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Abstract

The sound attenuation of a silencer consisting of a lamella network made with melamine foam inserted in rectangular duct is
investigated numerically and experimentally. The lamella arrangement is designed so that skeleton bending elastic resonances
appear at low frequency. In addition to this phenomenon, viscothermal losses in the porous material ensure broadband attenuation.
The lamella network provides a natural sub-wavelength resonator, without any other kind of inclusions, and create an easy to
manufacture metamaterial with high tunability and broadband efficiency. Experimental transmission losses compare well with
three dimensional finite element model obtained either on the whole silencer, either on a periodic cell. A parametric study is
conducted on the periodic model to identify the effect of different geometrical parameters, like dimensions of the lamella and air
gap, as well as physical parameters, like air flow resistivity, elastic modulus and loss factor of the poroelastic material, on the sound
attenuation in the silencer.

Keywords: Silencer, Poroelastic material, Metamaterial, Duct acoustics, Exceptional point, HVAC, Manufacturing, Periodic cell,
Finite element model

1. Introduction

The control of low frequency noise remains a challenge for
the automotive, aircraft and building industries. In many in-
stance, the noise is produced by various airflow systems and is
transmitted in ducts which act as acoustic waveguides.

The mitigation of these noise disturbances is usually accom-
plished using passive treatments by either using acoustic liners
which consists in treating the wall of the duct adequately or by
inserting dissipative splitter silencers in the duct. In the lat-
ter case, silencers are made with fibrous materials such as rock
wool or glass fibre and are thus less effective at low frequency
and for best sound attenuation, it is normally required that the
thickness of the treatment should be of the same order as the
acoustic wavelength [1–3]. Traditional acoustic liners, made of
a resistive perforated plate coupled to a quarter-wavelength res-
onator, somewhat suffers from the same limitation as low fre-
quency performances are typically limited by the cavity depth.
The geometry structure of these liners, which consist of a peri-
odic arrangement of acoustic resonators make these the direct
ancestor of acoustic metasurfaces or metamaterials which have
experienced a continuous and robust development for the last
twenty years. Because these materials have effective dynamic
quantities with negative values, like negative mass density [4]
and bulk modulus [5, 6], that can not be observed in natural
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materials, they break the traditional design rules for acoustic
treatment.

The corner stone of these materials relies on subwavelength
resonators and its associated phase shift. Here, we can mention
quarter wavelength and space-coiling structures [7–9], Helmholtz
resonators [6, 10–12] or membranes [4, 13]. The geometrical
configuration of the resonators network can also play a crucial
role, like in slow sound channels [14, 15]. Another major in-
gredient which must be considered in order to design efficient
sound absorbing materials is the losses. Viscothermal losses
in porous materials [16] have been combined with the inclu-
sion of small resonators in the so-called metaporous materi-
als [12, 17–20], showing improvement at low frequency while
keeping broadband absorption. Perfect absorption can also be
achieved by the mechanism of critical coupling whereby the
leakage rate of energy out of the resonator and its inherent
losses are properly balanced [13].

Recently, Christensen et al. [21] proposed a structured ma-
terial fabricated out of porous lamellas backed by a reflecting
support. The increase in dissipation is explained by the fact
that sound is trapped more efficiently than for a homogeneous
porous layer. It is reported that complete absorption of sound
within a two octave band can be obtained though the concept
is not optimal within the long wavelength regime and at graz-
ing incidence. Dauchez et al. [22] studied sound absorption
of a large scale poroelastic lamella network under oblique in-
cidence in free field. Results show that this type of structured
material, which bears similarity with [21], permits to gain extra
absorption in the low frequency range by taking advantage of
the resonance of the elastic frame of the foam. This particu-
lar effect which is often ignored in the literature is indeed not



studied in [21].
Silencers and sound attenuation in waveguides by metama-

terial have been less investigated than for panels dedicated to
acoustic room corrections. The grazing incidence of sound
waves which, depending on the duct dimensions, may propa-
gate in a multimode context makes the design of appropriate
acoustic treatments more complex and less understood.

Generally the best attenuation is obtained when two guided
modes of the silencer are close to merge [23–26]. This can
be achieve by exploiting Fano resonances [27, 28] or the high
tunability of metamaterial [24, 25]. Another lever is to take
advantage of poroelastic frame elastic resonances. Their strong
impact on the sound attenuation have been shown in [29–31] in
the poroelastic silencer.

The present paper is in the wake of previous work published
by the authors [22, 29, 30] on the role of the frame elasticity for
the passive sound control. More precisely, our aim is to devise
and investigate a new duct silencer concept made of a specific
arrangement of lamellas, here made of melamine foam, inserted
in a rectangular duct. The lamella bending motion provides a
natural sub-wavelength resonator, without any other inclusions.
The interest of this configuration rely on its simple manufactur-
ing, its high tunability and its broadband efficiency.

The paper is organized as follows. First, the experimental
setup and material properties are described. Two configurations
with different orientations of the lamellas, i.e. parallel or per-
pendicular to the duct axis, are investigated and compared to
the homogeneous case.

Experimental results are given in terms of the Transmission
Losses (TL) of the silencer and are compared with numerical
simulations obtained either from a full model, i.e. a 3D finite
element model (FEM) of the whole silencer, and from a simpli-
fied and idealized periodic FEM model. This simplified model
is then used to carry out a parametric study in order to identify
the effect of different geometrical parameters as well as physical
parameters such as the airflow resistivity and the Young elastic
modulus of the poroelastic material. Taking advantage of the
modal description given by periodic model, the paper ends with
a discussion which highlights the fact that best attenuation are
nearly-optimal when modes are close to veering condition. This
phenomena which was established earlier by Tester [23] for lo-
cally reacting liners is also described in recent papers [25, 26].

2. Experimental approach

2.1. Description of the poroelastic lamellar metamaterial

The poroelastic lamellar metamaterial shown in Fig. 1 is
made up of several melamine foam strips which properties are
given in Table 1. Each lamella has a nominal thickness h1 = 25
mm along the y-axis, a width w1 = 15 mm and a length of 200
mm. The air gap between two lamellas is 5 mm. There are
ten parallel strips glued on a 20 cm × 20 cm stiff plate. Four
samples are fabricated and arranged with different orientations.
The two configurations investigated, parallel and perpendicu-
lar, are shown in Fig. 2. In the parallel arrangement, with 10
lamellas, each lamella is parallel to the duct axis, which is also

Figure 1: Poroelastic lamellar metamaterial.

Figure 2: Orientations of the lamellar material; (a): homoge-
neous; (b): parallel; (c): perpendicular.

the direction of the incident pressure field. In the perpendicular
arrangement, with 20 lamellas, each lamella is perpendicular to
the duct axis. In all cases, the sample covers both bottom and
top surfaces of the duct over a 40 cm length in the z-direction
(see Fig. 3).

2.2. Experimental setup

The experimental set-up used to measure the Transmission
Loss (TL) of the lined duct is also shown. The test bench has
been designed for the acoustic multi-modal characterization of
a test section in presence of a low Mach number flow within
the frequency band [200 Hz–3.5 kHz]. In this work, we con-
sider the no flow case and only the incident plane wave is ac-
counted for. The duct has a rectangular section of 0.2 m × 0.1
m with an anechoic termination at both ends. The scattering
matrix, which contains the modal reflection and transmission
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Porosity Airflow resistivity Viscous length Thermal length Tortuosity Density Young’s modulus Loss factor Poisson ratio
φ σ Λ Λ′ α∞ ρ1 E η ν

(Nm−4s) (µm) (µm) kg.m−3 kPa
0.982 7920 132.6 149.9 1 6.11 120 0.075 0

Table 1: Properties of the poroelastic material [22].
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Figure 3: Experimental setup for transmission loss measure-
ment (a) and lamellas orientations (b-d).

coefficients is measured using a multi-source method described
in [32]. Note that the symmetry of each configuration tested
prevents the existence of the first transverse duct acoustic mode
so in the frequency range of interest, here up to 1500 Hz, only
the plane wave mode is allowed to propagate in the rigid duct.

2.3. Results

In order to illustrate the influence of the orientation and of
the filling fraction, parallel and perpendicular orientations are
compared to an homogeneous layer made of the same mate-
rial. These results are given in Fig. 4. The TL obtained with
the homogeneous layer exhibits a peak around 850 Hz. Atten-
uation peaks can be related to the cutoff frequency of Lamb-
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Figure 4: Comparison of experimental results for parallel (- -),
perpendicular( ) and homogeneous layer (...).

like waves. Because of the motionless boundary condition on
the bottom, all elastic modes in the slab problem have a cutoff

frequency, whereas classical Lamb waves are associated with
pressure release conditions on both sides. Exact solutions for
fully coupled systems can be found numerically in [29, 33].
It is sufficient in the present analysis to remind the following
approximation which holds if the coupling with the fluid is ne-
glected [33]:

fi,m ≈ (2m + 1)
ci

4h1
, for i = s, l, (1)

where cs =

√
E/2(1+ν)

ρ1
and cl =

√
E(1−ν)/[(ν+1)(1−2ν)]

ρ1
are the in

vacuo shear and longitudinal bulk velocity, respectively. These
cutoff frequencies correspond to quarter wavelength (or its mul-
tiple) resonance of the shear and compression wave of an ho-
mogeneous layer, as mentioned in [22] for absorbing panels.

The parallel configuration exhibits the same trend, with a
lower TL due to the air gaps that increase the macro-porosity of
the sample.

The perpendicular configuration exhibits also a peak, but at
a lower frequency around 440 Hz, resulting from the excita-
tion of the first bending resonance of the lamella [22]. Based
on a simple cantilever beam model, its first frequency can be
approximated by

fb ≈ 0.56
w1

h2
1

√
E

12 ρ1
. (2)
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3. Numerical models

3.1. Model of the silencer

In order to further interpret experimental results and analyze
absorption mechanisms taking place in the porous material, the
wave propagation in the silencer is computed numerically us-
ing Finite Element Method. Typical FEM meshes used in our
calculations are illustrated in Fig. 5 showing the poroelastic do-
main Ωp and the air domain Ωa for the three configurations.
The dimensions of the duct and the silencer are the same as the
experimental one.

In the air domain of density ρ0 and sound speed c0, the
acoustic pressure p obeys the Helmholtz equation

∆p + k2
0 p = 0, (3)

where k0 = ω/c0 is the wavenumber (time dependence e−iωt is
considered here). On the rigid wall, the acoustic normal ve-
locity vanishes. In the porous domain Ωp, the classical mixed
(u, pp) formulation [16, Chap. 13] is used as it allows to reduce
the number of degrees of freedom and permits to ease the treat-
ment of the transmission conditions at the air-porous interface.
The formulation is reminded here:

∇ · σ̂s(u) + ω2ρ u + γ ∇pp = 0, (4a)

∆pp + ω2 ρ22

R
pp − ω

2 ρ22

φ2 γ ∇ · u = 0. (4b)

Here, pp is the pore pressure, φ is porosity of the porous ma-

terial, γ = φ
(
ρ12
ρ22
−

Q
R

)
and ρ = ρ11 −

ρ2
12
ρ22

. Coefficient R is the
effective bulk modulus of the fluid phase and takes into account
the thermal dissipation, Q couples the two phases by volumic
dilatation. The effective density coefficient ρ11 and ρ22, respec-
tively for the solid phase and the fluid phase, and the coupling
density coefficient ρ12 are complex-valued, and their imaginary
part takes into account viscous losses. The first two terms in
(4a) and in (4b) describes respectively the dynamics of the elas-
tic skeleton and equivalent fluid. The last term in both equations
couples the two phases. The in vacuo stress tensor σ̂s is given
by

σ̂s(u) = I
(
Kb −

2
3

N
)
∇ · u + 2Nεs(u). (5)

Here, Kb is the complex dynamic bulk modulus of the frame,
N is the shear modulus and includes the structural damping.
All these coefficients are related to the poroelastic structural pa-
rameters (see Table 1) by the Johnson-Champoux-Allard model
and can be found in Ref. [16, Chap. 6]. At the interface be-
tween the fluid and the porous material, the coupling conditions
impose the continuity of normal displacement, of the pressure
and normal stress (see for instance [16, Chap. 13]). Since the
poroelastic material is clamped, the skeleton and the normal
fluid displacements vanish on the duct wall. Radiation condi-
tions at both ends of the duct and the incident pressure field
have been implemented using the Dirichlet-to-Neumann (DtN)
map [34] using the expansion of the pressure in terms of duct
acoustic modes (see Appendix A). Duct modes are also used

Air domain Poroelastic domain

Clamped 

Rigid wall  

(a) Homogeneous

(b) Parallel

(c) Perpendicular

DtN

DtN

Figure 5: Meshes and boundary conditions for the three tested
configurations: homogeneous (a), parallel (b), perpendicular
(c).

to compute the The transmission loss (TL), defined as the ratio
between the transmitted and incident power.

For completeness, the final form for the weak formulation is
reminded in the Appendix B. Note that the pressure, in the air
and in the pore, and solid displacements are discretized using
Lagrange quadratic finite elements. In all cases, the mesh size
was chosen to ensure a good trade-off between accuracy and
computational time.

3.2. Periodic model
Here we shall use the periodic structure of the silencer and

consider a single periodic cell. The two configurations, parallel
and perpendicular, are depicted in Fig. 6. A typical cell of di-
mensions w, d and h is periodic in the x and z directions whereas
rigid wall conditions are imposed at y = 0, h and, by invoking
symmetry reasons, we take h=5 cm which corresponds to the
half-width of the rectangular duct. The dimension d is arbitrary
here and we take d = 6 cm. Dimensions of the porous mate-
rial are w1 × h1 × d (recall that experimental values are w1=1.5
cm and h1=2.5 cm). The periodic model not only allows to di-
minish drastically the computational burden but also provides a
new insight into the absorbing properties of the silencer with a
view to optimisation, this will be exploited in Section 4.

The starting point stems from the Bloch theorem that states
that all fluctuations, i.e. pressure and solid displacement, call it
X, can be written as [35]

X(x) = X̂(x)eikB·x, for x =
[
x, y, z

]t , (6)

where X̂ is a periodic function with X̂(x + d)=X̂(x) where d =

[w, 0, d]t and kB is the Bloch wavevector which can also be ex-
pressed as kB = kBκ with unit vector κ = [κx, κy, κz]t and the
norm kB = ‖kB‖. Thus, Bloch waves are d-periodic functions
modulated by plane waves involving the Bloch wavevector. The
real part of kB is the phase change across the cell, and more im-
portant, the imaginary part is related to the wave attenuation.
Each configuration, i.e. parallel and perpendicular, is easily ob-
tained by simply setting κ = [0 , 0, 1]t or κ = [1 , 0, 0]t, respec-
tively.
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(b)  Perpendicular(a)  Parallel

 Lamella strip

Air domain 

Figure 6: Periodic cell model; (a): perpendicular case; (b): par-
allel case

To solve the periodic problem with the FEM, the sytem of
equations need to be rewritten for the periodic field X̂. This
can be done in a systematic way, from the original equations
Eq. (3) and Eq. (4). For instance, in the air domain Ωa, using
the expansion (6) yields the new wave equation

∆p̂ + 2ikBκ · ∇ p̂ +
(
k2

B − k2
0

)
p̂ = 0. (7)

The wave equation in the poroelastic domain can be derived
and a similar manner. The associated weak formulation is pre-
sented in Appendix B. Finally, the problem takes the form of a
quadratic eigenvalue problem with eigenvalue kB,

[K0(ω) + kBK1(ω) + k2
BK2(ω)]X̂ = 0, (8)

where X̂ contains the FEM unknowns and Ki (i = 0, 1, 2)
are FEM matrices detailed in Appendix B. The computation
of Eq. (8) is performed after transformation into a generalized
eigenvalue problem and the latter is solved using standard sparse
solver libraries. The TL of the silencer is estimated, by assum-
ing that (i) the lowest attenuated Bloch wave should provide a
fair description of the wave field (both in the air and poroelastic
domains) as it propagates in the silencer and (ii) the reflected
waves at the entrance of the silencer can be neglected, and thus

TL ≈ 8.68 Im(k0
B)L, (9)

where k0
B corresponds to the eigenvalue of Eq. (8) with smallest

imaginary part and L = 0.4 m is the length of the silencer.

3.3. Comparison with experimental results

The TL of the three configurations are compared in Fig. 7
showing satisfactory agreement between numerical, here us-
ing the full FEM model, and experimental results. A conve-
nient way to determine more precisely the influence of the solid
frame is to investigate the relative contribution of the differ-
ent dissipation mechanisms involved in the sound attenuation.
Three mechanisms are considered: viscous, thermal and struc-
tural [36, 37]. Viscous loss is due to the viscosity of the air
and the relative movement air-skeleton in the porous material.
Thermal dissipation is due to the heat exchange between the air
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Figure 7: Comparison of experimental (black dashed line) and
numerical (black solid line) results for the three configurations:
(a): homogeneous, (b): parallel and (c): perpendicular
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Figure 8: Displacement fields (color and motion) in the poroe-
lastic material: (a) parallel configuration at shear resonance
around 900 Hz; (b) perpendicular configuration at bending res-
onance around 450 Hz. Normalized color scale.

and the skeleton. Structural dissipation is due to the viscoelas-
ticity of the skeleton and its strain energy. Results are presented
for the three configurations in Fig. 9. Generally through the
whole range of frequency, the viscous dissipation is dominating
and has similar trend. Thermal dissipation is the second impor-
tant attenuation mechanism. Structural dissipation is generally
smaller except close to the frame resonances, around 900 Hz
for the parallel and homogeneous configurations where the first
shear resonance occurs. For the perpendicular configuration,
the structural dissipation reaches its maximum around 450 Hz
which corresponds to the first bending mode of the lamellas and
is more pronounced. Thermal dissipation is found to increase
steadily with frequency and is less affected by the frame reso-
nance.

Clearly, the additional enhancement in sound attenuation
due to the frame resonance, which can not exist with rigid frame
porous materials, offers an interesting alternative for low fre-
quency noise control. The resonance frequency of the first bend-
ing mode of the poroelastic lamella is simply determined by its
dimensions, Young’s modulus and density, thus allowing to de-
sign tailored solutions as shown in Ref. [22]. To have a better
understanding of the physical mechanisms taking place, it is
instructive to illustrate the horizontal displacement field of the
skeleton, see Fig. 8, when the skeleton of the silencer resonates.
For the parallel configuration, one sees the shear motion along
one lamella, and for the perpendicular configuration, the bend-
ing motion of each lamella. The color allows to see the phase
shift and the wavelength close to the acoustic wavelength that
is 38 cm at 900 Hz and 75 cm at 450 Hz.

Finally, using the periodic model, Bloch waves attenuations
calculated from Eq. (9) are also shown in Fig. 7. Comparisons
with the full model show very good agreements and the skeleton
resonances are well captured. Small discrepancies stem mainly
from the reflected waves at the entrance of the silencer which
are not taken into account in the simplified model. In addition,
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Figure 9: Contribution of viscous (blue dashed line), thermal
(black dash-dotted line) and structural dissipation (red dashed
line) for the three configurations: (a) homogeneous layer, (b)
parallel and (c) perpendicular.
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the reduced periodic FEM model allows thinner mesh that bet-
ter capture the skeleton motion.

4. Parametric study

In this section, we shall benefit from the last observations
and analyze the efficiency of the silencer with the periodic model,
thus avoiding the computational burden of the full model. Our
aim is to conduct a parametric study and show the influence of
some parameters, geometrical and physical which can be gath-
ered in two groups. First, we study parameters related to the
bending resonance, that is the Young’s modulus, the lamella’s
width and the structural damping. Then, we study the influ-
ence of air-skeleton coupling parameters, characterized by the
air gap width and the air flow resistivity.

4.1. Bending resonance related parameters
Young modulus

Fig. 10 shows the effect of Young’s modulus on the attenu-
ation for both parallel (a) and perpendicular configurations (b).
The nominal value is E = 120 kPa. Resonance peaks, which
can be anticipated using the approximation Eq. (1) and (2) for
parallel and perpendicular configurations respectively, is pro-
portional to the square root of the Young’s modulus E as can
be observed. The loss factor is constant in the analysis so the
attenuation also increases with E near the resonance.

Width of lamella
The width of lamella w1 (see Fig. 6) is modified from 6 mm

to its nominal value 15 mm, keeping the air-gap w−w1 constant.
The results are shown in Fig. 11. For the parallel configuration
(Fig. 11a), the location of the peak is not affected as expected
from the theoretical estimate Eq. (1). However, the attenua-
tion increases with w1 since the filling fraction of the porous
liner increases and tends to behave like the homogeneous con-
figuration. For the perpendicular configuration (see Fig. 11b),
the frequency of the peak increases almost linearly with w1, ac-
cording to Eq. (2). This means that it is possible to match a
specific frequency by merely choosing the width of the lamella.
Of course reducing the width has a negative impact on the at-
tenuation but this can be partly limited by reducing the width of
air gap as shown later.

Loss factor
The effect of the loss factor is shown in Fig. 12. Reduc-

ing the loss factor tends to produce a higher peak of attenuation
followed by a more pronounced dip, and this is observed for
both configurations. A too large loss factor will reduce the mo-
tion of the lamella at the resonance and therefore diminishes the
associated additional dissipation.

4.2. Air-skeleton coupling related parameters
The effective coupling bewteen the air and the porous frame

plays an important role in the sound attenuation of the lamella
network. The effect of air gap width and air flow resistivity,
which is the most influential coupling parameter in the low fre-
quency range as it is related to viscous dissipation, are now in-
vestigated.
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Figure 10: Comparison of TL performance for lamella network
with different modulus from 30 000 to 240 000 Pa. For parallel
(a) and perpendicular (b) configurations.

Air gap width
We study the effect of the air gap w − w1 ranging from 1

mm to 10 mm, keeping the lamella width constant w1 = 15
mm. Reducing the air gap increases the volume of sound ab-
sorbing material. This can be observed in Fig. 13 in both con-
figurations. Note that the air gap width has a stronger impact at
the resonance for the parallel configuration, showing a variation
of 8 dB whereas effects on the perpendicular configuration are
more moderate. This can be explained by the different coupling
mechanism between the movement of air and the porous frame
also to the fact that the bending resonance occurs at a lower
frequency.

Airflow resistivity
The airflow resistivity is known to be the most important pa-

rameter governing the acoustic dissipation in the low frequency
range [16]. In the specific case of a silencer made up of a num-
ber of parallel splitters, there exists an optimal value for the re-
sistivity as explained in [3] for splitters silencer. In the present
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Figure 11: Attenuation for different lamella width w1 =[6 mm,
9 mm, 12 mm, 15 mm]. parallel (a); perpendicular (b).

work, the fact is also observed in Fig. 14, showing the attenua-
tion of silencer for different values ranging from 5000 Nm−4s to
a very high value of 320000 Nm−4s. In the parallel configura-
tion, which somewhat bears resemblance with the configuration
considered in [3], the attenuation at the resonance shows strong
variations, up to 20 dB. Here the maximum value, above 25
dB, has been found to be nearly optimal. For the perpendicu-
lar configuration, the attenuation at the first bending resonance
increases with σ from 7 dB to 22 dB. In this configuration, the
optimal value at the peak can reach a higher value to the detri-
ment of a poorer attenuation over a larger frequency spectrum.

4.3. Towards an optimized configuration
The parametric study made earlier permits a physical in-

terpretation of the different mechanisms related to the acoustic
attenuation. It is also instructive to address the problem from
a mathematical point of view by observing that the quadratic
eigenvalue problem of Eq. (8) is non-Hermitian due the dissi-
pative nature of the media. In the context of guiding waves, it
has been observed in many instances that optimal modal atten-
uation occurs when two eigenvalues, here the Bloch wavenum-
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Figure 12: Attenuation of lamella network under different loss
factors (LF) [0.01, 0.10, 0.20]. (a): parallel; (b): perpendicular.

ber, are nearly coalescing. The interested reader is referred to
the seminal paper of Tester [23] for locally reacting materials
and [25, 26] for rigid frame porous material and metamaterial
having periodic structures. In the context of structural dynam-
ics, this phenomenon is also known as veering and linked to
the existence of exceptional points [38] which leads to strong
attenuation [39, 40] due to the absence of beating phenomenon
between both modes.

This is well illustrated for the perpendicular configuration in
Fig. 15 where the evolution of the first four eigenvalues with re-
spect to frequency are shown. It can be observed that maximal
attenuation arises when the two least attenuated modes have
wavenumbers which are getting closer in the complex plane.
This happens around 400 Hz and also, to a least extent, around
1500 Hz. One can also observe that 2 modes are nearly coa-
lescing around 1100 Hz but with no effect on the TL since it
does not affect the least attenuated mode. These situations cor-
respond to strong modal interactions which are very sensitive to
various parameters, geometrical and physical, especially those
driving the coupling between the elastic frame and the fluid (see
sec. 4.2) or influencing the frame resonances frequency (see
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Figure 13: Attenuation of lamella network for different airgap
width [1 mm, 4 mm, 7 mm, 10 mm]. (a): parallel; (b): perpen-
dicular.

sec.4.1). Finding optimized configurations could be achieved
via parametric studies, as illustrated in this work, or by using
optimization methods based on Exceptional point (EP) location
as proposed in [26, 41].

5. Conclusion

The sound attenuation of a silencer consisting of a lamella
network made with melamine foam inserted in rectangular duct
is investigated numerically and experimentally. Two arrange-
ments, parallel and perpendicular to the duct axis, are consid-
ered in the study. Results indicate that the perpendicular con-
figuration yields strong low frequency sound attenuation peaks
due to the excitation of bending modes whereas, in the par-
allel configuration, attenuation peaks are found to result from
shear waves resonances across the width of the lamella. Though
acoustic attenuation is mainly due to viscous dissipation as ex-
pected, the relative contribution from structural dissipation plays
a noticeable role near the resonance.
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Figure 14: Comparison of TL performance of lamella network
under different resistivity from 5 000 to 320 000 Nm−4s. (a):
parallel; (b): perpendicular.

The periodic structure of the silencer is exploited in order
to devise a simplified numerical model which not only allows
to diminish drastically the computational burden but also al-
lows a more detailed analysis of the nature of the waves which
propagate in the silencer. Because reflected waves at the en-
trance of the silencer can be neglected, this periodic model has
been shown to be a reliable predictive tool showing good agree-
ment with the full model and experimental results. A paramet-
ric study has been conducted in order to identify the effect of
different geometrical parameters, i.e. dimensions of the lamella
and air gap, as well as physical parameters, i.e. resistivity, elas-
tic modulus of the porous foam and the loss factor, on the sound
attenuation in the silencer. It is shown that resonance frequen-
cies associated with peaks of attenuation, given by approximate
formulas (Eq. (1) and (2) ), are proportional to the square root
of the Young’s modulus, and width of the lamella for the per-
pendicular configuration.

The interest for this new type of silencer concept relies mainly
on the fact it can designed using relatively simple manufactur-
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Figure 15: Bloch wavenumber on perpendicular case when σ =

320000 Nm−4s

ing processes without any other kind of inclusions. It is highly
tunable and permits lower frequency attenuation, thanks to sub-
wavelength resonances, whilst keeping its absorbing efficiency
in the medium frequency range. It is thought that the concept
could be investigated further by mixing several lamellas width
or length in order to extend its efficiency in the low frequency
regime.
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A. Rigid duct modes

In the rigid duct, modal expansion is used in the DtN and
to compute the TL. For instance, the transmitted pressure field
reads

p =

∞∑
m=0

∞∑
n=0

At
mnφmn(x, y)eikz,mnz, (A.1)

where At
mn, represents the amplitude of the mode (m, n). The

upstream pressure is a combination of the incident and the re-
flected waves. For a rectangular duct, the orthonormal modal
shape is given by

φmn = Λmn cos(kx,mx) cos(ky,ny), (A.2)

with Λmn the modal norm [42], kx,m = mπ/Lx, ky,n = nπ/Ly and

kz,mn =

√
k2

0 − k2
x,m − k2

y,n are the wavenumbers in the x, y and
z directions respectively. Once, the pressure field p is known
from the FEM computation, the amplitude of each transmitted
mode can be recovered using orthogonality relation

At
mn =

∫
Γo

p φmn dΓ. (A.3)

The transmission loss can be obtained from

T L = −10 log10
It

Ii
, (A.4)

where Ii and It are the intensity of the incident and transmitted
sound in duct respectively. The first is known and the later reads

It =

M∑
m

N∑
n=0

kz,mn|At |2mn

2ωρ0
, (A.5)

where the sum is limited to the propagating modes.

B. Weak formulation

In the air domain, applying the standard weighted resid-
ual scheme to the Helmholtz Eq. (3) yields, after integrating
by parts,

−

∫
Ωa

∇p∗ · ∇p dΩ + k2
0

∫
Ωa

p∗p dΩ +

∫
Γa

p∗
∂p
∂n

dΓ = 0, (B.1)

where p∗ stands for the weighting function. In the poroelastic
domain governed by the Biot’s Eqs. (4) expressed with (u, p),
the same approach leads to [16, Chap. 13]∫

Ωp

σ̂s(u) : εs(u∗) dΩ − ω2
∫

Ωp

ρ̃u · u∗ dΩ

+

∫
Ωp

[
φ2

ω2ρ̃22
∇pp · ∇p∗p −

φ2

R̃
pp p∗p

]
dΩ

−

∫
Ωp

(γ̃ + φ′)(∇p∗p · u + ∇pp · u∗) dΩ

−

∫
Ωp

φ′
(
p∗p∇ · u + pp∇ · u∗

)
dΩ

−

∫
Γp

σt n · u∗ dΓ −

∫
Γp

φ (U − u) · n p∗p dΓ = 0 . (B.2)

with φ′ = φ
(
1 +

Q
R

)
.

C. Weak formulation for Bloch waves computation

We propose here a convenient systematic way to obtained
the weak form of periodic part from the standard week formu-
lation of each domain given in (B.1) and (B.2). The basic idea is
to transform each differential operator to account for the Bloch
decomposition given in Eq. (6). This approach can be managed
automatically by picking all the combinations once the oper-
ator involving the pressure p or pp and frame displacement u

10



are expressed with the periodic fields p̂, p̂p and û. The ad-
vantage of this approach is to keep boundary terms unchanged
which is convenient to applied standard boundary conditions
like rigid wall. For instance gradient, divergence and vector
gradient yield

∇p =
[
∇p̂ + i p̂kBκ

]
eikBκ·x, (C.1)

∇ · u = [∇ · û + ikBκ · û] eikBκ·x, (C.2)

∇û =
[
∇u + ikBu κt

]
eikBκ·x. (C.3)

The strain tensor, using the Voight formalism

ε(u) =
[
εxx, εyy, εzz, 2εxy, 2εyz, 2εxz

]t
, (C.4)

now reads

ε(u) = [B0 + kBB1] ûeikBκ·x (C.5)

where B0 and B1

B0 =



∂x 0 0
0 ∂y 0
0 0 ∂z

∂y ∂x 0
0 ∂z ∂y

∂z 0 ∂x


and B1 = i



κx 0 0
0 κy 0
0 0 κz

κy κx 0
0 κz κy

κz 0 κx


(C.6)

In the air domain Ωa, this yields for volumic terms

a0(p̂∗, p̂) + kBa1( p̂∗, p̂) + k2
Ba2( p̂∗, p̂) = 0, (C.7)

with the operators

a0(p̂∗, p̂) = −

∫
Ωa

∇ p̂∗ · ∇ p̂ dΩ + k2
a

∫
Ωa

p̂∗ p̂ dΩ,

a1(p̂∗, p̂) = i
∫

Ωa

(
− ∇ p̂∗ · (κ p̂) + (κ p̂∗) · ∇ p̂

)
dΩ,

a2( p̂∗, p̂) = −

∫
Ωa

p̂∗ p̂ dΩ.

In the poroelastic domain Ωp, this yields for volumic terms

b0( p̂∗p, û
∗, p̂p, û) + kBb1( p̂∗p, û

∗, p̂p, û)

+ k2
Bb2( p̂∗p, û

∗, p̂p, û) = 0, (C.8)

with the operators

b0( p̂∗p, û
∗, p̂p, û) =

∫
Ωp

û∗t
(
Bt

0DB0

)
ûdΩ −

∫
Ωp

ρ̃ω2û∗ · ûdΩ

+

∫
Ωp

(
φ2

ω2ρ22

)
∇p̂∗p · ∇ p̂pdΩ −

∫
Ωp

φ2

R
p̂∗p p̂pdΩ

−

∫
Ωp

(
γ + φ′

) (
∇p̂∗p · û + û∗ · ∇ p̂p

)
dΩ

−

∫
Ωp

φ′
(
p̂∗p∇ · û + ∇ · û∗ p̂p

)
dΩ,

b1( p̂∗p, û
∗, p̂p, û) =

∫
Ωp

û∗t
(
Bt

0DB1 − Bt
1DB0

)
ûdΩ (C.9)

+

∫
Ωp

φ2

ω2ρ22

(
∇p̂∗p · κi p̂p − p̂∗piκ · ∇ p̂p

)
dΩ

−
(
γ + φ′

) ∫
Ωp

−p̂∗piκ · û + û∗ · κi p̂pdΩ

− φ′
∫

Ωp

p̂∗piκ · û − û∗ · κip̂pdΩ,

b2( p̂∗p, û
∗, p̂p, û) = −

∫
Ωp

û∗tBt
1DB1ûdΩ

+

∫
Ωp

(
φ2

ω2ρ22

)
p̂∗p(κ · κ) p̂pdΩ.

Once the boundary conditions are applied, the discrete opera-
tor (C.8) and (C.9) are assembled and coupled with the condi-
tion given in sec. 3, the quadratic eigenvalue problem of whole
model (8) can be found.
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