two consecutive occurrences of a specific event E and let X be the corresponding magnitude of this event. In this paper, we assume that (X, T ) ∈ R 2 + and their joint continuous c.d.f. (cumulative distribution function) is

F (T,X) (t, x) = C(F T (t), F X (x)|θ), (1) 
where F T (t) and F X (x) are the marginal c.d.f. of T and X, respectively, C(u, v|θ) is a Copula containing all information on the dependence structure between T and X while θ is a dependence parameter that measures the dependence between the marginals. Let

f (T,X) (t, x) = c(F T (t), F X (x)|θ)f T (t)f X (x) (2) 
be the joint p.d.f. (probability distribution function) of (X, T ) where f T (t) and f X (x) are the marginal p.d.f.'s of T and X, respectively, and c(u, v|θ) = ∂C(u,v|θ) ∂u∂v is the Copula density.

Let µ T > 0 and µ X > 0 be the (marginal) means of T and X, respectively. By definition, when the process is in-control, we have µ T = µ T0 , µ X = µ X0 and, when the process is out-of-control, we have µ T = µ T1 , µ X = µ X1 . In order to not favor one random variable over the other one (their scale can be very different), the new random variables T and X are introduced as the in-control standardized counterparts of T and X, i.e.

T = T µ T0 , (3) 
X = X µ X0 . (4) 
By definition, when the process is in-control, E(T ) = E(X ) = 1. The marginal c.d.f. of T and X are F T (t) = F T (tµ T0 ) and F X (x) = F X (xµ X0 ). Let F (T ,X ) (t, x) and f (T ,X ) (t, x) be the joint c.d.f. and p.d.f. of (X , T ) ∈ R 2 + , respectively. It is easy to prove that

F (T ,X ) (t, x) = C(F T (tµ T0 ), F X (xµ X0 )|θ), (5) 
f (T ,X ) (t, x) = µ T0 µ X0 c(F T (tµ T0 ), F X (xµ X0 )|θ)f T (tµ T0 )f X (xµ X0 ). ( 6 
)
As in Rahali et al. [START_REF] Rahali | Evaluation of Shewhart Time-Between-Events-and-Amplitude Control Charts for Several Distributions[END_REF] , in order to simultaneously monitor the time between an event E and its amplitude, we investigate three different statistics Z = Z(T , X ), denoted as Z 1 , Z 2 and Z 3 , all functions of T and X , having the following properties: i)

Z ↑ if either T ↓ or X ↑, ii) Z ↓ if either T ↑ or X ↓.
A first possible choice for the statistic Z (denoted as the Z 1 statistic) is

Z 1 = X -T . (7) 
If we integrate over all the couples (X , T 1 (a), where the grey area represents the region satisfying Z 1 = X -T ≤ z < 0)

) ∈ R 2 + satisfying Z 1 = X -T ≤ z, then the c.d.f. F Z1 (z) of Z 1 is equal to • if z < 0 (see Figure
F Z1 (z) = ∞ 0 ∞ x-z f (T ,X ) (t, x)dtdx. (8) 
• if z > 0 (see Figure 1 (b), where the grey area represents the region satisfying

Z 1 = X -T ≤ z > 0) F Z1 (z) = z 0 ∞ 0 f (T ,X ) (t, x)dtdx + ∞ z ∞ x-z f (T ,X ) (t, x)dtdx, = F X (z) + ∞ z ∞ x-z f (T ,X ) (t, x)dtdx. (9) 
Since F X (z) = 0 when z < 0 and f (T ,X ) (t, x) = 0 when either t < 0 or x < 0, the last result can be generalized to z ∈ R.

A second possible choice for the statistic Z (denoted as the Z 2 statistic) is

Z 2 = X T . (10) 
The random variable Z 2 is defined on [0, +∞) and its c.d.f. F Z2 (z) can be obtained by integrating over all the couples (X , T

) ∈ R 2 + satisfying Z 2 = X T ≤ z (see Figure 1 (c)
, where the grey area represents the region satisfying

Z 2 = X T ≤ z), i.e. F Z2 (z) = ∞ 0 ∞ x z f (T ,X ) (t, x)dtdx. (11) 
Finally, a possible third choice for the statistic Z (denoted as the Z 3 statistic) is

Z 3 = X + 1 T . (12) 
This statistic can be considered as a "hybrid" of the two previous ones. The random variable Z 3 is also defined on [0, +∞) and its c.d.f. F Z3 (z) can be obtained by integrating over all the couples (X , T

) ∈ R 2 + satisfying Z 3 = X + 1 T ≤ z (see Figure 1 (d)
, where the grey area represents the region satisfying

Z 3 = X + 1 T ≤ z), i.e. F Z3 (z) = z 0 ∞ 1 z-x f (T ,X ) (t, x)dtdx. ( 13 
)
The control limits LCL Z and UCL Z of the TBEA (Time Between Event and Amplitude) charts based on the statistic Z ∈ {Z 1 , Z 2 , Z 3 } defined in equations ( 7), ( 10) and ( 12) are equal to

LCL Z = F -1 Z (α L |µ T0 , µ X0 ) ( 14 
)
UCL Z = F -1 Z (1 -α U |µ T0 , µ X0 ), ( 15 
) X -T ≤ z X T 0 X -T ≤ z X T 0 z (a) Region satisfying Z 1 = X -T ≤ z < 0 (b) Region satisfying Z 1 = X -T ≤ z > 0 X T ≤ z X T 0 X + 1 T ≤ z z X T 0 (c) Region satisfying Z 2 = X T ≤ z (d) Region satisfying Z 3 = X + 1 T ≤ z Figure 1: Integration areas used for statistics Z 1 = X -T ≤ z ((a) and (b)), Z 2 = X T ≤ z (c) and Z 3 = X + 1 T ≤ z (d).
where F -1 Z (. . . |µ T0 , µ X0 ) is the inverse c.d.f. of Z, α L = ξα and α U = (1ξ)α are the lower-sided and upper-sided components of the Type I error α, respectively, with ξ being the detection power allocation factor defined as ξ = α L α L +α U . Since it is important to consider the case of upward shift on Z, we will assume that ξ = 0 and, consequently, we only have a single upper-sided control limit UCL Z .

A performance characteristic for the TBEA charts is the the average time to signal (ATS). The out-of-control ATS indicates the average time required to signal an out-of control case, whereas the in-control ATS 0 is used as a measure of the false alarm rate. The Type II error β of the TBEA charts based on the statistic

Z ∈ {Z 1 , Z 2 , Z 3 } is equal to β = F Z (UCL Z |µ T , µ X ) -F Z (LCL Z |µ T , µ X ). ( 16 
)
As the TBEA chart is a Shewhart type chart, the average run length, ARL =

E(RL) = 1 1-β . Let ∈ {1, 2, 3, • • • } and T 1 , T 2 , T 3 , .
. . be the time between two consecutive events. The Time to Signal, TS is equal to

TS = RL =1 T . (17) 
The Average Time to Signal and the Standard-Deviation of the Time to Signal are calculated by

ATS = E(TS) = E(T )E(RL) = µ T × ARL = µ T 1 -β , (18) 
SDTS = σ(TS) = V (T )E(RL) + E 2 (T )V (RL), = σ 2 T × ARL + µ 2 T × SDRL 2 , = σ 2 T 1 -β + µ 2 T β (1 -β) 2 . ( 19 
)
When the process is in-control, we have 1β = α and, consequently

ATS 0 = µ T0 α ⇔ α = µ T0 ATS 0 .

Numerical analysis

In this section, we consider three types of distribution for T and X that depend on two parameters, a and b. We denote a 0 and b 0 as the in-control values of these parameters, respectively.

• The Gamma distribution has parameters a > 0, b > 0 and p.d.f.

f G (x|a, b) = exp(-x b )x a-1 b a Γ(a) . (20) 
• The Normal distribution has parameters a, b > 0 as in Rahali et al. [START_REF] Rahali | Evaluation of Shewhart Time-Between-Events-and-Amplitude Control Charts for Several Distributions[END_REF] , instead of the conventional notation (µ, σ) and p.d.f. f N (x|a, b).

• The Weibull distribution has parameters a > 0, b > 0 and p.d.f.

f W (x|a, b) = a b x b a-1 exp - x b a . (21) 
To be more specific, in this paper, we have chosen to investigate

• the Gamma, Normal and Weibull distributions for the random variable X (amplitude).

• only the Gamma and the Weibull distributions for the random variable T (time). The Normal distribution is actually not the most suitable distribution for time data and we have decided to not investigate it.

In order to fairly compare the three TBEA charts defined in Section 2, we considered 8 in-control situations. Table 1 shows the in-control parameters a 0 and b 0 and the skewness coefficient γ 0 corresponding to an in-control mean µ 0 = 10 and an in-control standard-deviation σ 0 ∈ {1, 2, 5} (for the Normal distribution we only consider σ 0 ∈ {1, 2}). The formulae from which we obtain the values of a 0 and b 0 from µ 0 and σ 0 are given below:

• For the Gamma distribution:

a 0 = µ 0 σ 0 2 , b 0 = µ 0 a 0 . (22) 
• For the Normal distribution:

a 0 = µ 0 , b 0 = σ 0 . (23) 
• For the Weibull distribution: a 0 is the solution of the equation (obtained using a univariate root finder)

Γ( 2 a0 + 1) Γ 2 ( 1 a0 + 1) = σ 0 µ 0 2 + 1, (24) 
and

b 0 = µ 0 Γ( 1 a0 + 1) . ( 25 
)
For the sake of clarity, the distributions corresponding to these 8 cases (i.e. Gamma with µ 0 = 10 and σ 0 ∈ {1, 2, 5}, Normal with µ 0 = 10 and σ 0 ∈ {1, 2} and Weibull with µ 0 = 10 and σ 0 ∈ {1, 2, 5}) are displayed in Figure 2.

In this paper, we have chosen to investigate 3 types of bivariate Archimedean Copula: • The Frank [START_REF] Frank | On the Simultaneous Associativity of F (x, y) and x + y -F (x, y)[END_REF] Copula defined as

C(u, v|θ) = - 1 θ ln 1 + (e -θu -1)(e -θv -1) e -θ -1 , (26) 
where θ ∈ R\{0}. This Copula is symmetric and can be used to model dependence structures with either positive or negative correlation. For the Frank Copula, it can be proven that the Kendall's rank correlation coefficient τ is related to the dependence parameter θ through the following equation

τ = 1 + 4(D 1 (θ) -1) θ , (27) 
where D 1 (θ) is the Debye function of the first kind defined as

D 1 (θ) = 1 θ θ 0 t e t -1 dt. ( 28 
)
By solving (27) for θ, we can obtain the value of θ in the function of τ .

• The Clayton [START_REF] Clayton | A Model for Association in Bivariate Life Tables and its Application in Epidemiological Studies of Familial Tendency in Chronic Disease Incidence[END_REF] Copula defined as

C(u, v|θ) = max(0, u -θ + v -θ -1) -1 θ , (29) 
where θ ∈ [-1, ∞)\{0}. This is an asymmetric Copula exhibiting a larger dependence in the negative tail than in the positive one. For the Clayton Copula, it can be proved that the Kendall's rank correlation coefficient τ is related to the dependence parameter θ through the following equation

τ = θ θ + 2 ⇔ θ = 2τ 1 -τ . ( 30 
)
• The Gumbel [START_REF] Gumbel | Distributions Des Valeurs Extremes en Plusieurs Dimensions[END_REF] (a.k.a. Gumbel-Hougard) Copula is defined as

C(u, v|θ) = exp -(-ln(u)) θ + (-ln(v)) θ 1 θ , (31) 
where θ ∈ [1, ∞). This is also an asymmetric Copula exhibiting a larger dependence in the positive tail than in the negative one. For the Gumbel Copula, it can be proved that the Kendall's rank correlation coefficient τ is related to the dependence parameter θ through the following equation

τ = 1 - 1 θ ⇔ θ = 1 1 -τ . ( 32 
)
In order to facilitate the use of the Frank, Clayton and Gumbel Copulas, Table 2 simply provides pre-computed values of θ for several selected values of the Kendall's rank correlation coefficient τ ∈ {0, 0.1, 0.2, . . . , 0.9}.

The upper control limits UCL Z1 , UCL Z2 and UCL Z3 of the 3 TBEA charts based on the statistic Z ∈ {Z 1 , Z 2 , Z 3 } have been computed (and can be found in Tables 3, 4 and 5 for the Frank, Clayton and Gumbel Copulas, respectively) for 1 for T and X, and for 3 levels of the Kendall's coefficient τ ∈ {0.2, 0.5, 0.8} (corresponding to the dependence parameter θ in Table 2). For comparison purpose, the in-control value of ATS is the same as in Rahali et al. [START_REF] Rahali | Evaluation of Shewhart Time-Between-Events-and-Amplitude Control Charts for Several Distributions[END_REF] , i.e. ATS 0 = 370. For instance, in Table 3, if T follows a Gamma distribution with σ 0 = 5 and X follows a Normal distribution with σ 0 = 2 (remember that µ 0 = 10 for all the scenarios in Table 1) then UCL Z1 = 0.748, 0.592 and 0.438 when τ = 0.2, 0.5 and 0.8, respectively. From Tables 345, we can draw the following conclusions:

• When the statistic Z ∈ {Z 1 , Z 2 , Z 3 }, the parameters in Table 1 and the type of Copula are fixed, the larger τ (i.e. the dependence between T and X), the smaller the control limit UCL Z . This remark remains valid when a comparison is performed with Table 2 in Rahali et al. [START_REF] Rahali | Evaluation of Shewhart Time-Between-Events-and-Amplitude Control Charts for Several Distributions[END_REF] where the random variables T and X were assumed independent (which corresponds to the case τ = 0).

• With the parameters in Table 1, the value of τ and the type of Copula are fixed, the upper control limits of the statistic Z ∈ {Z 1 , Z 2 , Z 3 } always satisfy UCL Z1 < UCL Z2 < UCL Z3 .

• With the parameters in Table 1, the value of τ and statistic Z ∈ {Z 1 , Z 2 , Z 3 } are fixed, the upper control limits are more or less the same no matter the type of Copula considered.

Since the upper control limit in (15) depends on the choice of the distribution for T and X and also on the values for µ T0 and µ X0 , it is important to evaluate the impact of the number m of Phase I data used for estimating them and to provide some guidelines concerning the minimum acceptable value for m. Table 6 gives the 95% confidence intervals [UCL inf Z,m , UCL sup Z,m ] for UCL Z (obtained using Monte Carlo simulations) and their relative differences

∆ = UCL sup Z,m -UCL inf Z,m UCL Z,∞ ,
as a function of m ∈ {20, 50, 100, 200, 500, 1000, 2000, ∞}, for the statistic Z ∈ {Z 1 , Z 2 , Z 3 }, for some combinations of the Gamma, Normal and Weibull distributions and for the dependence parameter τ ∈ {0.2, 0.8} (Frank's Copula only).

The smaller the value of ∆, the more "accurate" is the estimation of the upper control limit UCL Z . The values of UCL Z,∞ have already been computed in Table 3. As for the previous tables, we assume that µ T0 = µ X0 = 10. The following conclusions can be drawn from Table 6:

• when m is small, the relative difference ∆ can be very large. For instance, for the statistic Z 2 , for the case of Weibull (σ T0 = 5) and Normal (σ X0 = 1), we have ∆ = 4.138 when m = 20 and τ = 0.8. As expected, when m becomes large, the relative difference ∆ converge to 0 (i.e. UCL inf Z,m and UCL sup Z,m both converge to UCL Z,∞ ). • The smaller the value of σ T0 for T , the better. Taking the same example (i.e. statistic Z 2 , m = 20 and τ = 0.8) but for the case of Gamma (σ T0 = 1) and Normal (σ X0 = 2), we have ∆ = 0.251 (to be compared with ∆ = 4.138).

• When σ T0 is small, a better compromise is to choose the statistic Z 3 which yields smaller values for ∆, while when σ T0 is large a better compromise is to choose the statistic Z 1 .

• The value of the dependence parameter τ seems to have a medium impact on ∆ (the difference between the cases τ = 0.2 and τ = 0.8 is not that large). In most cases, if we want to estimate the upper control limit UCL Z accurately (say ∆ ≤ 0.05), it seems that m should be very large and, at least larger than 1000.

When an upward shift occurs for Z, three possible situations are likely to occur:

• an upward shift in the amplitude X from µ X0 to µ X1 = δ X µ X0 where δ X ≥ 1 is the parameter quantifying the change in the amplitude,

• a downward shift in the time T from µ T0 to µ T1 = δ T µ T0 where δ T ≤ 1 is the parameter quantifying the change in the time,

• or also a change in both the amplitude X from µ X0 to µ X1 = δ X µ X0 and in the time T from µ T0 to µ T1 = δ T µ T0 .

As in Rahali et al. [START_REF] Rahali | Evaluation of Shewhart Time-Between-Events-and-Amplitude Control Charts for Several Distributions[END_REF] , we suggest to evaluate the performance of the proposed TBEA charts using

• the Expected Average Time to Signal, EATS X for X (assuming δ T = 1) defined as

EATS X = δ X ∈Ω X f δ X (δ X )AT S(δ X , 1), (33) 
• the Expected Average Time to Signal, EATS T for T (assuming δ X = 1) defined as • the Expected Average Time to Signal, EATS for both X and T defined as

EATS T = δ T ∈Ω T f δ T (δ T )AT S(1, δ T ), (34) 
EATS XT = δ X ∈Ω X δ T ∈Ω T f δ X (δ X )f δ T (δ T )AT S(δ X , δ T ), ( 35 
)
where Ω X and Ω T are the "range of possible shifts" for δ X and δ T , respectively, and f δ X (δ X ) and f δ T (δ T ) are the p.m.f. (probability mass functions) of the shifts δ X and δ T over Ω X and Ω T , respectively. To study the effeciency of the uppersided TBEA control charts for an increase in the amplitude X and / or a decrease in the time between events T , we will use the same situation discussed in Rahali et al. [START_REF] Rahali | Evaluation of Shewhart Time-Between-Events-and-Amplitude Control Charts for Several Distributions[END_REF] with Ω X = {1.1, 1.2, . . . , 1.9, 2} and Ω T = {0.5, 0.55, . . . , 0.9, 0.95}.

As the results obtained in Tables 3-5 are quite similar, from now on, we will only present the resuts for the Frank Copulas. Results for the Clayton and the Gumbel Copulas have also been obtained (and can be requested from the corresponding author) but due to a lack of space, they will not be presented here. Results in Rahali et al. [START_REF] Rahali | Evaluation of Shewhart Time-Between-Events-and-Amplitude Control Charts for Several Distributions[END_REF] showed that, for independent T and X, the choice of the statistic (Z 1 , Z 2 or Z 3 ) to be monitored clearly depends on the kind of expected shift:

• If the shift is due to a change in the amplitude X, the statistic Z 1 is the better choice as it allows us to obtain smaller EATS X values.

• If the shift is due to a change in the time between events T , the statistic Z 3 is more appropriate as it allows us to obtain smaller EATS T values.

• If the shift is due to a change in the amplitude X and in the time between events T , the overall best option is the statistic Z 1 as it allows us to obtain smaller EATS XT values. Now, we would like to investigate if these findings remain valid when a dependence exists between the time between events T and the corresponding amplitude X using the Frank Copula. For the same scenarios as in Table 1 and for the control limits in Table 3, the EATS XT values corresponding to τ ∈ {0.2, 0.5, 0.8} (i.e. small, medium and strong dependence) have been computed and listed in Tables 7, 8 and 9, respectively (results for EATS X and EATS T are not presented here but can also be requested from the corresponding author). From these tables, some interesting findings can be drawn:

• When the statistic Z ∈ {Z 1 , Z 2 , Z 3 } and the parameters in Table 1 are fixed, the larger the τ , the smaller the values of EATS XT .

• For τ = 0.2 (see bold values in Table 7) the statistic Z 1 seems to be the best option as it gives the smallest EATS XT values (in 65% of the cases with an average EATS XT value EATS XT = 14.46), followed by the statistic Z 2 (in 35% of the cases with an average EATS XT value EATS XT = 22.08).

• For τ = 0.5 (see bold values in Table 8), the statistic Z 1 produces the smallest EATS XT values(in 67% of the cases with an average EATS XT value EATS XT = 12.35), followed by the statistic Z 2 (in 33% of the cases with an average EATS XT value EATS XT = 16.34).

• For τ = 0.8 (see bold values in Table 9), the most efficient statistic is Z 1 (in 67% of the cases with an average EATS XT value EATS XT = 9.74), followed by Z 2 (in 33% of the cases with an average EATS XT value EATS XT = 13.16).

These results clearly show that, irrespective of the level of dependence, for a simultaneous change in the amplitude X and in the time between events T , the overall best option is the statistic Z 1 or, eventually, the statistic Z 2 but the statistic Z 3 cannot be considered as potential efficient monitoring statistic. Whereas, in Rahali et al. [START_REF] Rahali | Evaluation of Shewhart Time-Between-Events-and-Amplitude Control Charts for Several Distributions[END_REF] , the most efficient statistic is Z 1 with an average EATS value of EATS = 14.91, followed by Z 2 with an average EATS value of EATS = 29.15, and Z 3 with an average EATS value of EATS = 11.74. This also allows us to conclude that the statistic Z 1 is the best option whether there is a dependence between T and X or not.

In order to clarify how much the dependence between T and X has a negative impact on the efficiency of the TBEA charts, we have also recomputed the EATS XT in the case of a Frank Copula with τ = 0.5 using the control limits obtained in Rahali et al. [START_REF] Rahali | Evaluation of Shewhart Time-Between-Events-and-Amplitude Control Charts for Several Distributions[END_REF] (instead of the ones provided in this paper), i.e. by assuming that T and X are actually independent random variables. The results are presented in Table 10 and, with a simple comparison with the results obtained in Table 8, it can be seen that neglecting the dependence between T and X clearly increases the EATS XT values (by about 60% for Z 1 and by about 200% for Z 2 , on the average). Similar results have also been obtained for τ = 0.2 and τ = 0.8 (these results are not presented in this paper but they can be requested from the corresponding author). As expected, the larger τ is, the stronger the negative impact on the TBEA charts. This clearly emphasizes the fact that using specific control limits by taking into account of the dependence between T and X, improves the efficiency of the TBEA charts.

Illustrative example

For one of its bottleneck machine, a company recorded (see Table 11) from 08/01/12 to 27/12/18 (format DD/MM/YY) all the breakdown dates (in days) as well as the estimated corresponding incurred costs (X i , in euros) which include all the repair and restart costs (spare parts, manpower) and the cost of manufacturing disruption. From these dates, it is easy to obtain the times between two consecutive breakdowns (T i in days). For instance, the machine started to operate on 08/01/12 for the first time, its first breakdown happened on 10/03/12, i.e. T 1 = 62 days later, and the costs incurred for reparing and restarting the machine have been estimated as X 1 = 4890 euros. The data in Table 11 are divided into

• 30 breakdowns recorded for 5 years, from 2012 to 2016, and used here as a Phase I data set.

• 14 breakdowns recorded for 2 years, from 2017 to 2018, and used here as a Phase II data set.

In the reliability terminology, where the life of a machine is modeled as a "bathtub" curve, our Phase I must be considered as the constant failure rate period of the machine, while our Phase II period will be considered as the beginning of its potentially increasing failure rate period (this will be confirmed later on). The first part of the "bathtub" curve, corresponding to a decreasing failure rate period is not presented here, i.e. all the early failures have been fixed and there is no report about this relatively short period.

The data, T i and X i in Table 11, have also been plotted in Figure 3 with (•) and (•) corresponding to Phases I and II, respectively. From the bottommost plot of Figure 3, a slight positive correlation between the time T between consecutive breakdowns and the corresponding incurred costs X can be seen. More precisely, it seems that when the time between consecutive breakdowns T is smaller (larger), the corresponding cost seems to be also smaller (larger). Investigations (during the period 2012 to 2016) about this phenomena have shown that, when a breakdown occurs and is fixed, then if the next breakdown occurs after a short period of time, it is often (but not always) due to similar causes and, consequently, i) the time for searching the breakdown causes are reduced and ii) the spare parts costs are also reduced as they have already been purchased for the previous breakdown. On the contrary, when the next breakdown occurs after a long period of time, the causes are usually different from the previous breakdown and need i) more time to be searched and ii) new spare parts to be purchased. In order to analytically confirm this fact, the Kendall's and Spearman's rank correlation coefficients have been computed, τ = 0.4657 and ρ = 0.6129 along with their correponding p-values 0.00035 and 0.00032, respectively, confirming a positive correlation between T and X. In the case of a Frank Copula, the relationship between θ and τ is given by equations ( 27) and (28). As a consequence, if τ is known, then θ can be obtained by numerically solving the following equation:

τ -1 - 4 θ × 1 θ θ 0 t e t -1 dt -1 = 0.
In our case, for τ = 0.4657, we have θ = 5.14. In Table 12, we provide the estimated values for µ T0 , σ T0 , µ X0 and σ X0 , as well as the estimated values for a 0 and b 0 for the distributions considered in Table 1. Based on the Kolmogorov-Smirnov distance D KS (the smaller, the better) the Gamma distribution will be chosen for the time T and the Weibull distribution for the cost X.

Assuming an in-control ATS value, ATS 0 = 9125 days (i.e. 25 years), the upper control limits of the 3 TBEA charts based on statistics Z 1 , Z 2 and Z 3 are equal to UCL Z1 = 0.57, UCL Z2 = 2.06 and UCL Z3 = 3.18, respectively. The TBEA charts, corresponding to the statistics Z 1 , Z 2 and Z 3 , are plotted in Figure 4 along with the upper control limits UCL Z1 = 0.57, UCL Z2 = 2.06 and UCL Z3 = 3.18. As it can be seen, the Phase I part of these charts seems to confirm the fact that during the period from 2012 to 2016, the time between consecutive breakdowns and their corresponding costs were a stable process. But, from 2017, things seems to have changed as several out-of-control situations (see values in bold in Table 11) have been detected by the 3 TBEA charts on 14/05/18, 24/11/18 and 27/12/18 due to more frequent breakdowns and an increasing maintenance cost (due to an aging machine). Every time an outof-control situation is detected, the production is stopped, the sources of the 
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Conclusions

In this paper, we investigated simple Shewhart type control charts for several statistics and many distributional scenarios for simultaneously monitoring TBEA data. The Frank Copulas has been used as a mechanism to model the dependence between the time T and the amplitude X. The main result of this paper is that, for a simultaneous change in the amplitude X and in the time between events T , the overall best choice is the statistic Z 1 followed by Z 2 , regardless of the level of dependence. On the contrary, the statistic Z 3 should not be considered as a potentially efficient statistic for monitoring.

In terms of potential future research, TBEA type control charts could be extended, for instance, in order to be able to monitor resilience type data which are known to depend on three characteristics: the time between disruptions (say T 1 ), the performance loss X and the time needed for recovery (say T 2 ) (see 36 and 37 ). In this context, the idea would be to develop new TBEA type control charts for which the time is no longer a univariate random variable but a bivariate one T = (T 1 , T 2 ) and the amplitude X remains the same as for traditional TBEA type data.

Similar statistics to the ones used in this paper can also be investigated in the case where time between events T is a univariate random variable and the amplitude is no longer a univariate random variable X but is a multivariate random vector X (containing the different types of amplitude corresponding to a particular kind of negative event). In addition, other continuous distributions like the Beta or Rayleigh distributions (as in Ali and Riaz 38 for instance), as well as discrete distributions for the amplitude X like the Binomial or Poisson distribution could also be considered. 
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 1052 Figure 2: Distributions considered in this paper (a) Gamma with µ 0 = 10 and σ 0 ∈ {1, 2, 5}, (b) Normal with µ 0 = 10 and σ 0 ∈ {1, 2} and (c) Weibull with µ 0 = 10 and σ 0 ∈ {1, 2, 5}.

Table 1 :

 1 Distributions for T and X considered in this paper.

	Distribution	a 0	b 0	µ 0 σ 0	γ 0
	Gamma	100	0.1	10 1	0.2
		25	0.4	10 2	0.4
		4	2.5	10 5	1
	Normal	10	1	10 1	0
		10	2	10 2	0
	Weibull	12.1534 10.4304 10 1 -0.7155
		5.7974 10.7998 10 2 -0.3519
		2.1013 11.2906 10 5	0.5664

Table 2 :

 2 Pre-computed values of θ for several selected values of τ ∈ {0, 0.1, 0.2, . . . , 0.9}

			θ	
	τ	Frank Clayton Gumbel
	0.0	0.00	0.00	1.00
	0.1	0.91	0.22	1.11
	0.2	1.86	0.50	1.25
	0.3	2.92	0.86	1.43
	0.4	4.16	1.33	1.67
	0.5	5.74	2.00	2.00
	0.6	7.93	3.00	2.50
	0.7 11.41	4.67	3.33
	0.8 18.19	8.00	5.00
	0.9 38.28	18.00	10.00
	the scenarios described in Table		

Table 3 :

 3 Upper control limits UCL

	} for the scenarios described in Table 1,
	2 , Z 3

Z of the 3 TBEA charts based on the statistic Z ∈ {Z 1 , Z

Table 7 :

 7 EATS XT values for the 3 TBEA charts based on statistics Z ∈ {Z 1 , Z 2 , Z 3 }, Frank Copula, τ = 0.2

					Statistic Z 1		
	T ↓	X → σ 0 1	1 7.9	Gamma 2 11.3 44.3 5	Normal 1 8.0 10.0 2	1 7.8	Weibull 2 9.6	5 38.8
	Gamma	2	9.6 12.8 48.8	9.7	12.2	9.4 11.5 37.3
		5	16.1 17.3 49.2	15.89 18.4	16.1 17.9 43.3
		1	8.2	11.3 50.8	8.1	10.6	8.2	9.8	36.5
	Weibull	2	11.4 13.3 47.3	11.3	12.8	11.4 12.4 35.7
		5	18.3 21.4 43.4	17.8	21.0	18.5 20.1 42.3
					Statistic Z 2		
	T ↓	X → σ 0 1	1 8.1	Gamma 2 10.1 8.0 5	Normal 1 8.1 9.6 2	1 7.9	Weibull 2 9.2 25.4 5
	Gamma	2	11.2 13.2 27.3	11.1	12.5	11.1 12.4 26.2
		5	32.5 31.2 38.8	30.7	34.1	32.6 32.1 38.0
		1	8.6	10.3 28.4	8.5	9.9	8.5	9.5 24.2
	Weibull	2	15.2 15.5 31.6	16.3	15.6	16.7 15.6 26.9
		5	43.8 44.6 48.8	45.8	45.9	45.6 46.3 41.9
					Statistic Z 3		
	T ↓	X → σ 0 1	1 8.0	Gamma 2 10.6 40.5 5	Normal 1 8.0 9.7 2	1 7.9	Weibull 2 11.1 29.6 5
	Gamma	2	11.5 13.5 37.0	11.3	12.5	12.0 12.2 26.5
		5	50.2 47.9 49.9	55.9	49.3)	52.6 49.3 51.3
		1	8.7	10.7 38.8	8.73	10.2	8.5	9.6	32.7
	Weibull	2	18.2 17.4 37.7	17.7	17.6	17.9 16.8 29.3
		5	73.4 84.9 72.4	78.3	72.4	75.3 68.8 72.3

Table 8 :

 8 EATS XT values for the 3 TBEA charts based on statistics Z ∈ {Z 1 , Z 2 , Z 3 }, Frank Copula, τ = 0.5

						Statistic Z 1			
	T ↓	X → σ 0 1	1 7.4	Gamma 2 9.8	5 43.0	Normal 1 2 7.4 9.1	1 7.4	Weibull 2 8.5	5 37.4
	Gamma	2	8.4	9.4	43.9	8.5	9.2	8.5	9.0	29.8
		5	14.1 13.4 31.9	14.1 13.9	14.1 13.8 27.6
		1	7.6	10.1 43.3	7.5	9.2	7.6	8.6	34.4
	Weibull	2	9.9 10.2 43.3	9.5	9.5	10.1 9.4	29.9
		5	16.4 15.3 29.1	15.9 15.9	16.8 16.0 29.8
						Statistic Z 2			
	T ↓	X → σ 0 1	1 7.5	Gamma 2 8.7	5 7.5	Normal 1 2 7.5 8.4	1 7.5	Weibull 2 8.0 21.7 5
	Gamma	2	9.9	9.8	22.6	9.4	9.3	9.6	9.3	18.3
		5	30.6 26.2 24.1	29.1 26.5	27.7 26.9 23.9
		1	7.7	8.9 26.9	7.7	8.4	7.6	8.2 20.4
	Weibull	2	13.7 11.4 24.2	12.5 11.3	13.2 12.3 21.2
		5	43.5 40.9 32.4	42.5 39.4	40.6 41.5 32.1
						Statistic Z 3			
	T ↓	X → σ 0 1	1 7.5	Gamma 2 9.6	5 41.0	Normal 1 2 7.5 8.7	1 7.4	Weibull 2 9.5	5 31.0
	Gamma	2	10.5 10.0 30.8	10.2	9.9	10.5	9.9	27.9
		5	47.6 47.8 55.5	51.3 42.3	54.9 45.8 43.8
		1	7.9	9.8	37.9	7.7	8.9	7.7	8.3	34.6
	Weibull	2	15.9 15.0 32.2	16.3 13.9	16.8 14.7 26.2
		5	72.8 71.9 67.9	70.9 74.0	67.1 77.3 71.7

Table 9 :

 9 EATS XT values for the 3 TBEA charts based on statistics Z ∈ {Z 1 , Z 2 , Z 3 }, Frank Copula, τ = 0.8

						Statistic Z 1			
	T ↓	X → σ 0 1	1 7.3	Gamma 2 8.6	5 40.7	Normal 1 2 7.3 8.1	1 7.3	Weibull 2 7.7	5 31.9
	Gamma	2	7.7	7.4	31.3	7.7	7.4	7.6	7.4	26.9
		5	12.5 10.4 13.5	12.3 10.2	11.9 13.8 11.8
		1	7.3	9.2	40.6	7.3	8.3	7.3	7.8	33.5
	Weibull	2	8.9	7.9	37.5	8.6	7.6	8.2	7.4	30.1
		5	14.5 12.4 13.3	14.6 11.4	13.5 11.4 11.8
						Statistic Z 2			
	T ↓	X → σ 0 1	1 7.3	Gamma 2 7.9	5 7.3	Normal 1 2 7.3 7.6	1 7.3	Weibull 2 7.5 19.9 5
	Gamma	2	8.4	7.5	17.7	8.2	7.4	8.2	7.4	14.5
		5	28.9 22.8 11.7	26.6 24.0	25.3 20.1 10.1
		1	7.3	8.3 24.5	7.2	7.8	7.3	7.5 21.3
	Weibull	2	11.3	8.4	20.6	10.7	7.9	10.2	7.8	16.3
		5	39.0 34.8 18.0	42.9 32.8	37.1 32.9 14.8
						Statistic Z 3			
	T ↓	X → σ 0 1	1 7.3	Gamma 2 8.4	5 41.9	Normal 1 2 7.3 8.0	1 7.3	Weibull 2 9.1	5 32.6
	Gamma	2	9.7	8.6	30.5	9.7	8.0	9.5	7.8	24.5
		5	56.6 48.0 49.9	53.9 46.7	45.0 47.8 48.7
		1	7.4	9.2	41.5	7.3	8.3	7.3	7.8	31.4
	Weibull	2	16.1 11.8 35.9	14.6 12.0	14.9 10.9 24.7
		5	70.8 73.6 75.1	72.7 65.3	66.8 71.6 70.9

Table 10 :

 10 EATS XT values for the 3 TBEA charts based on statistics Z ∈ {Z 1 , Z 2 , Z 3 } for a Frank Copula with τ = 0.5 using the control limits obtained in Rahali et al.[START_REF] Rahali | Evaluation of Shewhart Time-Between-Events-and-Amplitude Control Charts for Several Distributions[END_REF] , i.e. by assuming that T and X are actually independent random variables

				Statistic Z 1	
	T ↓	X → σ 0 1	Gamma 2 9.5 16.4 62.3 1 5	Normal 1 2 9.4 14.7	Weibull 2 8.7 13.4 51.0 1 5
	Gamma	2	13.8 29.6 81.7	13.4 29.3	12.6 26.5 74.0
		5	22.4 60.7 188.2	22.7 54.8	22.4 52.2 197.3
		1	10.2 16.9 58.9	10.2 15.4	9.7 14.2 50.8
	Weibull	2	16.2 36.6 87.5	16.4 34.7	15.7 30.5 78.7
		5	26.6 72.2 209.6	26.2 65.1	26.7 59.6 229.8
				Statistic Z 2	
	T ↓	X → σ 0 1	Gamma 2 9.8 16.3 51.1 1 5	Normal 1 2 9.4 15.4	Weibull 2 8.9 14.3 44.1 1 5
	Gamma	2	14.5 28.9 98.9	14.4 27.2	14.4 24.8 99.3
		5	37.9 45.9 108.8	37.7 47.6	38.3 46.3 110.1
		1	10.9 18.0 49.7	10.8 17.1	10.4 16.4 45.9
	Weibull	2	20.1 33.1 108.5	21.2 32.3	20.7 31.1 124.7
		5	53.4 61.6 108.5	52.9 61.9	54.4 64.1 112.5
				Statistic Z 3	
	T ↓	X → σ 0 1	Gamma 2 9.4 15.3 54.4 1 5	Normal 1 2 9.3 14.1	Weibull 2 8.9 13.0 44.9 1 5
	Gamma	2	15.1 22.6 66.9	14.8 22.8	14.5 21.9 63.5
		5	53.2 58.2 75.6	54.7 58.2	54.9 59.9 75.0
		1	10.7 16.2 51.8	10.7 15.3	10.5 14.6 45.4
	Weibull	2	22.5 29.9 70.8	22.5 29.7	22.3 28.6 69.9
		5	74.6 82.1 88.1	75.0 79.8	78.7 78.4 88.8

Table 11 :

 11 Phase I and II data sets corresponding to the time (T i in days) between two consecutive breakdowns, amplitudes (X i as the repair and restart cost in euros) and the values of the statistics Z 1 , Z 2 and Z 3 .

	Phase I	Phase II
	Date	

Table 12 :

 12 Estimated values for µ T0 , σ T0 , µ X0 and σ X0 as well as the estimated values for a 0 and b 0 for the distributions in Table1. breakdown are searched for, analyzed and repaired. The machine is restarted as soon as possible in order to decrease the manufacturing disruption.

	/03/12 1 4890 -0.064 0.939 1.939	11/01/17 1 63 5080 -0.043 0.960	1.962
	28/05/12 2 6180 -0.092 0.932 1.995	21/03/17 2 69 5350 -0.090 0.923	1.935
	25/07/12 3 3730 -0.231 0.766 1.770	07/05/17 3 47 3770 -0.036 0.955	2.015
	27/08/12 4 2930 0.032 1.057 2.377	15/07/17 4 69 4590 -0.243 0.792	1.782
	20/11/12 5 7600 0.093 1.065 2.230	14/10/17 5 91 5940 -0.344 0.777	1.848
	20/02/13 6 5580 -0.434 0.722 1.768	18/12/17 6 65 5420 -0.008 0.993	2.002
	30/04/13 7 4570 -0.247 0.789 1.778	26/02/18 7 70 4580 -0.262 0.779	1.767
	06/07/13 8 5230 -0.080 0.930 1.937	21/04/18 8 54 5430 0.181	1.197	2.189
	18/08/13 9 4470 0.174 1.238 2.274	14/05/18 9 23 5740 0.770 2.972 3.721
	28/09/13 10 3420 -0.005 0.993 2.128	27/06/18 10 44 6110 0.488	1.654	2.574
	22/11/13 11 3460 -0.234 0.749 1.770	22/08/18 11 56 7340 0.533	1.561	2.536
	08/02/14 12 5360 -0.241 0.818 1.839	29/10/18 12 68 8160 0.495	1.429	2.516
	05/04/14 13 4470 -0.047 0.951 1.956	24/11/18 13 26 4800 0.529 2.199 3.236
	28/05/14 14 4470 0.004 1.004 2.015	27/12/18 14 33 6570 0.768 2.371 3.113
	08/07/14 15 3320 -0.025 0.964 2.108		
	27/09/14 16 4910 -0.382 0.722 1.720		
	29/10/14 17 5010 0.470 1.864 2.854		
	07/01/15 18 6630 0.152 1.128 2.182		
	30/03/15 19 5710 -0.238 0.829 1.873		
	20/05/15 20 5130 0.171 1.198 2.192		
	16/07/15 21 5330 0.110 1.114 2.111		
	01/09/15 22 5010 0.215 1.269 2.266		
	22/10/15 23 3660 -0.126 0.855 1.895		
	15/11/15 24 3340 0.268 1.657 3.129		
	12/01/16 25 3600 -0.257 0.739 1.743		
	14/03/16 26 5560 0.072 1.068 2.074		
	28/04/16 27 5760 0.401 1.524 2.473		
	25/06/16 28 6440 0.317 1.322 2.318		
	16/08/16 29 6310 0.393 1.445 2.408		
	09/11/16 30 6300 -0.169 0.883 1.967		
			T			X
		µ T0 = 58.9, σ T0 = 17.28	µ X0 = 4946, σ X0 = 1165.43
		a	b 0	D KS	a 0	b 0	D KS
	Gamma 11.6488 5.0562 0.0818	18.0107 274.6135	0.1228
	Normal 58.9000 17.2573 0.1207	4946	1165.4349 0.1182
	Weibull	3.8123 65.1584 0.1264	4.8472 5396.4958 0.1129
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 1, for T and X, and for τ ∈ {0.2, 0.5, 0.8} assuming a Clayton Copula (0.225, 0.163, 0.087) (0.392, 0.332, 0.259) (0.210, 0.146, 0.072) (0.359, 0.300, 0.227) (1.060, 1.003, 0.939) Gamma 2 (0.334, 0.229, 0.168) (0.469, 0.349, 0.201) (1.142, 1.030, 0.893) (0.332, 0.222, 0.159) (0.452, 0.329, 0.180) (0.328, 0.220, 0.134) (0.429, 0.310, 0.162) (1.064, 0.940, 0.807) 5 (0.669, 0.566, 0.539) (0.729, 0.506, 0.379) (1.244, 0.983, 0.583) (0.666, 0.560, 0.530) (0.720, 0.507, 0.345) (0.667, 0.537, 0.497) (0.716, 0.508, 0.329) (1.192 (5.877, 5.859, 5.760) (5.820, 5.710, 5.570) (5.878, 5.734, 5.706) (5.798, 5.687, 5.468) (5.837, 5.387, 5.168) Table 6: 95% confidence intervals for UCL Z and their relative differences ∆ as a function of m, for the statistic Z ∈ {Z 1 , Z 2 , Z 3 }, for some combinations of the Gamma, Normal and Weibull distributions and for the dependence parameter τ ∈ {0.2, 0.8} (Frank's Copula only) 11. 11.