
HAL Id: hal-03112539
https://hal.science/hal-03112539

Submitted on 3 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Forgotten Document-Oriented Database
Management Systems: An Overview and Benchmark of

Native XML DODBMSes in Comparison with JSON
DODBMSes

Ciprian-Octavian Truică, Elena Apostol, Jérôme Darmont, Torben Bach
Pedersen

To cite this version:
Ciprian-Octavian Truică, Elena Apostol, Jérôme Darmont, Torben Bach Pedersen. The Forgot-
ten Document-Oriented Database Management Systems: An Overview and Benchmark of Native
XML DODBMSes in Comparison with JSON DODBMSes. Big Data Research, 2021, 25, pp.100205.
�10.1016/j.bdr.2021.100205�. �hal-03112539�

https://hal.science/hal-03112539
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

The Forgotten Document-Oriented Database Management Systems:

An Overview and Benchmark of Native XML DODBMSes in

Comparison with JSON DODBMSes

Ciprian-Octavian Truic a,1,2,∗, Elena-Simona Apostola,1,∗, Jérôme Darmontc,
Torben Bach Pedersend

aComputer Science and Engineering Department, Faculty of Automatic Control and Computers, University

Politehnica of Bucharest, Romania
bDepartment of Computer Science, Aarhus University, Aarhus, Denmark

cUniversité de Lyon, Lyon 2, ERIC UR 3083, France
dCenter for Data Intensive Systems, Aalborg University, Aalborg, Denmark

Abstract

In the current context of Big Data, a multitude of new NoSQL solutions for storing, managing,

and extracting information and patterns from semi-structured data have been proposed and

implemented. These solutions were developed to relieve the issue of rigid data structures present

in relational databases, by introducing semi-structured and �exible schema design. As current

data generated by di�erent sources and devices, especially from IoT sensors and actuators, use

either XML or JSON format, depending on the application, database technologies that store and

query semi-structured data in XML format are needed. Thus, Native XML Databases, which were

initially designed to manipulate XML data using standardized querying languages, i.e., XQuery

and XPath, were rebranded as NoSQL Document-Oriented Databases Systems. Currently, the

majority of these solutions have been replaced with the more modern JSON based Database

Management Systems. However, we believe that XML-based solutions can still deliver performance

in executing complex queries on heterogeneous collections. Unfortunately nowadays, research lacks

a clear comparison of the scalability and performance for database technologies that store and

query documents in XML versus the more modern JSON format. Moreover, to the best of our

knowledge, there are no Big Data-compliant benchmarks for such database technologies. In this

paper, we present a comparison for selected Document-Oriented Database Systems that either use

the XML format to encode documents, i.e., BaseX, eXist-db, and Sedna, or the JSON format, i.e.,

MongoDB, CouchDB, and Couchbase. To underline the performance di�erences we also propose

a benchmark that uses a heterogeneous complex schema on a large DBLP corpus.

Keywords: XML Database Management Systems; JSON Database Management Systems;

Document-Oriented Database Management Systems; Benchmark

∗Corresponding author.
Email addresses: ciprian.truica@cs.pub.ro (Ciprian-Octavian Truic), elena.apostol@cs.pub.ro

(Elena-Simona Apostol), jerome.darmont@univ-lyon2.fr (Jérôme Darmont), tbp@cs.aau.dk
(Torben Bach Pedersen)

1These authors contributed equally to this article.
2Part of this work was done at Aarhus University.

Preprint submitted to Elsevier February 3, 2021

1. Introduction

With the emergence of Big Data and the Internet of Things (IoT) and the increasing amount of

semi-structured information generated daily, new technologies have arisen for storing, managing,

and extracting information and patterns from such data. The new technologies for storing data have

been labeled with the name NoSQL and were initially developed to solve very speci�c problems.

Currently, they provide di�erent trade-o�s and functionality (e.g., choosing high-availability over

consistency) to be as generic as their counterparts Relational Database Management Systems

(RDBMSes). Due to the semi-structured nature of data, NoSQL Database Management Systems

(DBMSes) have been classi�ed based on the data model used for storing information [1], i.e.,

key-value, document-oriented, wide column, and graph databases.

In this paper, we particularly study NoSQL Document-Oriented Databases Systems

(DODBMSes) that encode data using the XML or JSON formats. We further focus on two

subcategories of DODBMSes with respect to the data model used to encode documents: i)

DODBMSes that encode data using the XML format are Native XML Database Management

Systems (XDBMSes), and ii) DODBMSes that encode data using the JSON format are JSON

Database Management Systems (JDBMSes).

The NoSQL DBMSes became very popular with the increasing need for data storage,

management, and analysis systems that scale with the volume. To address these needs, many

NoSQL DBMSes compromise consistency to o�er high-availability, partition tolerance, improved

analytics, and high-throughput. These features are also a requirement for real-time web

applications and Big Data processing and analysis and are available in JDBMSes as well.

XDBMSes have started to emerge after the eXtensible Markup Language (XML) has been

standardized and became the common format for exchanging data between di�erent applications

running on the Web. Their primary use was to facilitate secure storage and fast querying of

XML documents. Besides their primary use, XDBMSes prove useful for OLAP (Online Analytical

Processing) style analysis and decision support systems that incorporate a time dimension and

encode data in the XML format [2], and thus removing the need of using ETL (Extract Transform

Load) processes to transform XML documents into a relational model. XML query languages

and technologies, including XDBMSes, had been around before the NoSQL trend, and have been

forgotten during the Big Data hype. In the �eld of relational databases, XML format is used as a

Data Type, e.g., Oracle, DB2, PostgreSQL, etc. Currently, with the rise of the NoSQL movement,

XDBMSes have become a subcategory of DODBMSes. But, with the emergence of processing

platforms that uses Big Data or IoT technologies, where the data are transferred over computer

networks into formats such as XML and JSON, the XDBMSes can be seen as a viable solution for

storing and manipulating computer-generated semi-structured data.

We hypothesize that the more classical XDBMSes may still be useful in the Big Data era. Thus,

in this study we want to address and use as guidelines the following research questions:

Q1: Are XDBMSes absolute and should be replaced by JDBMSes?

2

Q2: Are XDBMSes a viable candidate for Big Date Management?

Q3: Do JDBMSes outperform XDBMSes when using complex �ltering and aggregation queries

with di�erent scale factors, on large and heterogeneous datasets?

To test our hypothesis and answer our research questions, we consider the following research

objectives: i) discuss XDBMSes and compare their capabilities and features with several popular

JDBMSes solutions; ii) propose a benchmark that evaluates the current needs and workloads

available in Big Data and compare performance between the selected DODBMSes; iii) evaluate

the performance of the selected DODBMSes using complex �ltering and aggregation queries with

di�erent scale factors, on large and heterogeneous datasets.

For testing and analyzing with our proposed benchmark, we utilize several XDBMSes and

JDBMSes solutions, that are free to use, and their license does not forbid benchmarking. Thus, we

chose BaseX, eXist-db, and Sedna as representatives XDBMSes systems and MongoDB, CouchDB,

and Couchbase as JDBMSes solutions.

As a result of our research and as a response to Q1, we claim that the more classical XML

based DODBMSes may still be useful in the Big Data era. To demonstrate this and answer Q2,

we propose a new benchmark for comprehensive DODBMSes analysis using a large dataset . And

thereby we present a qualitative and quantitative performance comparison between XDBMSes and

the more modern JDBMSes to answer Q3.

This paper is structured as follows. Section 2 presents an overview of di�erent NoSQL DBMSes

models, surveys, and benchmarks. Section 3 o�ers an in-depth overview and comparison of

DODBMSes, focusing on the XDBMSes and JDBMSes subcategories. Section 4 introduces the

proposed benchmark speci�cation and discusses the data and workload models, while Section 5

discusses the database physical implementation and presents the description of the benchmark's

queries. Section 6 thoroughly details the experiments performed on the selected DODBMSes

using our benchmark and discusses the results in detail. Finally, Section 7 concludes the paper,

summarizes the results, and provides future research perspectives.

2. Related Works

The NoSQL Database Management Systems (DBMSes) emerged as an alternative to Relational

Database Management Systems (RDBMSes) in order to store and process huge amounts of

heterogeneous data. However, NoSQL DBMSes did not appear as a replacement for RDBMSes, but

as a solution to speci�c problems that require additional features (e.g., replication, high-availability,

etc.) that are not handled well by traditional means [3]. The reasons commonly given to develop

and use NoSQL DBMSes are summarized as follows [4]: avoidance of unneeded complexity, high

throughput, horizontal scalability, running on commodity hardware, avoidance of expensive object-

relational mapping, lowering the complexity and the cost of setting up a cluster, compromising

reliability for better performance, and adapting to the requirements of cloud computing.

3

The classi�cations used for NoSQL DBMSes usually are done by either taking into account the

persistence model or the data and query model. Using the persistence model, NoSQL DBMSes are

classi�ed as follows [4]:

i) In-Memory Databases [5] are very fast because the most current used data are stored in

memory, with optional subsequent disk �ushes triggered at given periods or when the in-

memory data are not used. Evidently, the size of the currently in-use data that can be stored

is limited to the amount of memory. This problem can be resolved using vertical scaling to

some degree as there is a limit to the amount of memory a system can hold. Moreover, the

durability may become a problem if data are lost between subsequent disk �ushes or if data

persistence is disabled. A solution to this problem is data replication.

ii) Memtables and SSTables Databases [6] bu�er operations in memory using a Memtable after

they have been written to an append-only commit log to ensure durability. After a certain

amount of writes the Memtable gets �ushed to disk as a whole into a SSTable. These DBMSes

have performance characteristics comparable to those of In-Memory Database but solve the

durability problem.

iii) B-trees Databases [7] use the B-tree self-balancing tree data structure that keeps data sorted

and allows searches, sequential access, insertions, and deletions in logarithmic time [8].

NoSQL DBMSes are also classi�ed by using the data and query model as follows [1, 9]:

i) Wide Column Databases are used to store, retrieve, and manage data using column families.

Each record can have di�erent numbers of cells and columns, making a row sparse without

storing NULLs.

ii) Graph Databases are used to store, retrieve, and manage information using a graph.

Therefore, an object is modeled as a node and the edges between nodes become the

relationships between the objects.

iii) Key-Value Databases (KVDBMSes) are data storage systems designed for storing, retrieving,

and managing associative arrays, i.e., dictionaries or hash tables.

iv) Document-Oriented Databases (DODBMSes) have evolved form KVDBMSes and are used

to store, retrieve, and manage semi-structured data, i.e., documents, encoded using JSON,

BSON, XML, or YAML formats.

There are multiple surveys on NoSQL DBMSes, in the following phrases we present the most

relevant ones for our analysis. Article [10] provides a comparison regarding the performance and

�exibility of KVDBMSes and DODBMSes over RDBMSes. The NoSQL DBMSes prove to be a

better choice for high throughput applications that require data modeling �exibility and horizontal

scaling. The authors of [1] o�er a classi�cation by data models of NoSQL DBMSes, and also they

present the current and most popular solutions. In [11], the authors make a comparison and

4

overview of NoSQL data models, query types, concurrency controls, partitioning, and replication.

Article [12] presents a top-down overview of the NoSQL database �eld and propose a comparative

classi�cation model that relates functional and non-functional requirements to techniques and

algorithms employed in these systems. The authors of [13] provide an overview of XML data

manipulation techniques employed in conventional and temporal XDBMSes and study the support

of such functionality in mainstream commercial DBMSes. Unfortunately, the paper presents only

a general discussion about XDBMSes and other DBMSes with XML manipulation capabilities,

and also no evaluation is provided. Thus, we can conclude that none of these surveys present an

in-depth discussion and comparison of di�erent subcategories of DODBMSes.

In the literature there are many data-centric benchmarks for the Big Data distributed systems

and NoSQL DBMSes that focus either on structured data or on speci�c applications, such as

MapReduce-based applications, rather than on unstructured or variety. In [14], the authors

present a comprehensive survey and analysis of benchmarks for di�erent types of Big Data systems

including NoSQL systems. The authors of [15] present a new benchmark for textual data for

distributed systems including MongoDB. None of the current literature presents benchmarks for

modern native XDBMSes.

XDBMSes benchmarks are application-oriented and domain-speci�c, e.g., OpenEHR XML

medical records [16], XMark which contains documents extracted from electronic commerce sites

and content providers [17] or Transaction Processing over XML (TPoX) [18] which simulates

a �nancial multi-user workload with XML data conforming to the FIXML standard. These

benchmarks are used for testing the performance of DBMSes that are capable of storing, searching,

modifying and retrieving XML data. Unfortunately, the majority of these benchmarks use rather

small collections. And even for the benchmarks where the XML or JSON document size is

up to the order of Gigabytes (GBs), the contained information is mostly homogeneous. Our

proposed benchmark solution uses large heterogeneous collections with over 6 million records to

test the scalability, �ltering, and aggregation performance of complex queries for the current native

XDBMSes.

Based on the lack of current literature regarding XDBMS, in this paper, we analyze the

performance and functionality of DODBMSes solutions, while focusing on two distinct subclasses

that use JSON or XML formats to encode data.

3. Document-Oriented Databases

Document-Oriented Databases Management Systems (DODBMSes) have evolved from Key-

Value Databases [1]. DODBMSes are used for storing, retrieving, and managing semi-structured

data. They have a schema-less �exible data representation, thus providing more �exibility for

data modeling [19]. DODBMSes use documents for storing data such as XML or JSON. The

�exibility provided by XML and JSON makes it easier to manipulate the information than it is for

tables in Relational Database Management Systems (RDBMSes). Usually, documents are stored

in collections. A Native XML Database Management System (XDBMS) uses the XML (eXtensible

5

Markup Language) data structure to encode documents and de�nes a hierarchical logical model

based on the elements of this markup language [20, 21]. A JSON Database Management System

(JDBMS) uses the JSON structure for modeling documents and storing them in collections.

In DODBMSes, labels are used in storing the information. These labels describe the data and

values in a record. New information can be added directly to a record without the need to modify

the entire schema, as is the case for RDBMSes.

One of the bene�ts of using a DODBMS solution is the �exibility of modeling the data [22].

Data from the web, mobile, social, and IoT devices change the nature of the application's data

model. In an RDBMS, these changes impose the modi�cation of the schema by altering tables

and adding or removing columns. Whereas, the �exibility of DODBMSes eliminates the need to

force-�t the data into prede�ned attributes and tables.

Another bene�t of a DODBMS is the fast write performance. Some DODBMSes prioritize high

availability over strict data consistency. This ensures that both read and write operations will

always be executed even if there is a hardware or network failure. In case of failure, the replication

and eventual consistency mechanisms ensure that the environment will function.

Fast query performance is another bene�t of a DODBMS. Most DODBMSes provide powerful

query engines for CRUD (Create, Read, Update and Delete) operations and use indices and

secondary indices to improve data retrieval. Additionally, the majority of DODBMS solutions

support aggregation frameworks, either native or using MapReduce, for Data Analysis and Business

Intelligence.

3.1. XDBMSes

In this subsection, we present several examples of XDBMSes that use standardized XPath and

XQuery. Although there are multiple solutions of DBMSes that incorporate XML as data type

(e.g., Oracle, PostgreSQL, DB2, MS SQL, etc. just to name a few), the majority of them fall out

of the NoSQL movement. Furthermore, some have licenses that explicitly forbids benchmarking,

e.g., commercial XDBMSes such as MarkLogic Server and Oracle Berkeley DB XML. Thus, for our

comparison and benchmark, we chose the following three XDBMSes: BaseX, eXist-db, and Sedna.

BaseX

BaseX is an XDBMS written in Java that stores the data using a schema-free hierarchical

model. Transactions in BaseX respect the ACID (Atomicity, Consistency, Isolation, and Durability)

properties, enabling the concurrent access of multiple readers and writers [23]. Documents are

stored either persistently on disk or in the main memory. BaseX uses a single instance environment,

replication and data partitioning are not available.

BaseX provides CRUD operations and ad-hoc queries, including aggregation using XQuery 3.1

and XPath 3.1 [24]. Although, it works with various APIs such as XML DB or JAX-RX, it was

not designed to work with a MapReduce framework.

BaseX supports multiple structural and value indices [23]. Structural indices are automatically

created and include: i) name indices to reference the names of all elements and attributes, ii)

6

path indices to store distinct paths of the documents in the database, and iii) document indices

to reference all document nodes. Value indices are user-de�ned. They include: i) text indices

for documents' text nodes to improve the performance of exact and range queries, ii) attribute

indices to speed up comparisons on attribute values, iii) token indices to improve the multi-token

attribute values, and iv) full-text indices to normalized tokens of text nodes and speed up queries

which contain text expressions.

eXist-db

eXist-db [25] is a XDBMS implemented in Java that stores documents in the XML format. It

stores data in-memory using Document Object Model (DOM) trees.

Although eXist-db does not have support for database-level transaction control, it has

transactions internally, transparent to the user, and also has a persistent journal that is used

to ensures the durability and consistency of the stored data. The database consistency is done

automatically or using a sanity checker to detect the inconsistencies or damages in the core database

�les [26].

eXist-db supports data primary-secondary replication, thus allowing applications to be

distributed over multiple servers through the use of Java Message Service (JMS) API. Although

replication is available, data partitioning or sharding and distributing queries across multiple

servers are not.

eXist-db provides CRUD operations and ad-hoc queries for �ltering and aggregation using

XQuery 3.1 and XPath 3.1 [24]. Unfortunately, it does not have the MapReduce functionality,

which would o�er more �exibility to the aggregation queries.

eXist-db supports four types of indices [27]: i) range indices that provide range and �eld-based

searches, ii) text indices for full-text search, iii) n-gram indices for improving the performance of

n-gram search, and iv) spatial indices for querying data using geometric characteristics, although

this feature is currently experimental.

Sedna

Sedna is an XDBMS written in C that stores documents in the XML format [28]. Sedna

provides ACID transactions, indexing, and persistent storage [29]. In uses the main memory to

improve query performance [30]. Replication and partitioning are not implemented in Sedna.

Like the other XDBMSes, Sedna provides CRUD operations and ad-hoc queries for �ltering

and aggregation using XQuery 1.1 and XPath 2.0. However, it does not provide MapReduce

functionality in working with these queries.

Value indices are used to index elements' content and attributes. Full-text indices can be

created in Sedna to facilitate full-text search using XQuery.

3.2. JDBMSes

DODBMSes are designed for storing, retrieving, managing, and processing semi-structured data

in the form of document. With the rise of the NoSQL movement, multiple DODBMS solutions,

7

both proprietary and open-source, have been implemented. An important subcategory of these

systems is JDBMS, which consists of systems that use the JSON format for document encoding.

For our comparison, we choose three of the more popular and open source JDBMSes3: MongoDB,

CouchDB, and Couchbase.

MongoDB

MongoDB is a DODBMS developed in C++ that focuses on combining the critical capabilities

of RDBMSes with the innovations of NoSQL DBMSes. MongoDB uses a �exible, dynamic schema

to store data. A record is stored in a document and multiple documents are stored in a collection.

Documents in a collection do not necessarily have the same structure and so the number of

attributes and their data type can di�er from one record to another. In practice documents

usually model objects from a high-level programming language. Although the database allows

documents with a di�erent number of attributes and di�erent data types for the same attributes,

records have almost the same structure in a collection [31].

MongoDB stores the data in BSON documents. A BSON is a binary-encoded serialization of

JSON-like documents. This format is easily parsed and lightweight with respect to the overhead

needed to store data.

Transactions in MongoDB respect the BASE (Basically Available, Soft state, Eventual

consistency) transaction model which ensures that all the modi�cation operations will propagate on

all the nodes in an asynchronous way. MongoDB uses Causal Consistency that enables operations

to logically depend on preceding operations [32] and in-memory functionalities to improve the query

execution time. Furthermore, this JDBMS supports multi-document transactions with ACID data

integrity guarantees.

To achieve redundancy and data availability, MongoDB uses Replica Sets for primary-secondary

replication. A replica set is a group of MongoDB instances that store the same dataset. To

partition the data and distribute it across multiple machines, MongoDB uses Sharding. Sharding

is a horizontal scaling mechanism that partitions and balances the data on multiple nodes or replica

sets.

MongoDB supports CRUD operations and ad-hoc querying through the use of a JavaScript API

available in the MongoDB client. The Aggregation Pipeline framework is a multi-stage pipeline

that transforms documents into aggregated results using the concepts of data processing pipelines.

Aggregation can also be achieved using the MapReduce framework.

MongoDB supports primary and secondary indexing. These indices can be a single �eld,

compound (multikey), geospatial, hashed, and text. Text indices enable full-text search.

CouchDB

CouchDB is an open-source DODBMS developed in Erlang that provides a schema-free model

for storing self-contained data using the JSON format [33].

3DB-Engines ranking https://db-engines.com/en/ranking/document+store

8

https://db-engines.com/en/ranking/document+store

Transactions in CouchDB respect document-level ACID properties with Multi-Versioning

Concurrency Control (MVCC) [34]. CouchDB relies on Eventual Consistency together with

incremental replication to maintain the data consistency. CouchDB does not provide in-memory

capabilities. CouchDB provides primary-primary and primary-secondary asynchronous replication.

Sharding is used to distribute horizontally in a cluster the copies of each replica [35]. To resolve

inconsistencies, CouchDB uses a con�ict-�agging mechanism.

CouchDB supports CRUD operations and ad-hoc querying using a JavaScript API called

Mango. For aggregation, CouchDB provides Views and MapReduce functionalities [36]. Indexing

in CouchDB is achieved through the use of views. CouchDB provides two types of indices: JSON

and text for full-text search support.

Couchbase

Couchbase is a highly-scalable DODBMS that stores documents using the JSON encoding. It

o�ers high availability, horizontal scaling, and high transaction throughput [37].

Transactions in Couchbase respect the ACID properties and rely on Eventual Consistency and

Immediate Consistency. Couchbase has in-memory capabilities and keeps records into buckets.

The buckets are of the following type i) Couchbase buckets used to store data persistently and in-

memory, ii) Ephemeral buckets used when persistence is not required, and iii) Memcached buckets

used to cache frequently-used data and minimize the number of queries a database-server must

perform.

Couchbase uses a shared-nothing architecture and provides primary-primary and primary-

secondary as well as partitioning through the use of sharding. Couchbase scales horizontally in a

cluster.

Ad-hoc data querying is achieved using a JavaScript API or a SQL-like language, i.e., N1QL

(Non-1NF Query Language) [38]. These languages enable Couchbase to have OLTP (Online

Transaction Processing) CRUD operations and ETL (Extract Transform Load) capabilities [39].

JavaScript MapReduce Views can be developed and stored on the server-side to specify complex

indexing and aggregation queries [40].

Couchbase provides multiple types of indices: [40] i) composite indices to index multiple

attributes, ii) covering indices to index the information needed for querying without accessing

the data, iii) �ltered (partial) indices to index a subset of the data used by the WHERE clause,

iv) function-based indices that compute the value of an expression over a range of documents, v)

sub-document indices to index embedded structures, vi) incremental MapReduce views to index

the results of complex queries that perform sorting and aggregation to support real-time analytics

over very large datasets, vii) spatial views using Spatial MapReduce to index multi-dimensional

numeric data, and viii) full-text indices used for full-text search capabilities.

3.3. DODBMSes Comparison

Table 1 summarizes the main features of the presented databases. BaseX, Sedna and Couchbase

o�er ACID compliant transactions in comparison with MongoDB that o�ers BASE compliant

9

multi-document isolation transactions and CouchDB that o�ers document-level ACID with MVCC

transactions. XDBMSes support transaction consistency while MongoDB and CouchDB support

casual consistency and eventual consistency, respectively. Couchbase supports both eventual and

immediate consistency. A disadvantage of XDBMSes is that they do not have replication or

partitioning mechanisms, except for eXist-db which o�ers primary-secondary replication. An

advantage of XDBMSes is the use of XQuery and XPath for querying the data which makes ad-

hoc querying an easy task. Although XDBMSes support aggregation queries, they do not provide

MapReduce frameworks as a result of the lack of distribution capabilities. Another advantage of

XDBMSes is that they o�er di�erent types of indices, including text indices for full-text search. As

can be seen from Table 1, the chosen JDBMS solutions also o�er di�erent types of indices, but in

addition to JDBMS, the one used in XDBMS systems can also be added on properties and paths,

not only on keys and values.

Table 1: DODBMS comparison

BaseX eXist-db Sedna MongoDB CouchDB Couchbase

DBMS type XDBMS XDBMS XDBMS JDBMS JDBMS JDBMS

Data format XML XML XML BSON (Binary JSON) JSON JSON

Implementation Java Java C C++ Erlang C/C++, Go, Erlang

Transaction ACID Isolation safe ACID
BASE

Multi-document isolation

Document-level ACID

with MVCC
ACID

Consistency Transaction Consistency
Automatic consistency

Sanity checker
Transaction Consistency Causal Consistency Eventual Consistency

Eventual Consistency

Immediate Consistency

In-memory Yes Yes Yes Yes No Yes

Replication No Primary-Secondary No Primary-Secondary
Primary-Primary

Primary-Secondary

Primary-Primary

Primary-Secondary

Partitioning No No No Sharding Sharding Sharding

Ad-hoc queries
XQuery 3.1

XPath 3.1

XQuery 3.1

XPath 3.1

XQuery 1.0

XPath 2.0
JavaScript Mango

N1QL

JavaScript

MapReduce No No No Yes Yes Yes

Secondary indices Yes Yes Yes Yes Yes Yes

Geospatial indices No No Yes Yes Yes Yes

Text indices Yes Yes Yes Yes Yes Yes

4. Benchmark speci�cations

4.1. Data Model

For our benchmark, we proposed a heterogeneous entity-relationship schema that can be easily

expanded with more complex relationships and new entities. Figure 1 presents the proposed

schema. The model's entities are described below.

� Authors is the entity that stores information about authors. Besides the unique identi�er for

each author AuthorID, the attribute Name is used for storing the name of each author.

� Records contains information about the published work of one or more authors. It stores

the Title, the URL for quick access on the web, and the publishing Year. The many-

to-may relationship WrittenBy correlates each record with the authors. A record can be

either published as a book (or book chapter) or as an article (conference or journal). The

relationship IsA is used for denoting the sub-type of a record.

10

� Books is the �rst sub-type of a record. This entity stores the following information: i) the

unique book identi�er ISBN, ii) the pages of a record using the attribute Pages, iii) the

book editors using the multi-variate attribute Editors, and iv) the type of a record of this

sub-type, i.e., book or book chapter, using the attribute Type. The one-to-many relationship

PublishedBy is used to correlate each record of sub-type Book to a Publisher.

� Articles is the second sub-type of a record. Besides the unique identi�er of a record in

this sub-type, the entity Articles stored information about i) the pages of a record using the

attribute Pages, and ii) the type of a record of this sub-type, i.e., conference or journal article,

using the attribute Type. The one-to-many relationship PublishedIn is used to correlate each

article to a journal.

� Journals entity stores information about an article publication venue. The attributes are:

i) ISSN used as the unique identi�er, ii) Type used to determine if the publication is a

journal, proceedings, or special issue, iii) Title used for keeping the title of the journal or the

conference name, iv) Volume used to store the number of years since the �rst publication,

and v) Issue used to store how many times the journal has been published during a year. The

one-to-many relationship PublishedBy is used to correlate each record of sub-type Journal to

a Publisher.

� Publishers is the entity that stores a unique identi�er and the Name of a publishing house.

Figure 1: Database entity-relational diagram

11

4.2. Workload Model

The workload model follows two analysis directions: i) selection queries for �ltering the corpus

and extract subsamples, and ii) aggregation queries for creating reports.

For the selection queries, a constraint ci1 = contains(Records.T itle, ti) is used to extract the

most relevant records that are contained in the title of a given set of terms. The constraint ci1

utilizes the contains(·, ·) function, which veri�es if a substring ti ∈ {t|t ∈ vocabulary} belongs to a

string. In this case, the vocabulary is the set of terms extracted from each title using Tokenization.

Aggregation queries are used to create reports about the publishing activity of each author.

These reports are created by counting the number of published records using attributes for

grouping. To achieve this, we apply the aggregation operator γL with L = (F,G), where F is

the list of aggregation functions, and G is the list of attributes in the GROUP BY clause. We

use the Authors.Name attribute in the GROUP BY clause to create an overview report of the

publication activity for each author over his/her entire academic life. To determine the publishing

patterns by year of each author, we use the Records.Year attribute that adds a time dimension to

the previous report. For a more in-depth analysis of each published topic by author, we also use

the ci1 constraint to �lter the dataset by keywords before counting the number of articles.

5. Benchmark Implementation

5.1. Database Design

The conceptual entity-relational diagram described in Section 4 must be translated into the

XML and JSON formats (Figure 2). For the XML representation (Figure 2a), the attributes of

entities are directly encoded in the elements' names, e.g., the Article.Type is directly encoded

into the journal label. In the case of the Authors entity, the records associated with the article

are presented as multiple tags with the same name, i.e., author. For the JSON representation,

the Authors entity becomes a list of values, i.e., the label authors. The information regarding an

article is stored directly in the document using labels, e.g., type, publication year, etc. Using this

representation, both schemes are greatly simpli�ed and the need of relationships between entities

disappears.

(a) XML Document (b) JSON Document

Figure 2: Document representation in XML and JSON

12

5.2. Query Description

The proposed benchmark features nine queries with di�erent complexity and selectivity, i.e., Q1

to Q9. The �rst �ve queries are used to �lter the dataset based on di�erent constraints. Whereas,

the last four queries are used to �lter and group the data in order to obtain aggregated results.

5.2.1. Selection Queries

The �rst set of queries selects the records that respect a given constraint.

The �rst query (Qi
1) uses the constraint ci1 to extract the documents which contain in their

title a certain given term ti (Equation (1)). The projection for the query, which speci�es the set

of selected attributes following the query execution, is Π1 = {Records.T itle}.

Qi
1 = πΠ1

(σci1(Records)) (1)

The second query (Qij
2) extracts the records that contain in their title two terms (Equation (2)).

It uses the constraint cs1, s ∈ {i, j} with i 6= j. The query is written using the INTERSECTION

operator between the results returned by Qi
1 for term ti and Q

j
1 for term tj . Due to the nature of

the �ltering condition, we can concatenate the separate conditions to create a single conditional

expression using the and logical operator (∧), i.e., ci1 ∧ c
j
1. As in the case of the �rst query, the

projection remains Π1.

Qij
2 = Qi

1 ∩Q
j
1

= πΠ1
(σci1(Records)) ∩ πΠ1

(σcj1
(Records))

= πΠ1
(σci1∧c

j
1
(Records))

(2)

Qij
3 extracts the records that contain in their title at least one of the terms given through the

ci1 or cj1 constraints, with i 6= j (Equation (3)). The query is written using the UNION operator

between the results returned by Qi
1 for term ti and Q

j
1 for term tj . The projection remains Π1. As

for query Qij
2 , the conditions can be concatenated to create a single conditional expression using

the or logical operator (∨), i.e., ci1 ∨ c
j
1.

Qij
3 = Qi

1 ∪Q
j
1

= πΠ1
(σci1(Records)) ∪ πΠ1

(σcj1
(Records))

= πΠ1
(σci1∨c

j
1
(Records))

(3)

The fourth query (Q4) �lters the Records entity and extracts the documents that contain in their

title the terms ti, tj , and tk (Equation 4). As for the previous queries, the projection attributes

are given using Π1. The query is written using the INTERSECTION operator between the results

obtained by Qi
1, Q

j
1, and Q

k
1 for terms ti, tj , and tk respectively. Due to the nature of the �ltering

conditions, they can be concatenated into one constraint ci1 ∧ c
j
1 ∧ ck1 .

13

Qijk
4 = Qi

1 ∩Q
j
1 ∩Qk

1

= πΠ1
(σci1(Records)) ∩ πΠ1

(σcj1
(Records)) ∩ πΠ1

(σck1 (Records))

= πΠ1
(σci1(Records) ∩ σcj1(Records) ∩ σck1 (Records))

= πΠ1(σci1∧c
j
1∧ck1

(Records))

(4)

The last selection query (Q5) extracts the documents that contain in their title one or more

of the searched terms ts, s ∈ {i, j, k} with i 6= j ∧ i 6= k ∧ j 6= k. The query is written using the

UNION operator between the results obtained by each Qs
1 for ts terms. The nature of the �ltering

constraints permit the query to be written using one constraint ci1 ∨ c
j
1 ∨ ck1 and the projection Π1

(Equation 5).

Qijk
5 = Qi

1 ∪Q
j
1 ∪Qk

1

= πΠ1(σci1(Records)) ∪ πΠ1(σcj1
(Records)) ∪ πΠ1(σck1 (Records))

= πΠ1(σci1(Records) ∪ σcj1(Records) ∪ σck1 (Records))

= πΠ1
(σci1∨c

j
1∨ck1

(Records))

(5)

5.2.2. Aggregation Queries

The last four queries use aggregation to count the number of articles using di�erent �ltering

constraints and attributes in the GROUP BY clause.

The sixth query (Q6) uses aggregation to determine the number of articles written by each

author (Equation (6)). It uses a JOIN operation between the Records and Authors entities. Because

there is a many-to-many relationship between the two entities, the JOIN also traverses WrittenBy.

The projection attributes are Π6 = {Author.Name, count}. To determine the number of articles

for each author, we use the aggregation operator γL6
, where L6 = (F6, G6). The list of aggregation

functions is given by F6, while the set of attributes in the GROUP BY clause is given by G6. The

list of aggregation functions is F6 = {count(Records.RecordID)}, where the count is the counting

aggregation function. The set of attributes in the GROUP BY clause is G6 = {Authors.Name}.

Q6 = πΠ6
(γL6

(Authors ./ Records)) (6)

The seventh query (Q7) counts the number of articles published by an author for each

year (Equation (7)). The query makes use of a JOIN operation between the Records and

Authors entities, as in the case of query Q6. The projection uses the following attributes

Π7 = {Author.Name,Record.Y ear, count}. To determine the number of articles written in a

year by each author, we use the aggregation operator γL7
, where L7 = (F7, G7). For query Q7, the

list of aggregation functions is given by F7, while the set of attributes in the GROUP BY clause

is given by G7. The list of aggregation functions is F7 = {count(Records.RecordID)}, where the

count is the counting function used for determining the number of articles written in a year by each

author. The set of attributes in the GROUP BY clause is G7 = {Authors.Name,Records.Y ear}.

14

Q7 = πΠ7
(γL7

(Authors ./ Records)) (7)

The eighth query (Q8) extracts the documents that contain in their title all of the searched

terms, and then it counts the number of articles grouped by author and year. As in the case of

Q6, the JOIN operation is between the Records and Authors entities. The query is written using

the INTERSECTION operator. The �ltering is done using the constraints ci1, c
j
1, c

k
1 which ensures

that the title contains all terms ti, tj , and tk with i 6= j ∧ i 6= k ∧ j 6= k. The projection attributes

and the aggregation operator remains the same as in the case of Q7, i.e., Π7 and γL7 . Due to the

nature of the �ltering conditions, the query can be rewritten using only one constraint ci1 ∧ c
j
1 ∧ ck1 .

Q8 = πΠ7
(γL7

(σci1(Records ./ Authors) ∩ σcj1(Records ./ Authors) ∩ σck1 (Records ./ Authors)))

= πΠ7
(γL7

(σci1∧c
j
1∧ck1

(Records ./ Authors)))

(8)

The last query (Q9) extracts the documents that contain in their title one or more of the

searched terms ts, s ∈ {i, j, k} and i 6= j ∧ i 6= k ∧ j 6= k, by �ltering through the use of constraint

cs1. The JOIN operator is used once again between the Records and Authors entities, as in the

case of Q6. The projection attributes and the aggregation operator remain the same as in the

case of Q7, i.e., Π7 and γL7
. The �ltering constraints ci1, c

j
1, c

k
1 are applied on the Records entity.

The query uses the UNION operator between the relationship obtained after �ltering. Due to the

nature of the �ltering, the query can be rewritten using one constraint ci1 ∨ c
j
1 ∨ ck1 .

Q9 = πΠ7
(γL7

(σci1(Records ./ Authors) ∪ σcj1(Records ./ Authors) ∪ σck1 (Records ./ Authors)))

= πΠ7
(γL7

(σci1∨c
j
1∨ck1

(Records ./ Authors)))

(9)

6. Experiments

6.1. Experimental Conditions

All tests were run on an IBM System x3550 M4 with 64GB of RAM, and an Intel(R) Xeon(R)

CPU E5-2670 v2 @ 2.50GHz. The XDBMSes used for benchmarking are BaseX, eXist-db, and

Sedna. For comparison reasons we also use three JDBMSes: MongoDB, CouchDB, and Couchbase.

We chose these DODBMSes because they are free to uses and because their licenses do not forbid

benchmarking.

The versions of the deployed DODBMSes are listed in Table 2. The proposed benchmark, the

results, and the used dataset are publicly available on-line4.

As the chosen XDBMS solutions do not have partitioning, we could not distribute them.

Therefore, we deployed and tested them on a single instance environment. Moreover, for

4GitHub Sources https://github.com/cipriantruica/The-Forgotten-DODBMSes

15

https://github.com/cipriantruica/The-Forgotten-DODBMSes

Table 2: Benchmarked DODBMSes

DODBMS Version

BaseX 9.3.3

eXist-db 5.2.0

Sedna 3.5

MongoDB 4.2.7

CouchDB 3.1.0

Couchbase 6.5.1

comparison reasons, we also used a single instance environment for MongoDB, CouchDB, and

Couchbase.

The query parameterization is presented in Table 3. Each term ti (i = 1, 3) is used for �ltering

the records through the constraint c
(i)
1 . Thus for the �rst set of queries, i.e., Qi

1, Q
ij
2 , and Q

ijk
3 , the

i, j, and k indices (i 6= j ∧ i 6= k ∧ j 6= k) represent the i′ ∈ 1, 3 index of the ti′ used for �ltering.

Table 3: Query parameter values

Parameter Value

t1 database

t2 text

t3 mining

6.2. Dataset

The experiments are performed on 6 150 738 records extracted from DBLP5. The initial dataset

is split into 4 di�erent subsets to test the scalability of each DODBMS w.r.t. the number of

records. These subsets contain 768 842, 1 537 685, 3 075 369, and 6 150 738 records, respectively.

Each subset allows scaling experiments and are associated with a scale factor SF parameter,

where SF = {0.125, 0.25, 0.5, 1}. Table 4 presents the size of the 4 subsets, both as raw data and

the resulting DODBMS collection dimension.

Table 4: Dataset

SF
No.

Records

Raw

XML

Raw

JSON

BaseX

DB size

eXist-db

DB size

Sedna

DB size

MongoDB

DB size

CouchDB

DB size

Couchbase

DB size

0.125 768 842 0.38GB 0.34GB 0.53GB 0.44GB 1.78GB 0.17GB 0.43GB 0.44GB

0.25 1 537 685 0.75GB 0.67GB 1.05GB 0.86GB 3.36GB 0.33GB 0.85GB 0.92GB

0.5 3 075 369 1.51GB 1.36GB 2.09GB 1.74GB 6.71GB 0.67GB 1.69GB 1.78GB

1 6 150 738 2.25GB 2.06GB 3.14GB 2.59GB 10.17GB 1.02GB 2.81GB 3.02GB

5DBLP http://dblp.org/

16

http://dblp.org/

For all the XDBMSes as well as for CouchDB and Couchbase, we can observe that database

size is larger than the raw dataset. This increase is a direct result of the overhead required by

the DODBMSes to manage and store the data. MongoDB uses compression mechanisms, which in

turn manage to decrease the database size by minimizing the overhead.

6.3. Query Implementation

Data are stored within each DODBMS using a denormalized schema; thus, one-to-many

and many-to-many relationships are encapsulated inside the same document. To achieve

denormalization, JDBMSes employ nested documents, lists, and lists of nested documents, while

XDBMSes use the hierarchical structure of the XML format. To normalize the information and

apply �ltering and aggregation operations and functions, we use the native syntax, operators, query

language clauses, and frameworks provided by each DODBMS. Table 5 presents the implementation

language and operators.

Table 5: Filtering and aggregation queries

Database Filtering Query Aggregation Queries

BaseX XQuery 3.1 XQuery 3.1 syntax for sorting and grouping

eXist-db XQuery 3.1 XQuery 3.1 syntax for sorting and grouping

sedna XQuery 1.0 XQuery 1.1 syntax for sorting and grouping

MongoDB JavaScript JavaScript Aggregation Pipeline with unwind operator

CouchDB JavaScript/Mango JavaScript/Mango Materialized Views

Couchbase N1QL N1QL with UNNEST clause

For the XDBMSes, we implemented the queries using XQuery. The aggregation queries for

BaseX and eXist-db use the XQuery 3.1 syntax for sorting and grouping, i.e., FOR ... WHERE

... GROUP BY ... ORDER BY For Sedna, we use the XQuery 1.1 syntax for sorting and

grouping, i.e., FOR ... WHERE ... LET ... ORDER BY We used the native Command

Line Interfaces to run these queries.

The aggregation queries in MongoDB are implemented using its Aggregation Pipeline

framework. To deal with nested documents, the unwind operator is used to �atten an array

�eld of nested documents. This operator is useful when trying normalize the one-to-many and

many-to-many which trough denormalization are stored in the JSON format as nested documents

or lists of nested documents. We used the native Command Line Interfaces to run these queries.

CouchDB uses Materialized Views for aggregation and to deal with nested and list of nested

documents. These views are implemented using CouchDB's MapReduce framework. The mapper

function is used to �atten nested documents and �lter the �eld. The reducer function is used

for applying an aggregation function and returning the �nal result. We used cURL to run these

queries.

To manipulate nested array in Couchbase, N1QL o�ers developers the UNNEST clause. This

clause is used to �atten the arrays in the parent document. Thus, the UNNEST clause conceptually

17

performs a JOIN operation between nested arrays and the parent document. As data are stored

using the JSON format, the JOIN operation increases the runtime and decreases the overall retrieval

performance. For Couchbase, we used the native Command Line Interfaces to run these queries.

6.4. Query Selectivity

Selectivity, i.e., the amount of retrieved data (n(Q)) w.r.t. the total amount of available data

(N), depends on the number of attributes in the WHERE and GROUP BY clauses. The selectivity

formula used for a query Q is S(Q) = 1 − n(Q)
N . For the selection queries, we set N equal to the

cardinality of the Records entity, i.e., N = ||Records||. Table 6 presents the �ltering queries'

selectivity w.r.t. the SF . The queries with more restrictive conditions return a smaller number of

records and the selectivity is higher, e.g., Qij
2 . The queries with more inclusive restrictions return

a higher number of records and the selectivity is lower, e.g., Qij
3 .

Table 6: Filter queries selectivity

SF Q1
1 Q2

1 Q3
1 Q12

2 Q13
2 Q23

2 Q12
3 Q13

3 Q23
3 Q4 Q5

0.125 0.992 0.987 0.993 0.999 0.999 0.999 0.980 0.986 0.980 0.999 0.974

0.25 0.991 0.986 0.992 0.999 0.999 0.999 0.978 0.984 0.979 0.999 0.971

0.5 0.990 0.982 0.991 0.999 0.999 0.999 0.973 0.982 0.975 0.999 0.966

1 0.993 0.987 0.994 0.999 0.999 0.999 0.981 0.988 0.982 0.999 0.976

For the aggregation queries, we set N equal to the number of queries returned by joining the

entities Records with Authors, i.e., N = ||Authors ./ Records||. Table 7 shows the aggregation

queries' selectivity w.r.t. the SF factor. Query Q8 is the most restrictive query. Because of the

�ltering and grouping conditions, Q8 returns a small number of records, and its selectivity is almost

equal to 1. The most inclusive query is Q7, and it has a low selectivity w.r.t. SF . Because of the

less restrictive �ltering and grouping conditions, the selectivity of this query is less than 0.45. The

selectivity of Q6 increases w.r.t. SF , meaning that the number of records returned by the query

increases more gradually than the size of the corpus.

Table 7: Aggregation queries selectivity

SF Q6 Q7 Q8 Q9

0.125 0.651 0.256 0.999 0.974

0.25 0.728 0.345 0.999 0.970

0.5 0.797 0.448 0.999 0.969

1 0.848 0.424 0.999 0.974

6.5. Performance Metrics and Execution Protocol

We use the query response time as the only metric for the benchmark. It is symbolized for each

query by t(Q∗i)∀i ∈ [1, 9]. All queries are executed 10 times, which is su�cient according to the

18

central limit theorem. Additionally, all executions are warm runs, i.e., either caching mechanisms

must be deactivated, or a cold run where each query must be executed once (but not taken

into account in the benchmark's results) to �ll in the cache. Queries must be written in the

native scripting language of the target DODBMS and executed directly inside the speci�ed system

using the command line interpreter. Lastly, the average response time and standard deviation are

computed for each t(Q∗i).

6.6. Results

Figure 3 presents the results of Qi
1 where i = 1, 3 is used to denote the keyword ti. MongoDB

and BaseX o�er the fastest time performance among the DODBMSes that encode documents

using JSON and XML, respectively, regardless of the keyword w.r.t. SF . For Q2
1 query which

has the lowest selectivity of the three Qi
1 queries, the time performance of CouchDB is with a

factor of ∼ 2x faster than eXist-db w.r.t. SF . The time performance of CouchDB and eXist-

db for Q1
1 and Q3

1 tend to become the same w.r.t. SF , i.e., the performance di�erence factor

between CouchDB and eXist-db at SF = 0.125 is ∼ 0.8x which increases to ∼ 0.9x for SF = 1.

CouchDB time performance is with a factor of ∼ 1.1x faster than Couchbase for all the Qi
1 queries

regardless of SF . Couchbase and eXist-db have similar performance for query Q3
1 and SF = 1.

Sedna performance is almost constant regardless of query selectivity w.r.t. SF . The overall best

performance is achieved by MongoDB.

Figure 4 presents the results of Qij
2 and Qij

3 queries where i and j indicate the ti and tj keywords

used for �ltering (Table 3) with i = 1, 3, j = 1, 3, and i 6= j. For this set of queries, MongoDB has

the best overall time performance regardless of the SF factor. BaseX achieves the second overall

best performance and the best performance among the tested XDBMSes, regardless of the SF .

For the Qij
2 set of queries, the time performance of MongoDB has a factor between ∼ 3.2x and

∼ 3.6x faster then BaseX w.r.t. SF . For the Qij
3 set of queries, the time performance of MongoDB

has a factor between ∼ 1.8x and ∼ 2.2x faster then BaseX w.r.t. SF .

Couchbase presents the highest execution time for the Qij
2 queries regardless of SF , followed

by the execution time of CouchDB. CouchDB time performance is with a factor of ∼ 1.2x and

∼ 1.1x faster than Couchbase for the Qij
2 , respectively Q

ij
3 queries regardless of SF . The eXist-db

XDBMS has the worst performance for the Qij
3 set of queries regardless of the SF . For the Qij

2

set of queries, Sedna time performance has a factor of ∼ 2x better than CouchDB and a factor of

2x worse than eXist-db. For the Qij
3 set of queries, Sedna's query execution time is with a factor

of ∼ 1.5x better than CouchDB and with a factor of ∼ 5x worst than BaseX.

Figure 5 presents the time performance of Q4 and Q5 queries for each DODBMS w.r.t. SF . The

time performance trend for Q4 and Q5 remains similar to the ones for Qij
2 and Qij

3 , respectively.

CouchDB time performance is with a factor of ∼ 1.3x and ∼ 1.2x faster than Couchbase for the Qij
2 ,

respectively Qij
3 queries regardless of SF . MongoDB achieves the overall best time performance

for both queries. BaseX has the second-best time performance among the tested DODBMSes and

the best performance among the XDBMSes.

19

0

100

200

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db Sedna
MongoDB CouchDB Couchbase

(a) Q1
1

0

200

400

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db Sedna
MongoDB CouchDB Couchbase

(b) Q2
1

0

100

200

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db Sedna
MongoDB CouchDB Couchbase

(c) Q3
1

Figure 3: Response time for Qi
1

Figure 6 shows the results for the aggregation queries, i.e., Q6 to Q9. For the queries Q6,

Q7, and Q9, BaseX has the best time performance and signi�cantly outperforms MongoDB and

CouchDB with a factor of ∼ 2x, regardless of the SF . For the Q8 query, CouchDB achieved

the best query execution time, while Couchbase the worst. MongoDB has the second best query

response time among the studied DODBMSes for Q6, Q7, and Q9. MongoDB's response time

for these queries is almost on parity with the response time of CouchDB w.r.t. SF , although

MongoDB executes the aggregation functions at runtime.

For Q7, Couchbase has a large standard deviation. During testing, this query �nished with the

error "Index scan timed out". The tests that �nished with the status "success" returned �uctuating

time performance for each run. This abnormal behavior of the Couchbase system can be sometimes

observed for complex queries on large collections.

For Q8 which has the highest selectivity, CouchDB holds the best time performance.

We attribute this result to the mechanism used by CouchDB to store aggregation functions.

Aggregation functions are stored in materialized views also named indices in CouchDB. Using this

technique, CouchDB manages to outperform BaseX and MongoDB, which execute aggregation

functions at runtime, for queries with high selectivity. With Couchbase, the complexity and

selectivity together with the UNNEST clause required to extract the nested documents in order

20

0

100

200

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db Sedna
MongoDB CouchDB Couchbase

(a) Q12
2 = Q1

1 ∩Q2
1

0

200

400

600

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db Sedna
MongoDB CouchDB Couchbase

(b) Q12
3 = Q1

1 ∪Q2
1

0

100

200

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db Sedna
MongoDB CouchDB Couchbase

(c) Q13
2 = Q1

1 ∩Q3
1

0

200

400

600

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db Sedna
MongoDB CouchDB Couchbase

(d) Q13
3 = Q1

1 ∪Q3
1

0

100

200

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db Sedna
MongoDB CouchDB Couchbase

(e) Q23
2 = Q2

1 ∩Q3
1

0

200

400

600

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db Sedna
MongoDB CouchDB Couchbase

(f) Q23
3 = Q2

1 ∪Q3
1

Figure 4: Response time for Qij
2 and Qij

3

to �lter and group the information, increases the runtime signi�cantly while decreasing the overall

query performance.

The aggregation queries did not work on Sedna. When executing these queries, the XDBMS

remained unresponsive for days, and we had to manually stop the system, the related services, and

the background processes. We note that Sedna also executes aggregation functions at runtime. We

suspect that one reason for Sedna's failure to execute the aggregation queries is

also the outdated XQuery 1.0 query language.

21

0

100

200

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db Sedna
MongoDB CouchDB Couchbase

(a) Q4 = Q1
1 ∩Q2

1 ∩Q3
1

0

200

400

600

800

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db Sedna
MongoDB CouchDB Couchbase

(b) Q5 = Q1
1 ∪Q2

1) ∪Q3
1

Figure 5: Response time for Q4 and Q5

The eXist-db XDBMS has the highest query time for Q6, Q7, and Q9 queries. The execution

is done at runtime. For this XDBMS, query Q7 worked only for SF = 0.125. For other SF

values, the query returned memory errors, although we have tuned this XDBMS to work with the

same parameters as the other DODBMSes. Thus, eXist-db is highly dependent on the JVM (Java

Virtual Machine) memory allocation mechanism.

0

2,000

4,000

6,000

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db MongoDB
ChouchDB Couchbase

(a) Q6

0

1,000

2,000

3,000

4,000

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db MongoDB
CouchDB Couchbase

(b) Q7

0

200

400

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db MongoDB
CouchDB Couchbase

(c) Q8

0

500

1,000

SF 0.125 0.25 0.5 1

R
es
p
o
n
se

ti
m
e
(s
)

BaseX eXist-db MongoDB
CouchDB Couchbase

(d) Q9

Figure 6: Response time for aggregation queries

22

6.7. Discussions on the Experimental Design Choices

In this study, we present our �ndings regarding the performance of �ltering and aggregation

queries on a large dataset for XDBMSes and JDBMSes w.r.t. di�erent scale factors. We

observe that the XDBMSes perform as well as JDBMSes for speci�c use cases, with BaseX even

outperforming the more popular JDBMSes on three out of the four aggregation queries. Among

the JDBMSes, MongoDB has the overall best performance.

For our comparison, we do not take into account horizontal scalability through sharding and

replication, as not all of the analyzed DBMSes have such a functionality. Furthermore, it is essential

�rst to understand single-node performance before considering horizontal scaling. Thus, the aim

of the paper is to examine single instance deployments.

There are many real-world scenarios where such single-instance deployment is preferred. As

a �rst example, XDBMSes can be used for fast application development, analyzing and querying

log data, or storing and retrieving IoT sensor data. XDBMSes are good candidates for storing

large documents, managing long-running transactions, and querying hierarchical data structures

in environments that require rapidly evolving schemes. Furthermore, these DBMSes are lightweight

and do not require dedicated hardware, software, or a lot of resources. Thus, managing to lower

resource costs at the data center site and enabling on-site data analysis and decision making.

Therefore, they can be utilized in Edge and Fog Computing with ease.

The creation of network islands due to faulty nodes is very common in the Edge/Fog

environment. Even in the presence of well-de�ned recovery mechanisms, the formation of temporal

network islands is unfavorable for sharding, as the overall latency increases if nodes go down and

then up again. Hence, single-instance deployments are favored in these environments.

Another real-world scenario where such single-instance deployment can be used is for small to

medium scale document management systems. These management systems are useful to smaller

enterprises, where data is kept in the company due to GDPR (European Union Legislation on

General Data Protection Regulation). Moreover, as in many cases most of the data is in semi-

structured formats, such as XML and JSON, single instance DODBMSes are a good candidate for

storing and managing such documents. Thus, removing from the company's costs the maintenance

of a data center.

It is also important to mention that the focus of our benchmark is on data retrieval and not

on write operations because, in real-world applications, multiple techniques can be put in check

to balance the write operations and minimize the workload. Moreover, data persistence can be

achieved much later within a DBMS, depending on the workload and the systems write and logging

mechanisms.

Furthermore, we loaded the data into the database using di�erent methods. Because not all

of the tested DODBMSes have their own data load tools, we developed our own data loading

programs. By utilizing our data load programs and not native load DBMS functionalities, we

added a new layer of complexity which decreases write performance. This makes the loading

process to be dependent on external DBC (database connectors) implementations, and not on the

23

DODBMS internal functionalities.

7. Conclusion

In this paper, we present an overview and comparison of DODBMSes that encode information

using XML and JSON formats and propose a benchmark using �ltering and aggregation queries

on a heterogeneous dataset. For our experiments we chose three XDBMSes, i.e., BaseX, eXist-db,

Sedna, and three JDBMSes, i.e., MongoDB, CouchDB, and Couchbase. These DODBMSes are

open-source and free to use systems, whose license does not forbid benchmarking.

Our comparison focuses on key functionalities required by Big Data and IoT systems for storing

and extracting information from large volumes of data. For this comparison, we also consider the

transactions' properties of each DODBMSes, their in-memory capabilities, and how these systems

deal with atomicity, consistency, isolation, durability with regards to operations such as accessing,

modifying, and saving documents. We also present for each DODBMS its support for replication

and partitioning of data and how it manages these Big Data requirements. Furthermore, we

present the querying languages used for extracting information as well as the di�erent types of

indices provided by each DODBMS to improve retrieval response time.

The proposed benchmark uses di�erent queries to emphasize the time performance of

DODBMSes and highlights the capabilities of XDBMSes and JDBMSes. Furthermore, our solution

proves its portability, scalability, and relevance by its design. The benchmark is portable, as it

works on multiple systems. For this purpose, we compare the performance of several DODBMSes,

i.e., BaseX, eXist-db, Sedna, MongoDB, CouchDB, and Couchbase. To demonstrate the scalability

of our solution, we introduced SF , the scaling factor that generates an incremental growth in the

data volume for our experiments. By increasing the queries' complexity together with the SF

factor, we analyze the behavior of the systems from the scaling perspective. We observe that all

the DODBMSes have a linear increase at runtime. Furthermore, BaseX proves to be a good choice

when dealing with aggregations. Finally, our experimental results show that our benchmark is

indeed relevant in comparing the runtime performance of di�erent DODBMSes.

The performance tests provide some interesting and unexpected results. Among the XDBMSes,

BaseX has the best overall performance. BaseX even outperforms the JDBMSes selected for this

benchmark, i.e., MongoDB, CouchDB, and Couchbase, for three out of the four aggregation queries

proposed. We observe that Couchbase has the overall worst performance among the JDBMSes.

Sedna outperforms CouchDB and Couchbase when dealing with �ltering queries, but does not

work for the aggregation queries. MongoDB has the overall best time performance for the �ltering

queries and it outperforms BaseX only for the aggregation query Q8. eXist-db has some strange

behavior when dealing with both �ltering and aggregation queries. Also, it is highly dependent

on the JVM, which needs to be tuned for each query, making this XDBMS hard to work with.

However, we can assume that eXist-db works well on a query to query basis.

Following the results obtained by the benchmark, we can answer the three research questions

and conclude that XDBMSes are still useful: their performance is as good as JDBMSes and

24

they are good candidates for Big Data Management. Furthermore, XDBMSes are well-suited

for several current real-world scenarios. Firstly, XDBMSes are reliable systems for storing large

documents, managing long-running transactions, and querying hierarchical data structures in

Edge/Fog environments (e.g., smart agriculture, healthcare wearables, etc.), as these types of

DODBMSes are lightweight and do not require dedicated hardware, software, or a lot of resources.

Secondly, XDBMSes can be used as small to medium scale document management systems in

smaller enterprises, where data are kept in the company due to GDPR. Thirdly, in the case of Big

Data analysis, they prove to be well-suited when the documents are in XML format, by removing

the ETL (Extract, Transform, Load) processes from the storing, managing, and analysis pipeline.

As future work, we plan to improve the support for OLAP queries [41] on XML data and

XML data in combination with other data [42, 43] both in terms of performance and functionality.

This includes designing new sampling strategies and supporting more aggregation queries [42]. The

sampling methods will include constraints on other labels and values contained in the records. Also,

we aim to add more dimension for grouping [42], to boost the performance by lowering the query

selectivity and performing query rewriting [43], and to add further grouping functionality [42].

Acknowledgement

The research presented in this paper was supported in part by the Danish Independent Research

Council, through the SEMIOTIC project, and the Robots and Society: Cognitive Systems for

Personal Robots and Autonomous Vehicles (ROBIN) project CCCDI-UEFISCDI grant No. PN-

III-P1-1.2-PCCDI-2017-0734.

References

[1] J. Han, H. E, G. Le, J. Du, Survey on NoSQL database, in: International Conference on

Pervasive Computing and Applications, IEEE, 2011, pp. 363�366. doi:10.1109/icpca.2011.

6106531.

[2] B.-K. Park, H. Han, I.-Y. Song, XML-OLAP: A multidimensional analysis framework for

XML warehouses, in: Data Warehousing and Knowledge Discovery, Springer, 2005, pp. 32�

42. doi:10.1007/11546849_4.

[3] M. Stonebraker, U. Çetintemel, "one size �ts all": An idea whose time has come and gone, in:

International Conference on Data Engineering, IEEE, 2005, pp. 1�10. doi:10.1109/icde.

2005.1.

[4] C. Strauch, Nosql databases, Tech. rep., Stuttgart Media University (2011).

[5] T. Zhu, D. Wang, H. Hu, W. Qian, X. Wang, A. Zhou, Interactive transaction processing

for in-memory database system, in: Database Systems for Advanced Applications, Springer,

Cham, 2018, pp. 228�246. doi:10.1007/978-3-319-91458-9_14.

25

http://dx.doi.org/10.1109/icpca.2011.6106531
http://dx.doi.org/10.1109/icpca.2011.6106531
http://dx.doi.org/10.1007/11546849_4
http://dx.doi.org/10.1109/icde.2005.1
http://dx.doi.org/10.1109/icde.2005.1
http://dx.doi.org/10.1007/978-3-319-91458-9_14

[6] M. A. Qader, S. Cheng, V. Hristidis, A comparative study of secondary indexing techniques

in lsm-based nosql databases, in: International Conference on Management of Data,

SIGMOD2018, ACM, 2018, pp. 551�566. doi:10.1145/3183713.3196900.

[7] A. Petrov, Algorithms behind modern storage systems, Queue 16 (2) (2018) 30:31�30:51.

doi:10.1145/3212477.3220266.

[8] D. Comer, Ubiquitous b-tree, ACM Computing Surveys 11 (2) (1979) 121�137. doi:10.1145/

356770.356776.

[9] R. Cattell, Scalable SQL and NoSQL data stores, ACM SIGMOD Record 39 (4) (2011) 12.

doi:10.1145/1978915.1978919.

[10] M. Stonebraker, SQL databases v. NoSQL databases, Communications of the ACM 53 (4)

(2010) 10. doi:10.1145/1721654.1721659.

[11] R. Hecht, S. Jablonski, NoSQL evaluation: A use case oriented survey, in: International

Conference on Cloud and Service Computing, IEEE, 2011, pp. 336�341. doi:10.1109/csc.

2011.6138544.

[12] F. Gessert, W. Wingerath, S. Friedrich, N. Ritter, NoSQL database systems: a survey and

decision guidance, Computer Science - Research and Development 32 (3-4) (2016) 353�365.

doi:10.1007/s00450-016-0334-3.

[13] Z. Brahmia, H. Hamrouni, R. Bouaziz, XML data manipulation in conventional and temporal

XML databases: A survey, Computer Science Review 36 (2020) 100231. doi:10.1016/j.

cosrev.2020.100231.

[14] F. Bajaber, S. Sakr, O. Batar�, A. Altalhi, A. Barnawi, Benchmarking big data systems: A

survey, Computer Communications 149 (2020) 241�251. doi:10.1016/j.comcom.2019.10.

002.

[15] C.-O. Truic , E.-S. Apostol, J. Darmont, I. Assent, TextBenDS: a generic textual

data benchmark for distributed systems, Information Systems Frontiersdoi:10.1007/

s10796-020-09999-y.

[16] S. M. Freire, E. Sundvall, D. Karlsson, P. Lambrix, Performance of xml databases for

epidemiological queries in archetype-based ehrs, in: Scandinavian Conference on Health

Informatics, Linköping University Electronic Press, 2012, pp. 51�57.

[17] A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu, R. Busse, XMark: A benchmark

for xml data management, in: International Conference on Very Large Databases VLDB,

Elsevier, 2002, pp. 974�985. doi:10.1016/b978-155860869-6/50096-2.

[18] M. Nicola, I. Kogan, B. Schiefer, An XML transaction processing benchmark, in: ACM

SIGMOD International Conference on Management of data, ACM Press, 2007, pp. 937�948.

doi:10.1145/1247480.1247590.

26

http://dx.doi.org/10.1145/3183713.3196900
http://dx.doi.org/10.1145/3212477.3220266
http://dx.doi.org/10.1145/356770.356776
http://dx.doi.org/10.1145/356770.356776
http://dx.doi.org/10.1145/1978915.1978919
http://dx.doi.org/10.1145/1721654.1721659
http://dx.doi.org/10.1109/csc.2011.6138544
http://dx.doi.org/10.1109/csc.2011.6138544
http://dx.doi.org/10.1007/s00450-016-0334-3
http://dx.doi.org/10.1016/j.cosrev.2020.100231
http://dx.doi.org/10.1016/j.cosrev.2020.100231
http://dx.doi.org/10.1016/j.comcom.2019.10.002
http://dx.doi.org/10.1016/j.comcom.2019.10.002
http://dx.doi.org/10.1007/s10796-020-09999-y
http://dx.doi.org/10.1007/s10796-020-09999-y
http://dx.doi.org/10.1016/b978-155860869-6/50096-2
http://dx.doi.org/10.1145/1247480.1247590

[19] P. Atzeni, F. Bugiotti, L. Cabibbo, R. Torlone, Data modeling in the NoSQL world, Computer

Standards & Interfaces 67 (2020) 103149. doi:10.1016/j.csi.2016.10.003.

[20] T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, T. Westmann,

Anatomy of a native XML base management system, The VLDB Journal The International

Journal on Very Large Data Bases 11 (4) (2002) 292�314. doi:10.1007/s00778-002-0080-y.

[21] G. Pavlovi¢-Laºeti¢, Native xml databases vs. relational databases in dealing with xml

documents, Kragujevac Journal of Mathematics 30 (2007) 181�199.

[22] E. Gallinucci, M. Golfarelli, S. Rizzi, Schema pro�ling of document-oriented databases,

Information Systems 75 (2018) 13 � 25. doi:10.1016/j.is.2018.02.007.

[23] BaseX, Basex documentation (2020).

URL http://docs.basex.org/wiki/Main_Page

[24] C. Grün, S. Gath, A. Holupirek, M. H. Scholl, XQuery full text implementation in BaseX,

Database and XML Technologies (2009) 114�128doi:10.1007/978-3-642-03555-5_10.

[25] W. Meier, exist: An open source native xml database, in: Web, Web-Services, and Database

Systems, Springer, 2003, pp. 169�183. doi:10.1007/3-540-36560-5_13.

[26] E. Siegel, A. Retter, eXist: A NoSQL Document Database and Application Platform, O'Reilly

Media, Inc., 2014.

[27] eXistdb, exist-db documentation (2020).

URL https://exist-db.org/exist/apps/doc/documentation

[28] A. Fomichev, M. Grinev, S. Kuznetsov, Sedna: A native xml dbms, in: SOFSEM 2006: Theory

and Practice of Computer Science, Springer, 2006, pp. 272�281. doi:10.1007/11611257_25.

[29] Sedna, Sedna documentation (2020).

URL https://www.sedna.org/documentation.html

[30] I. Taranov, I. Shcheklein, A. Kalinin, L. Novak, S. Kuznetsov, R. Pastukhov, A. Boldakov,

D. Turdakov, K. Antipin, A. Fomichev, P. Pleshachkov, P. Velikhov, N. Zavaritski, M. Grinev,

M. Grineva, D. Lizorkin, Sedna: Native xml database management system (internals

overview), in: ACM SIGMOD International Conference on Management of Data, SIGMOD

'10, ACM, 2010, pp. 1037�1046. doi:10.1145/1807167.1807282.

[31] K. Banker, P. Bakkum, S. Verch, D. Garrett, T. Hawkins, MongoDB in Action, 2nd Edition,

Manning Publications Co., 2011.

[32] MongoDB, Inc., Mongodb documentation (2020).

URL https://docs.mongodb.com/

[33] Apache CouchDB, Couchdb documentation (2020).

URL https://docs.couchdb.org/en/stable/

27

http://dx.doi.org/10.1016/j.csi.2016.10.003
http://dx.doi.org/10.1007/s00778-002-0080-y
http://dx.doi.org/10.1016/j.is.2018.02.007
http://docs.basex.org/wiki/Main_Page
http://docs.basex.org/wiki/Main_Page
http://dx.doi.org/10.1007/978-3-642-03555-5_10
http://dx.doi.org/10.1007/3-540-36560-5_13
https://exist-db.org/exist/apps/doc/documentation
https://exist-db.org/exist/apps/doc/documentation
http://dx.doi.org/10.1007/11611257_25
https://www.sedna.org/documentation.html
https://www.sedna.org/documentation.html
http://dx.doi.org/10.1145/1807167.1807282
https://docs.mongodb.com/
https://docs.mongodb.com/
https://docs.couchdb.org/en/stable/
https://docs.couchdb.org/en/stable/

[34] J. C. Anderson, J. Lehnardt, N. Slater, CouchDB: De�nitive Guide, O'Reilly Media, Inc.,

2010.

[35] B. Holt, Scaling CouchDB : replication, clustering, and administration, O'Reilly Media, Inc.,

2011.

[36] G. Manyam, M. A. Payton, J. A. Roth, L. V. Abruzzo, K. R. Coombes, Relax with CouchDB

� into the non-relational DBMS era of bioinformatics, Genomics 100 (1) (2012) 1�7. doi:

10.1016/j.ygeno.2012.05.006.

[37] M. Brown, Getting started with Couchbase server, Oreilly, 2012.

[38] D. Vohra, Pro Couchbase Development, Apress, 2015. doi:10.1007/978-1-4842-1434-3.

[39] M. A. Hubail, A. Alsuliman, M. Blow, M. Carey, D. Lychagin, I. Maxon, T. Westmann,

Couchbase analytics, VLDB Endowment 12 (12) (2019) 2275�2286. doi:10.14778/3352063.

3352143.

[40] Apache Couchbase, Couchbase documentation (2020).

URL https://docs.couchbase.com/home/index.html

[41] D. Pedersen, K. Riis, T. B. Pedersen, A Powerful and SQL-Compatible Data Model and Query

Language for OLAP, in: Australasian Database Conference, 2002.

[42] T. B. Pedersen, D. Pedersen, J. Pedersen, Integrating XML data in the TARGIT OLAP

system, International Journal of Web Engineering and Technology 4 (4) (2008) 495�533.

[43] X. Yin, T. B. Pedersen, Evaluating XML-Extended OLAP Queries Based on Physical Algebra,

Journal of Database Management 17 (2) (2006) 85�116.

28

http://dx.doi.org/10.1016/j.ygeno.2012.05.006
http://dx.doi.org/10.1016/j.ygeno.2012.05.006
http://dx.doi.org/10.1007/978-1-4842-1434-3
http://dx.doi.org/10.14778/3352063.3352143
http://dx.doi.org/10.14778/3352063.3352143
https://docs.couchbase.com/home/index.html
https://docs.couchbase.com/home/index.html

	Introduction
	Related Works
	Document-Oriented Databases
	XDBMSes
	JDBMSes
	DODBMSes Comparison

	Benchmark specifications
	Data Model
	Workload Model

	Benchmark Implementation
	Database Design
	Query Description
	Selection Queries
	Aggregation Queries

	Experiments
	Experimental Conditions
	Dataset
	Query Implementation
	Query Selectivity
	Performance Metrics and Execution Protocol
	Results
	Discussions on the Experimental Design Choices

	Conclusion

