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Abstract

Exponential distributed data are commonly encountered in high-quality processes. Control
charts dedicated to the univariate exponential distribution have been extensively studied by
many researchers. In this paper, we investigate a Multivariate Cumulative Sum (MCUSUM)
control chart for monitoring Gumbel’s Bivariate Exponential (GBE) data. Some tables are
provided to determine the optimal design parameters of the proposed MCUSUM GBE chart.
Furthermore, both zero- and steady-state properties of the proposed MCUSUM GBE chart are
compared with the multivariate exponentially weighted moving average (MEWMA) chart and
the paired individual Cumulative Sum (CUSUM) chart. The results show that the proposed
MCUSUM GBE chart outperforms the other two types of control charts for most shift domains.
In addition, an illustrative example is provided in order to explain how the proposed MCUSUM
GBE chart can be implemented in practice.

Keywords: Multivariate CUSUM chart; Gumbel’s Bivariate Exponential distribution; Average
Run Length.

1 Introduction
As one of the most important on-line monitoring technique, control charts have been widely used to
detect assignable causes in manufacturing industries1. For high-quality processes, the occurrences of
defects or nonconformities are very low, say, parts per million (ppm) or even parts per billion (ppb),
which make the traditional charts, like the p and np charts, facing many practical issues (like, for
example, a high probability of false alarm, control limits that are meaningless and a low efficiency in
the detection of shifts), see Xie et al. 2 .

Differing from the traditional control charts, TBE (Time-Between-Event) charts are well-known
for monitoring the time between successive occurrences of a specific event. Most studies on univariate
TBE type charts are based on the assumption that the occurrences of this event follow a homogeneous
Poisson process, i.e., the time between two successive events follows an exponential distribution, see
Chan et al. 3 , Liu et al. 4 and Liu et al. 5 . In addition, TBE type charts for monitoring the gamma,
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the lognormal or the Weibull distributions are also common, readers can refer for instance to Zhang
et al. 6 , Zhang and Chen 7 , Rahali et al. 8 and Wang et al. 9 .

By definition, univariate control charts focus on processes which only have a single quality char-
acteristic of interest. But, in practice, there are many situations where several related quality char-
acteristics of interest need to be monitored simultaneously. Using several univariate control charts
to separately monitor these quality characteristics is known to be ineffective and misleading, because
of the natural correlation between the quality characteristics. Therefore, multivariate control charts
are suggested to monitor all the quality characteristics together. The original work on multivariate
control charts for the mean vector has been proposed by Hotelling1. After that, many other multi-
variate control charts have been proposed, including the multivariate cumulative sum (MCUSUM)
charts (see Crosier 10 , Pignatiello Jr and Runger 11) and the multivariate exponentially weighted mov-
ing average (MEWMA) charts (see Lowry et al. 12). It is worth noting that these control charts all
assume multivariate normality for the data.

In the case of high-quality processes, univariate and multivariate TBE data usually follow a
non-normal and highly skewed distribution. Using traditional multivariate control charts (as the
ones cited above) that assume multivariate normality may result in a poor detection power when
monitoring TBE data. Various approaches have been proposed in the literature to monitor non-
normal distributed data. Among them, some nonparametric control charts have been proposed to
monitor univariate and multivariate skewed populations, see Zou and Tsung 13 , Tang et al. 14 , Zhou
et al. 15 and Yue and Liu 16 .

Although attractive, these nonparametric control charts are difficult to apply in practice due to
the expensive computations required for their implementation. On the other hand, with the help of
some data transformations, a multivariate non-normal distribution can be approximately transformed
into a multivariate normal distribution or into the combination of different normal distributions, for
example, using the double square-root method (see Kittlitz Jr 17) or the weighted standard deviation
method (see Chang and Bai 18 and Chang 19). Because data transformation may lead to some loss
of useful information, it should be carefully considered as an appropriate method for process moni-
toring. In addition, Stoumbos and Sullivan 20 and Testik et al. 21 showed that the MEWMA control
chart with a small smoothing parameter is fairly robust to the non-normality assumption. Based on
this remark, Xie et al. 22 investigated the properties of the MEWMA chart for monitoring the mean
shift vector of a Gumbel’s Bivariate Exponential (GBE) distribution23. The results showed that the
MEMWA chart is superior to the paired individual t chart2 and the paired individual EWMA chart
for both raw and transformed data.

The performance of univariate or multivariate control charts is usually measured by the ARL
(Average Run Length), which is defined as the average number of observations required for the chart
to give a signal. If a shift occurs in the process as soon as the monitoring begins or when the chart
statistic is at its initial value, the ARL is called the zero-state ARL. But, in practice, there is no
reason to assume that some shift exactly occured in the process when the process monitoring started.
Instead, it is usually assumed that some random shifts occur after a period of in-control time and
the ARL obtained this way is called the steady-state ARL. In many situations, the steady-state ARL
performance of a control chart is more informative than its zero-state counterpart. Khoo 24 and
Szarka III and Woodall 25 used the steady-state ARL performance as the metric to evaluate the per-
formance of different control charts. Recently, Knoth 26 derived the steady-state and the worst-case
ARLs of the MEWMA chart using exact integral equations.
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It is known that there are many similarities between the MEWMA and the MCUSUM charts
(see Chang 19 , Lowry and Montgomery 27). Both of them use the information from historical ob-
servations, which makes these two charts more sensitive to detect small shifts in the process. If
monitoring Gumbel’s Bivariate Exponential data with a MEWMA control chart has already been
investigated in Xie et al. 22 , as far as we know, no research has been conducted on (a) proposing
a MCUSUM type control chart for monitoring such data and (b) evaluating zero- and steady-state
performances of this chart for a direct comparison with its MEWMA counterpart.

In this paper, we investigate the properties of the MCUSUM chart for monitoring data having a
GBE distribution. In Section 2, the GBE model is first introduced, and then the MCUSUM chart
monitoring GBE distributed data is presented. In Section 3, the steps for the computation of both
in- and out-of-control zero- and steady-state ARLs are detailed. Then in Section 4, a numerical
comparison is performed between the proposed MCUSUM GBE chart and the MEWMA and paired
individual CUSUM charts in the case of downward, upward and hybrid shifts. In addition, some
guidelines for constructing the MCUSUM GBE chart are also provided. In Section 5, an illustrative
example is provided in order to demonstrate the use of the proposed MCUSUM GBE chart on mon-
itoring patient headache relief time. Finally, some conclusions complete the paper in Section 6.

2 The MCUSUM chart for Bivariate Exponential data

2.1 Gumbel’s Bivariate Exponential model

The bivariate exponential model used in this paper was firstly introduced by Gumbel 23 and named as
the GBE model. If (X1, X2) are the random variables of the standard GBE model, then (X1, X2) ∈
R+ and their joint survival function is,

F̄X1,X2(x1, x2) = exp

(
−
(
x1

1
δ + x2

1
δ

)δ)
, (1)

where δ ∈ (0, 1] is the dependence parameter. It is noted that if δ = 1, X1 and X2 are uncorrelated.
Otherwise (δ 6= 1), X1 and X2 are correlated.

Lu and Bhattacharyya 28 introduced a more general expression for the GBE model,

F̄X1,X2(x1, x2) = exp

−((x1
θ1

) 1
δ

+

(
x2
θ2

) 1
δ

)δ
, (2)

where θ1 > 0 and θ2 > 0 are two scale parameters. The p.d.f (probability density function) of the
general GBE model is,
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(3)
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From the joint survival function of the GBE model, it is easy to prove that the marginal distri-
bution of X1 and X2 is the exponential distribution of parameter θ1 and θ2, respectively. Therefore,
the mean vector µ of (X1, X2)

ᵀ is equal to,

µ =

(
θ1
θ2

)
, (4)

and its variance-covariance matrix Σ is,

Σ =

(
θ21 ρθ1θ2

ρθ2θ1 θ22

)
, (5)

where the coefficient of correlation ρ is (see Lu and Bhattacharyya 28),

ρ =
2Γ2(δ + 1)

Γ(2δ + 1)
− 1, (6)

and where Γ(. . . ) is the gamma function.

2.2 The MCUSUM chart for the GBE model

Among the multivariate CUSUM charts that have been proposed, the one proposed by Crosier 10 for
multivariate normal data (as a natural extension of the two-sided CUSUM chart also introduced by
Crosier 29) is probably the most widely used. In this paper, we adapt Crosier’s10 MCUSUM chart in
the case of GBE data.

Suppose that Xt = (X1,t, X2,t)
ᵀ is a random vector observed at regular sampling time t = 1, 2, . . ..

According to Crosier 10 , the MCUSUM statistic St is defined as,

St =


0, if Ct 6 k, (7)

(St−1 + Xt − µ0)

(
1− k

Ct

)
, if Ct > k, (8)

with
Ct =

(
(St−1 + Xt − µ0)

ᵀ Σ−1 (St−1 + Xt − µ0)
) 1

2 , (9)

where µ0 = (θ1, θ2)
ᵀ is the in-control mean vector, Σ is the in-control variance-covariance matrix as

defined in (5) and (6), the process initial statistic S0 = 0 and k > 0 is a reference parameter. An
out-of-control signal is given when the statistic Qt = (Sᵀ

tΣ
−1St)

1
2 > H, where H > 0 is the upper

control limit of the MCUSUM GBE chart.

In order to evaluate the Run Length (RL) properties of the proposed MCUSUM GBE chart, the
following Monte-Carlo type procedure will be used:

Step 1: Specify the design parameters k and H, the scale parameters θ1 and θ2 and the dependence
parameter δ of the GBE model.

Step 2: Generate the random variables X1,t and X2,t of the GBE model at time t = 1, 2, . . . using
the following equations28,

E = E1 + ΨE2, (10)
X1,t = θ1U

δE, (11)
X2,t = θ2(1− U)δE, (12)
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where U , E1, E2 and Ψ are four independent random variables such that U is a uniform (0, 1)
random variable, E1 and E2 are two exponential random variables both with scale parameter
θE = 1, and Ψ ∈ {0, 1} is a Bernoulli random variable with parameter δ (the dependence
parameter), i.e., P (Ψ = 0) = 1− δ and P (Ψ = 1) = δ.

Step 3: Calculate the MCUSUM statistic St at time t = 1, 2, . . ., using (7), (8) and (9).

Step 4: If the statistic Qt = (Sᵀ
tΣ
−1St)

1
2 > H, the process is deemed to be out-of-control, and the

corresponding RL value is recorded.

Step 5: Repeat Steps (2)-(4) to obtain 5 × 104 RL values and estimate the required RL properties
like, for instance, the ARL, the MRL, the SDRL or any quantiles of the RL. In this paper,
we will focus of the ARL.

For the proposed MCUSUM GBE chart, an acceptable in-control ARL (ARL0) is specified at
the beginning of the process monitoring, and the aim of the chart is to obtain the minimum out-of
control ARL (ARL1) value for a predetermined mean shift. In order to achieve the desired ARL0,
combinations of the reference parameter k and the corresponding control limit H of the proposed
MCUSUM GBE chart need to be determined first. Once the reference parameter k and the depen-
dency parameter δ are fixed, the approximate H value can be obtained using the constraint on the
desired ARL0. More details about the ARL performance of the proposed MCUSUM GBE chart are
described in the next section.

3 Average Run Length of the MCUSUM GBE chart
For the proposed MCUSUM GBE chart, an acceptable in-control ARL0 is chosen, and the smaller
the out-of-control ARL1, the better the performance of the control chart. In this paper, the in- and
out-of-control processes are modeled by a GBE(θ1, θ2, δ) and a GBE(θ′1, θ′2, δ), respectively, keeping
the dependence parameter δ unchanged. Moreover, both zero- and steady-state ARL performances
of the proposed MCUSUM GBE chart are analyzed.

3.1 Zero-state case

The zero-state ARL performance is one of the most widely used criterion for control charts. It is
based on the assumption that a sustained shift in the parameter occurs upon startup or that the
chart statistic is at its initial starting value when the shift in the parameter occurs30.

Similar to the Appendix A in Xie et al. 22 , it can be proven that, when the design parameters k
and H are determined and the dependency parameter δ remains constant, the ARL performance of
the proposed MCUSUM GBE chart only depends on the mean shift vector (τ1, τ2), where τ1 = θ

′
1/θ1

and τ2 = θ
′
2/θ2 are the variables quantifying the shift. Therefore, in the zero-state case, we keep the

dependency parameter δ as a constant, and set the mean shift vector (τ1, τ2) = (1, 1) to denote the
in-control process.

In the zero-state case, the procedure for determining the optimal design parameters k and H of
the proposed MCUSUM GBE chart can be described as follows:
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Step 1: Specify the desired ARL0 value, the dependency parameter δ and the mean shift vector of
interest (τ1, τ2).

Step 2: For different values of the reference parameter k ∈ {0.02, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1, 3}, find the corresponding control limit H of the MCUSUM GBE
chart satisfying the desired ARL0. For example, Table 1 shows the combinations of design
parameters k and H leading to the desired ARL0 ∈ {100, 200, 370} when the dependency
parameter δ ∈ {0.2, 0.5, 0.7, 0.9}.

Step 3: For the mean shift vector of interest (τ1, τ2) and different combinations of k and H specified
in Step (2), calculate the corresponding out-of-control ARL1 values.

Step 4: For the mean shift vector of interest (τ1, τ2), choose the combination of k andH corresponding
to the minimum out-of-control ARL1 value as the optimal design parameters.

(Please insert Table 1 here)

3.2 Steady-state case

Compared with the zero-state case, the steady-state case seems more informative and realistic.
Szarka III and Woodall 25 summarized two different shift models in the steady-state case, one is
the fixed-shift model, and the other one is the random-shift model. The fixed-shift model is to ob-
serve a certain number, say q, in-control observations before a shift occurs, and the period of running
q in-control observations before a shift occurs is called as the “warm-up period”. This model has been
used by many researchers, see for instance Dickinson et al. 30 and Xu and Jeske 31 . Different from
the fixed-shift model, the random-shift model is based on the assumption that a shift occurs at any
time, instead of an immediate shift after a warm-up period. For more details about the random-shift
model the reader can refer to Wu and Spedding 32 .

In this paper, we investigate the steady-state ARL performance using the fixed-shift model. Ex-
cept for the warm-up period, the Monte-Carlo type procedure for the steady-state ARL performance
is similar to the zero-state case one, which can be described as follows:

Step 1: Specify the design parameters k and H, the scale parameters θ1 and θ2, the number q of the
in-control observations in the warm-up period and the dependence parameter δ of the GBE
model.

Step 2: Generate q in-control random vectors Xt = (X1,t, X2,t)
ᵀ of the GBE(θ1, θ2, δ) model at time

t = 1, 2, . . . , q, using (10), (11) and (12).

Step 3: Run the procedure in the in-control state for these q random vectors before a shift in the
scale parameters (θ1, θ2) occurs (say, run a warm-up period). If a signal is given during the
warm-up period, we discard these q in-control random vectors, and the control flow goes
back to Step (2) to generate a new in-control random vector set. Otherwise, the control flow
proceeds to the next step.

Step 4: Generate out-of-control random vectors Xt = (X1,t, X2,t)
ᵀ of the GBE(θ′1, θ′2, δ) model at

time t = q + 1, q + 2, . . ., using (10), (11) and (12).

Step 5: Calculate the steady-state MCUSUM statistic St, and the corresponding statistic Qt at time
t = q + 1, q + 2, . . ., using (7), (8) and (9).
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Step 6: If the statistic Qt > H, the process is deemed to be out-of-control, and the corresponding
steady-state RL, which equals to t− q, is recorded.

Step 7: Repeat Steps (2)-(6) to obtain 5 × 104 RL values, and the steady-state ARL value can be
obtained by averaging these ones.

In the steady-state case, the procedure for determining the optimal design parameters k and H
of the proposed MCUSUM GBE chart is similar to the one in the zero-state case, except that the
number q of the in-control observations of the warm-up period has to be fixed first. Table 2 shows
the combinations of design parameters k and H leading to the desired ARL0 ∈ {100, 200, 370} when
the dependency parameter δ ∈ {0.2, 0.5, 0.7, 0.9} and the number of the in-control observations of
the warm-up period q = 50.

(Please insert Table 2 here)

4 Comparison study
The ARL performances of the proposed MCUSUM GBE, MEWMA and paired individual CUSUM
charts are compared in this section. The MEWMA chart proposed in Xie et al. 22 for monitoring the
GBE model is first introduced and then it is compared with the proposed MCUSUM GBE chart in
both zero- and steady-state cases.

4.1 The MEWMA chart

The MEWMA chart was firstly introduced in Lowry et al. 12 . As the natural extension of the uni-
variate EWMA chart, the MEWMA chart is also sensitive to detect small or moderate shifts in
multivariate processes. In addition, it has also been shown that the MEWMA control chart with a
small smoothing parameter is fairly robust to the GBE data (see Xie et al. 22).

In the case of GBE data, the MEWMA statistic Yt is defined as,

Yt = R(Xt − µ0) + (I−R)Yt−1, (13)

where the process initial statistic Y0 = 0, R =diag(r1, r2), rj ∈ (0, 1] for j = 1, 2, and I is the (2, 2)
identity matrix. The statistic Q′2t of the MEWMA control chart is,

Q′
2
t = Yᵀ

tΣ
−1
Yt

Yt, (14)

where ΣYt is the in-control variance-covariance matrix of Yt. When r1 = r2 = r, the MEWMA
statistic can simply be re-stated as,

Yt = r(Xt − µ0) + (1− r)Yt−1. (15)

In addition, the asymptotic in-control variance-covariance matrix ΣYt is,

ΣYt =

(
r

2− r

)
Σ, (16)

where Σ is the in-control variance-covariance matrix of the random vector Xt. Hence, the statistic
Q′2t can be re-state as,

Q′
2
t =

2− r
r

Yᵀ
tΣ
−1Yt. (17)
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If the statistic Q′2t > H ′, the chart generates an out-of-control signal, where H ′ > 0 is the upper
control limit of the MEWMA chart. Moreover, when r = 1, the MEWMA chart reduces to the
Hotelling T 2 chart, which is known to be powerful in detecting large shifts in multivariate processes.

The MEWMA chart with smoothing parameters r ∈ {0.02, 0.1, 0.5, 1} in Xie et al. 22 are com-
pared with the MCUSUM GBE chart proposed in this paper. To provide a fair comparison, both of
them are designed to have the same ARL0 for zero- and steady-state cases.

4.2 The Paired individual CUSUM chart

The paired individual CUSUM chart consists of two univariate CUSUM charts, which are used to
monitor the variables X1 and X2, respectively. For the paired individual CUSUM chart, we assume
that the variables X1 and X2 follow the exponential distribution respectively with the following
survival functions,

F̄Xi(xi) = exp

(
−xi
θi

)
(i = 1, 2). (18)

Without loss of generality, the following scaling of the variables X1 and X2 is considered,

Zi =
Xi

θi
(i = 1, 2). (19)

Therefore, the statistics of these two univariate charts can be re-stated as,{
C+

1,t = max
(
0, Z1,t − 1− k + C+

1,t−1
)
,

C−1,t = max
(
0,−Z1,t + 1− k + C−1,t−1

)
.

(20)

{
C+

2,t = max
(
0, Z2,t − 1− k + C+

2,t−1
)
,

C−2,t = max
(
0,−Z2,t + 1− k + C−2,t−1

)
.

(21)

where the initial values are set as C+
1,0 = C−1,0 = C+

2,0 = C−2,0 = 0. The paired individual CUSUM
chart signals if any one of the statistic, say, C+

1,t, C
−
1,t, C

+
2,t, C

−
2,t, exceed the control limits h1 or h2.

In this study, we equally allocate the Type I error α between these two univariate CUSUM charts,
i.e., α1 = α2 = α/2, where α1 and α2 are the Type I errors assigned to these two univariate CUSUM
charts, respectively. In addition, we use the mean shift vector (τ1, τ2) = (1, 1) to denote the in-control
state. Hence, when the same reference parameter k is set for these two univariate CUSUM charts,
the control limits of these ones are equal, say, h1 = h2 = h.

In the case of GBE data, it can also be proved that, the ARL performance of each univariate
CUSUM chart only depends on the ratio of the scale parameter τ = θ′/θ, the reference parameter k
and the control limit h.

For comparison, we keep the ARL0 value and the reference parameter k of the paired individual
CUSUM chart the same as those in the proposed MCUSUM GBE chart, the value of the control
limit h can be obtained using the constraint on the desired ARL0. Then for different shifts, the
out-of-control ARL1 values can be calculated.
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4.3 Comparisons under different types of shifts

To evaluate the performance of the proposed MCUSUM GBE chart, the control limits H of the
chart (using the constraint on the ARL0 in zero- and steady-state cases) are presented in Tables
1 and 2, respectively, for different values of ARL0 ∈ {100, 200, 370} and dependency parameter
δ ∈ {0.2, 0.5, 0.7, 0.9} when the reference parameter k ranges from 0.02 to 3.

In addition, when the process is out-of-control, three different types of shift are considered to
evaluate the out-of-control ARL1 performance of the proposed MCUSUM GBE, MEWMA and paired
individual CUSUM charts:

1. a downward shift,

2. an upward shift,

3. and a hybrid shift.

These three types of shift are defined and investigated in the following subsections.

4.3.1 Downward shift detection

A downward shift occurs in the process if

• either X1 shifts downward but X2 does not shift. This corresponds to the case (τ1 < 1, τ2 = 1),

• or X1 does not shift but X2 shifts downward. This corresponds to the case (τ1 = 1, τ2 < 1),

• or both X1 and X2 shift downward. This corresponds to the case (τ1 < 1, τ2 < 1).

The first two cases are classified as “single downward shifts” while the third one is classified as “double
downward shift”. Due to the scaling/standardization, it is noted that both case (τ1 < 1, τ2 = 1) and
case (τ1 = 1, τ2 < 1) have the same ARL values, thus we only investigated the ARL performance of
the case (τ1 < 1, τ2 = 1) for the single downward shift detection.

The downward shift detection of the GBE model is very important when the events we are in-
terested in are negative ones, such as nonconformities and defects in quality control applications.
The downward shift in these cases represents the fact that the time between two nonconformities or
defects becomes shorter than before. That is to say, the ratio of nonconformities or defects increases,
and the quality of the product deteriorates.

Different combinations of k and H that produce the desired ARL0 value are considered to evaluate
the out-of-control properties of the proposed MCUSUM GBE chart, see Tables 1 and 2. Without loss
of generality, assuming θ1 = 1, θ2 = 1, δ = 0.5 and ARL0 = 200, then both zero- and steady-state
ARLs of the chart for different downward shifts are presented in Tables 3 and 4, respectively. For
example, when (τ1, τ2) = (0.2, 1), the zero-state ARL1 values equal to 14.87 and 15.23 for k = 0.1
and 0.6, respectively (see Table 3), and the corresponding steady-state ARL1 values equal to 14.38
and 14.86, respectively (see Table 4).

As a matter of comparison, when ARL0 = 200, the properties of the MEWMA chart (proposed
in Xie et al. 22 with different combinations of the smoothing parameter r ∈ {0.02, 0.1, 0.5, 1} and the
corresponding control limit H ′) and the paired individual CUSUM chart (with different combinations
of the reference parameter k and the corresponding control limit h) are also presented in Tables 3
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and 4. For example, when (τ1, τ2) = (0.2, 1), the zero-state ARL′1 value of the MEWMA chart equals
to 13.40 for r = 0.1 (see Table 3), and the corresponding steady-state ARL′1 value equals to 12.97
(see Table 4). Meanwhile, for the paired individual CUSUM chart, when (τ1, τ2) = (0.2, 1), the
zero-state ARL?1 values equal to 18.82 and 27.56 for k = 0.1 and 0.6, respectively (see Table 3), and
the corresponding steady-state ARL?1 values equal to 15.55 and 27.03, respectively (see Table 4).

The steady-state properties of these charts in Table 4 have been obtained by simulations with
q = 50 in-control observations during the warm-up period. For the predetermined downward shift
vectors (τ1, τ2), the minimum out-of-control ARL1 values of these charts (say, ARLmin, ARL′min and
ARL?min) are bolded in these tables. From Tables 3 and 4, several conclusions can be drawn as follows:

(Please insert Tables 3 and 4 here)

(1) For the downward shift domain studied in this paper, the optimal reference parameters kopt of
the MCUSUM GBE chart are all smaller than 0.4. For example, when (τ1, τ2) equal to (0.8, 1)
and (0.1, 1), the optimal reference parameters kopt are 0.1 and 0.3 in both zero- and steady-state
cases (see Tables 3 and 4). In addition, for a downward shift detection, it is indicated that the
proposed MCUSUM GBE chart with a small reference parameter (say, k ∈ [0.1, 0.4]) is more
effective than the chart with a large reference parameter. For example, when (τ1, τ2) = (0.1, 0.1),
the zero-state ARL1 values equal to 12.47 and 19.27 for k = 0.2 and 0.7, respectively (see Table
3), and the corresponding steady-state ARL1 values equal to 11.68 and 19.11, respectively (see
Table 4).

(2) The proposed MCUSUM GBE chart seems more effective than the MEWMA chart to detect
a downward shift. For the downward shift domain, almost every ARLmin of the proposed
MCUSUM GBE chart are smaller than ones ARL′min of the MEWMA chart. For example,
when (τ1, τ2) = (0.8, 1), the zero-state ARLmin and ARL′min are 66.33 and 68.30, respectively
(see Table 3). Meanwhile, the corresponding steady-state ARLmin and ARL′min are 63.07 and
65.08, respectively (see Table 4).

(3) With the same reference parameter k, the proposed MCUSUM GBE chart is more effective
than the paired individual CUSUM chart for detecting a single downward shift. For example,
when (τ1, τ2) = (0.5, 1) and k = 0.2, the zero-state ARL1 and ARL?1 values are 22.08 and 29.73,
respectively (see Table 3). Meanwhile, the corresponding steady-state ARL1 and ARL?1 values
are 20.70 and 25.51, respectively (see Table 4).

(4) In the steady-state case, the paired individual CUSUM chart seems to be a bit more effective
than the proposed MCUSUM GBE chart to detect a double downward shift. For example,
when (τ1, τ2) = (0.5, 0.5), the steady-state ARLmin and ARL?min values are 24.33 and 23.40,
respectively (see Table 4).

(5) Let η′ and η? be the relative differences between ARLmin, ARL′min and ARL?min, respectively,
i.e.,

η′ =
ARLmin − ARL′min

ARL′min

× 100%, (22)

η? =
ARLmin − ARL?min

ARL?min

× 100%. (23)
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Furthermore, let η̄′ and η̄? be the average of the η′ and η? values obtained for all the shifts
(τ1, τ2) considered in Tables 3 and 4, respectively. As it can be seen, η̄′ of the chart for the
zero- and steady-state cases are −5.60% and −5.88%, respectively, and η̄? of the chart for the
zero- and steady-state cases are −15.29% and −6.57%, respectively. This fact indicates that
the proposed MCUSUM GBE chart outperforms the MEWMA and paired individual CUSUM
charts for the whole downward shift domain, in average.

4.3.2 Upward shift detection

An upward shift occurs in the process if

• either X1 shifts upward but X2 does not shift. This corresponds to the case (τ1 > 1, τ2 = 1),

• or X1 does not shift but X2 shifts upward. This corresponds to the case (τ1 = 1, τ2 > 1),

• or both X1 and X2 shift upward. This corresponds to the case (τ1 > 1, τ2 > 1).

Similar to the downward shift detection, the first two cases are classified as “single upward shifts” and
the third one is classified as “double upward shift”. In addition, for the similar reason, we also only
investigated the ARL performance of the case (τ1 > 1, τ2 = 1) for the single upward shift detection.

The upward shift detection is critical when the events we are interested in are positive ones, such
as purchase orders of a production. Similar to the settings in the downward shift case, let us assume
θ1 = 1, θ2 = 1, δ = 0.5 and ARL0 = 200. For different upward shifts, zero- and steady-state ARLs
of the chart are shown in Tables 5 and 6, respectively. For example, when (τ1, τ2) = (2, 1), the
zero-state ARL1 values equal to 12.89 and 10.13 for k = 0.1 and 0.6, respectively (see Table 5), and
the corresponding steady-state ARL1 values equal to 12.70 and 9.85, respectively (see Table 6).

To provide a comparison, when ARL0 = 200, the properties of the MEWMA chart (with different
combinations of the smoothing parameter r ∈ {0.02, 0.1, 0.5, 1} and the corresponding control limit
H ′) and the paired individual CUSUM chart (with different combinations of the reference parameter
k and the corresponding control limit h) are also presented in Tables 5 and 6. For example, when
(τ1, τ2) = (2, 1), the zero-state ARL′1 value of the MEWMA chart equals to 9.65 for r = 0.1 (see
Table 5), and the corresponding steady-state ARL′1 value equals to 9.55 (see Table 6). Meanwhile,
for the paired individual CUSUM chart, when (τ1, τ2) = (2, 1), the zero-state ARL?1 values equal to
15.76 and 12.18 for k = 0.1 and 0.6, respectively (see Table 5), and the corresponding steady-state
ARL?1 values equal to 13.74 and 11.89, respectively (see Table 6).

Moreover, as for the upward shift case, the steady-state properties of these charts in Table 6 have
been obtained by simulations with q = 50 in-control observations during the warm-up period, and
the minimum out-of-control ARL1 of these charts (say, ARLmin, ARL′min and ARL?min) are bolded in
these tables. From Tables 5 and 6, several conclusions can be drawn as follows:

(Please insert Tables 5 and 6 here)

(1) For the upward shift domain studied in this paper, the optimal reference parameters kopt of the
MCUSUM GBE chart are all larger than or equal to 0.3. For example, when (τ1, τ2) equal to
(2, 1) and (5, 1), the optimal reference parameters kopt in the zero-state case are 0.4 and 0.8,
respectively (see Table 5). Meanwhile, the corresponding optimal reference parameters kopt in
the steady-state case are 0.4 and 1, respectively (see Table 6).
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(2) Almost every ARLmin of the proposed MCUSUM GBE chart are smaller than the corresponding
ARL′min of the MEWMA chart in the steady-state case. This indicates that the proposed
MCUSUM GBE chart outperforms the MEWMA chart for detecting an upward shift in the
steady-state case. For example, when (τ1, τ2) = (1.5, 1), the steady-state ARLmin and ARL′min

are 20.86 and 22.17, respectively (see Table 6).

(3) With the same reference parameter k, the proposed MCUSUM GBE chart is more effective
than the paired individual CUSUM chart for detecting a single upward shift. For example,
when (τ1, τ2) = (2, 1) and k = 0.2, the zero-state ARL1 and ARL?1 values are 10.85 and 12.85,
respectively (see Table 5). Meanwhile, the corresponding steady-state ARL1 and ARL?1 values
are 10.52 and 11.59, respectively (see Table 6). However, for the double upward shift domain,
most ARL1 values of the proposed MCUSUM GBE chart are larger than the corresponding
ARL?1 values of the paired individual CUSUM chart. For example, when (τ1, τ2) = (1.5, 1.5)
and k = 0.2, the zero-state ARL1 and ARL?1 values are 21.25 and 20.68, respectively (see Table
5). Meanwhile, the corresponding steady-state ARL1 and ARL?1 values are 20.58 and 18.62,
respectively (see Table 6).

(4) For the proposed MCUSUM GBE chart and the MEWMA chart, the η̄′ of the chart for the
zero- and steady-state cases are −0.12% and −1.52%, respectively. Meanwhile, for the pro-
posed MCUSUM GBE chart and the paired individual CUSUM chart, the η̄? of the chart for
the zero- and steady-state cases are −6.03% and −4.60%, respectively. That is to say, the pro-
posed MCUSUM GBE chart also outperforms, in average, the MEWMA and paired individual
CUSUM charts for the whole upward shift domain.

4.3.3 Hybrid shift detection

A hybrid shift occurs in the process if

• eitherX1 shifts downward whileX2 shifts upward. This corresponds to the case (τ1 < 1, τ2 > 1),

• or X1 shifts upward while X2 shifts downward. This corresponds to the case (τ1 > 1, τ2 < 1).

The same settings as in the downward shift case are also specified for the hybrid shift case, say,
θ1 = 1, θ2 = 1, δ = 0.5, ARL0 = 200. For different hybrid shifts, both zero- and steady-state
ARLs of the chart are investigated, and the results are presented in Tables 7 and 8, respectively.
For example, when (τ1, τ2) = (0.5, 2), the zero-state ARL1 values equal to 9.42 and 7.22 for k = 0.1
and 0.6, respectively (see Table 7), and the corresponding steady-state ARL1 equal to 9.31 and 7.01,
respectively (see Table 8).

For comparison, when ARL0 = 200, the properties of the MEWMA chart (with different com-
binations of the smoothing parameter r ∈ {0.02, 0.1, 0.5, 1} and the corresponding control limit H ′)
and the paired individual CUSUM chart (with different combinations of the reference parameter k
and the corresponding control limit h) are also presented in Tables 7 and 8. For example, when
(τ1, τ2) = (0.5, 2), the zero-state ARL′1 value of the MEWMA chart equals to 6.92 for r = 0.1 (see
Table 7), and the corresponding steady-state ARL′1 value equals to 6.80 (see Table 8). Meanwhile,
for the paired individual CUSUM chart, when (τ1, τ2) = (0.5, 2), the zero-state ARL?1 values equal to
14.99 and 12.25 for k = 0.1 and 0.6, respectively (see Table 7), and the corresponding steady-state
ARL?1 values equal to 12.47 and 11.93, respectively (see Table 8).

From Tables 7 and 8, several conclusions can be made as follows,
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(Please insert Tables 7 and 8 here)

(1) For the hybrid shift domain studied in this paper, the optimal reference parameters kopt of the
MCUSUM GBE chart are all larger than or equal to 0.3. For example, when (τ1, τ2) equal to
(0.8, 1.5) and (0.5, 2), the optimal reference parameters kopt are 0.3 and 0.4 in both zero- and
steady-state cases (see Table 7 and 8).

(2) Almost every ARLmin of the proposed MCUSUM GBE chart are smaller than the corresponding
ARL′min of the MEWMA chart in the steady-state case. This indicates that the proposed
MCUSUM GBE chart is superior to the MEWMA chart for detecting a hybrid shift in the
steady-state case. For example, when (τ1, τ2) = (0.8, 1.5), the steady-state ARLmin and ARL′min

are 16.05 and 17.42, respectively (see Table 8).

(3) With the same reference parameter k, the ARL1 value of the proposed MCUSUM GBE chart is
significantly smaller than the ARL?1 value of the paired individual CUSUM chart. For example,
when (τ1, τ2) = (0.8, 1.5) and k = 0.4, the zero-state ARL1 and ARL?1 values are 17.27 and 28.29,
respectively (see Table 7). Meanwhile, the corresponding steady-state ARL1 and ARL?1 values
are 16.71 and 27.24, respectively (see Table 8). It is indicated that the proposed MCUSUM
GBE chart is more effective than the paired individual CUSUM chart in a hybrid shift detection.

(4) For the proposed MCUSUM GBE chart and the MEWMA chart, the η̄′ of the chart for the
zero- and steady-state cases are −1.11% and −2.55%, respectively. Meanwhile, for the proposed
MCUSUM GBE chart and the paired individual CUSUM chart, the η̄? of the chart for the zero-
and steady-state cases are −26.04% and −23.47%, respectively. That is to say, the proposed
MCUSUM GBE chart also outperforms the MEWMA and paired individual CUSUM charts
for the whole hybrid shift domain, in average.

5 An illustrative example of the MCUSUM GBE chart
A patient relief time example is given to illustrate the monitoring procedure of the proposed MCUSUM
GBE chart. In this example, each of the 10 patients under consideration was given a standard treat-
ment and a new treatment for headache. The corresponding length of relief time (in minutes) from
headache are denoted as X1 and X2, respectively. All the values of (X1, X2) can be found in Gross
and Lam 33 as (8.40, 6.90), (7.70, 6.80), (10.10, 10.30), (9.60, 9.40), (9.30, 8.00), (9.10, 8.80), (9.00,
6.10), (7.70, 7.40), (8.10, 8.00), (5.30, 5.10). For the plausibility of exponential marginal distribu-
tions, Gross and Lam 33 transformed these 10 couples by subtracting a threshold value of 5.0 from
each data point (see No.1-10 in Columns 2 and 3 in Table 9).

As an illustrative example, using these 10 transformed couples as the in-control data, the average
transformed relief time µ̂ can be estimated by using the following equation,

µ̂ = X̄ =
1

n

n∑
t=1

Xt, (24)

Meanwhile, the dependency parameter δ can be estimated using the estimator proposed in Lu and
Bhattacharyya 28 ,

δ̂ = − log2

(
1

n

n∑
t=1

min

(
X1,t

X̄1

,
X2,t

X̄2

))
, (25)
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where n = 10. Then the estimated scale parameters are θ̂1 = 3.43 and θ̂2 = 2.68, the estimated
dependency parameters is δ̂ = 0.2072.

Following Xie et al. 22 , it is assumed that if a new effective medicine is used in combination with
each of these two treatments, then the corresponding average transformed relief time of these two
treatments can be shortened to 20% and 50%, say, (τ1 = 0.2, τ2 = 0.5). Based on this assumption, we
generate the next 20 transformed couples by setting the scale parameters (θ′1, θ

′
2) = (0.2θ̂1, 0.5θ̂2) =

(0.69, 1.34), and keeping the dependency parameter δ′ = δ̂ = 0.2072. All these 30 couples are shown
in Table 9.

The combinations of the reference parameter k and the control limit H are determined to achieve
the desired in-control ARL0 = 200. For example, when the reference parameter k = 0.1 and the
dependency parameter δ = 0.2072, it is easy to obtain the control limit H = 12.89. The MCUSUM
statistic St and the corresponding statistic Qt are also shown in Table 9 (see Columns 5, 6 and 7
in Table 9). In addition, the monitoring procedure of the proposed MCUSUM GBE chart for these
30 transformed couples is shown in Figure 1. As we can see, the proposed MCUSUM GBE chart
generates an out-of-control signal at the 19th observation, which is the 9th observation after the shift
has occurred.

(Please insert Table 9 here)

(Please insert Figure 1 here)

6 Conclusion
In order to monitor Gumbel’s Bivariate Exponential data, a MCUSUM type chart is proposed. Both
zero- and steady-state ARL properties of the proposed MCUSUM GBE chart have been investigated
using Monte Carlo simulations. In addition, an illustrative example is given to demonstrate the
monitoring procedure of the proposed MCUSUM GBE chart. Comparisons among the proposed
MCUSUM GBE, MEWMA and paired individual CUSUM charts have been conducted. With the
effect of the correlation between variables, the paired individual CUSUM chart can detect the dou-
ble downward and double upward shifts faster than the proposed MCUSUM GBE chart in some
circumstances. However, if we consider the whole shift domain in both zero- and steady-state cases,
it is obvious that the proposed MCUSUM GBE chart performs better than the other two charts,
especially in the steady-state case.

The current work could be extended to investigate other multivariate distributions, like, for
example, the bivariate gamma or the bivariate Weibull distributions. In addition, for Gumbel’s
Bivariate Exponential data, it would be interesting to develop new improved multivariate control
charts for monitoring the process dispersion or both the process mean and dispersion simultaneously.
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Table 9: An example of using the MCUSUM GBE chart on monitoring of patient headache relief
time (k = 0.1, H = 12.89, δ = 0.2072)

t
Xt Ct

St Qt

X1,t X2,t S1,t S2,t

0. 0 0 0
1. 3.4000 1.9000 0.6322 -0.0253 -0.6566 0.5322
2. 2.7000 1.8000 0.8687 -0.6683 -1.3597 0.7687
3. 5.1000 5.3000 0.5507 0.8198 1.0314 0.4507
4. 4.6000 4.4000 1.2736 1.8335 2.5354 1.1736
5. 4.3000 3.0000 1.1268 2.4636 2.6020 1.0268
6. 4.1000 3.8000 1.5699 2.9340 3.4849 1.4699
7. 4.0000 1.1000 1.1171 3.1903 1.7344 1.0171
8. 2.7000 2.4000 0.7503 2.1324 1.2605 0.6503
9. 3.1000 3.0000 0.5898 1.4968 1.3125 0.4898
10. 0.3000 0.1000 0.4877 -1.2983 -1.0076 0.3877
11. 1.6760 3.1124 1.5726 -2.8582 -0.5386 1.4726
12. 1.6438 4.2428 3.8038 -4.5223 -0.9972 3.7038
13. 0.4063 0.9595 4.3799 -7.3738 -0.7068 4.2799
14. 1.5115 4.0282 6.5283 -9.1499 0.6316 6.4283
15. 0.8929 1.6954 7.3430 -11.5279 -0.3482 7.2430
16. 0.9894 1.5942 8.0394 -13.7948 -1.4161 7.9394
17. 0.9520 5.1780 11.4010 -16.1300 1.0724 11.3010
18. 0.1621 0.3379 11.6862 -19.2319 -1.2589 11.5862
19. 1.3495 2.7953 13.0232 -21.1487 -1.1349 12.9232
20. 0.8565 1.2491 13.5593 -23.5473 -2.5469 13.4593
21. 1.1229 2.4958 14.8249 -25.6800 -2.7127 14.7249
22. 1.6223 2.5486 15.8041 -27.3138 -2.8260 15.7041
23. 0.9991 1.4017 16.3705 -29.5630 -4.0792 16.2705
24. 0.4498 1.4152 17.3119 -32.3552 -5.3131 17.2119
25. 0.0181 0.0391 17.6033 -35.5639 -7.9089 17.5033
26. 0.1179 0.2656 18.0266 -38.6603 -10.2660 17.9266
27. 1.1572 2.2237 19.0760 -40.7185 -10.6661 18.9760
28. 0.2554 0.5076 19.5967 -43.6691 -12.7730 19.4967
29. 0.7168 1.4215 20.4164 -46.1551 -13.9628 20.3164
30. 0.0828 0.1625 20.8674 -49.2651 -16.4013 20.7674
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Figure 1: Monitoring procedure using the MCUSUM GBE chart (k=0.1, H=12.89, δ = 0.2072)
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