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Time dependent fracture of soft materials: linear
versus nonlinear viscoelasticity

Jingyi Guo,a Alan T. Zehnder,a Costantino Creton b and Chung-Yuen Hui *ac

Toughness of soft materials such as elastomers and gels depends on their ability to dissipate energy

and to reduce stress concentration at the crack tip. The primary energy dissipation mechanism is

viscoelasticity. Most analyses and models of fracture are based on linear viscoelastic theory (LVT) where

strains are assumed to be small and the relaxation mechanisms are independent of stress or strain

history. A well-known paradox is that the size of the dissipative zone predicted by LVT is unrealistically

small. Here we use a physically based nonlinear viscoelastic model to illustrate why the linear theory

breaks down. Using this nonlinear model and analogs of crack problems, we give a plausible resolution

to this paradox. In our model, viscoelasticity arises from the breaking and healing of physical cross-links

in the polymer network. When the deformation is small, the kinetics of bond breaking and healing are

independent of the strain/stress history and the model reduces to the standard linear theory. For large

deformations, localized bond breaking damages the material near the crack tip, reducing stress

concentration and dissipating energy at the same time. The damage zone size is a new length scale

which depends on the strain required to accelerate bond breaking kinetics. These effects are illustrated

by considering two cases with stress concentrations: the evolution of spherical damage in a viscoelastic

body subjected to internal pressure, and a zero degree peel test.

1. Introduction

Toughness of materials is due to energy dissipation and stress
relaxation mechanisms at the crack tip. The toughening
mechanisms of stiff materials such as metals are based on
plastic deformation. Plastic flow is due to generation and
motion of dislocations. It is an irreversible process that occurs
when the stress exceeds the yield strength. Some elastic solids
such as glass and ceramics have a limited ability to deform
plastically and are brittle due to the high elastic stresses at the
crack tip (in linear elastic solids, the stress has an inverse
square root singularity as the crack tip is approached). In
metals, yielding occurs in a region surrounding the crack tip,
shielding the crack from the high elastic stress field.

The dissipative mechanism commonly associated with
soft materials such as rubbers and self-healing hydrogels is
viscoelasticity.1,2 Unlike metals, rubbers and gels consist of large
flexible macromolecules interacting with their neighboring
molecules by weak bonds. A typical flexible polymer chain in

these materials is coiled and highly entangled with other
polymer chains and pervades a volume of space much greater
than atomic dimensions. As a result, chains are subjected to
long and short range forces. It is therefore not surprising
that when subjected to stress, the dynamics of chain conforma-
tion covers a wide range of time scales – the physical basis
of viscoelasticity. Compared with metals, soft materials can
sustain much larger strains before failure, sometimes in excess
of 1000 percent. Nevertheless, in cross-linked networks, defor-
mation is usually reversible: given enough time, the material
recovers its shape after unloading to zero stress due to entropic
elasticity, i.e. the coiled conformation of the molecule is
energetically more favorable than any stretched conformation.

The viscoelastic model commonly used in mechanics is
based on the Boltzmann superposition principle where the
stress is a linear functional of the strain history. For example,
in simple shear, the shear stress t(t) at time t is related to the
shear strain history g(t0), t0 A (�N,t) by

t tð Þ ¼
ðt
�1

m t� t 0ð Þdg
dt 0

dt 0 (1)

where m(t) is the shear relaxation function. The key feature
of a linear viscoelastic solid is that the relaxation function is
independent of stress and strain history and depends only on
time. In engineering applications, the relaxation function is
represented by a Prony series with a finite number of terms,
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each term being associated with a particular relaxation time.
A simple way to define a nonlinear viscoelastic material is that
all or some of its relaxation times depend on the history of
stress and strain. Here we emphasize that it is possible to
include large strain kinematics in a linear viscoelastic consti-
tutive model. For this case, eqn (1) is no longer linear – the
nonlinearity comes entirely from large strain kinematics. For
example, the stress and strain history of a poly(vinylalcohol)
(PVA) dual crosslinked hydrogel in uniaxial tension subjected
to large stretches can be accurately predicted using a ‘‘linear’’
viscoelastic model of the form:3,4

s ¼
ðt
�1

m t� t 0ð Þ d
dt 0

l t 0ð Þ
l2 tð Þ �

l tð Þ
l2 t 0ð Þ

� �
dt 0 (2)

where s is the nominal stress, l is the stretch ratio and m is the
shear relaxation function in eqn (1). Note that eqn (2) is a
nonlinear equation: the stress is not proportional to the stretch
ratio. For small strains where l E 1, eqn (2) reduces to eqn (1).
While models of this type are often called nonlinear visco-
elastic, they will be considered as linear viscoelastic in this work,
since the relaxation function is independent of stress and strain
history. In other words, we separate nonlinearity due to the physics
of relaxation from nonlinearity caused by large strain kinematics.

Linear viscoelastic fracture (LVF) has been extensively
studied starting from the seminal works of Knauss5 and
Schapery6 in the seventies. More recent contributions include
works by de Gennes, Hui, Persson and Nguyen.7–10 More refer-
ences can be found in a recent review by Knauss.11 There are two
well-known paradoxes associated with LVF. For a growing crack,
the extended correspondence principle of Graham12 showed that
the stress field at the crack tip has the same square root
singularity as the elastic crack problem. This result implies that
there is a local energy release rate at the moving crack tip.
However, the absence of a length scale in the linear viscoelastic
model results in a local energy release rate that is independent
of crack speed – a paradox. An excellent summary of this
paradox can be found in Rice.13 Readers interested in history
are encouraged to read the spirited discussions of McCartney
and Christiansen.14,15 This paradox was resolved by Knauss5 and
Schapery6 who used a cohesive zone model (CZM) to remove the
stress singularity. The CZM also introduces a length scale which
can be identified as the size of the dissipative zone. The CZM,
however, creates a different paradox as noted by the works of
Mueller16 and Gent.2 For example, Gent and Lai2 interpreted
their peel test data of rubber using Knauss’s theory and
using the linear viscoelastic properties of their material to find
that the size of the dissipation zone was only on the order of
angstroms. Finite element simulations of a peel test using a linear
viscoelastic model with large strain kinematics by Rahulkumar
et al.17 also support this conclusion. More evidence of the very
small size of the cohesive zone is summarized in a recent review
by Knauss.11 Thus, this implies rather unphysically that a huge
amount of energy is dissipated in a very small volume. Gent2

suggested intermittent crack growth as a plausible explanation for
this paradox. Knauss18 suggested nonlinear viscoelasticity caused
by dilation induced softening of the material near the crack tip.

Indeed, the strains/stresses near the crack tip are so large that it is
unlikely that the material near the crack tip can be adequately
described by linear viscoelasticity. As we shall demonstrate below,
nonlinear viscoelasticity introduces a length scale at the crack tip
which can be related to the size of the dissipative zone.

As noted by Knauss,11 most studies on nonlinear visco-
elasticity constitutive models are one dimensional in character
and cannot be used to study the complex multi-axial stress state
near the crack tip. Also, there are very few attempts to study
fracture in soft materials where large deformation is coupled with
nonlinear viscoelasticity. Indeed, linear viscoelasticity works well
only when the strains are small. In soft solids, the nominal strains
can easily exceed several hundred percent in a simple tension test,
hence linear theory is not expected to work near the crack tip.

Our way of highlighting the different physics associated with
linear and nonlinear viscoelasticity is to consider a polymer
network connected by chemical and physical cross-links.19 In
the past decade, gels made of this type of network have been
widely studied for their useful properties such as high tough-
ness and self-healing capability.19–23 The chemical cross-links
in these networks are covalent bonds, and their failure is rate
insensitive: they fail if they are stretched beyond a certain limit.
The physical cross-links are weaker bonds with a distribution in
strength. They can break and reattach or heal. For this type of
network, viscoelasticity is associated with the bond breaking
and healing kinetics. Linear viscoelasticity results when the
bond breaking and healing kinetics are independent of the
stretch on the chains and the breaking and healing process has
achieved dynamic equilibrium. For this case there is a one to
one correspondence between the relaxation function and
the stress/strain independent breaking kinetics19 (see also
Section 4.1). An example of a linear viscoelastic gel is the
polyvinyl-alcohol (PVA) dual crosslinked gel with PVA chemi-
cally crosslinked by glutaraldehyde and physically crosslinked
by Borax ions.19,24 Experiments have demonstrated that the
(probably complex) bond breaking kinetics of this gel is insen-
sitive to the stress acting on the physical cross-links. Here we
note that the use of a transient network to model viscoelasticity
in solids has been known for a long time, starting with the
seminal work of Green and Tobolsky.25 Since then, many
researchers have used transient networks to model the time
dependent behavior of rubbers and gels.26,27 How the dynamics of
physical bonds controls the linear viscoelastic behavior of poly-
meric fluids has also been very well studied both theoretically28–30

and experimentally.31,32

However, molecular physics tells us that bond breaking and
healing kinetics should be sensitive to stress/strain. Indeed,
linear viscoelasticity is counter-intuitive for this case since
Eyring’s theory states that bonds dissociate faster when they are
stretched.33 It is therefore not surprising that linear viscoelastic
theory typically works well in the regime of small strains
where the effect of stress on bond breaking can be neglected.
However, if the dynamics of bond breaking and healing are
sensitive to stress/strain especially when deformation is large,
then it is reasonable to expect the material behavior near the
crack tip cannot be adequately described by linear viscoelasticity.
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Of course, there are physical mechanisms other than breaking
of physical cross-links that can lead to nonlinear viscoelasticity;
indeed, our analysis does not rely on this physical assumption.
This assumption merely lends a physical picture on how non-
linear viscoelasticity differs from the linear theory.

The plan of this paper is as follows. Section 2 summarizes
some aspects of LVF theory relevant to this work. In Sections 3
and 4 we contrast linear and nonlinear viscoelasticity using a
physically based model of chain breaking and healing kinetics.
We highlight the differences between these two models by
showing that nonlinear viscoelasticity can lead to local damage
or softening, and that such damage shields the crack tip from
the high elastic stress field. The size of the damage zone is a
new length scale. In Section 4 we introduce a special nonlinear
viscoelasticity model and use it to study two problems
with stress concentrations: the inflation of a spherical cavity
subjected to internal pressure, and a zero degree peel test. We
compare the solutions of these two problems based on non-
linear and linear theory. Here we emphasize that our goal is not
to study the physics of cavitation and adhesion – work on these
topics can be found in ref. 34 and 35 and the references within.
Our goal is to use these as examples of stress concentrations to
contrast nonlinear and linear viscoelastic behaviors. Discussion
and summary are given in Section 5.

2. Brief review of linear viscoelastic
fracture (LVF) theory

We indicate certain peculiarities of LVT theory using examples.
Since many soft materials are close to being incompressible,
we simplify the mathematics by assuming that the material
is incompressible so that its mechanical behavior can be
described by a single shear relaxation function. A key feature
of linear viscoelasticity is the correspondence principle which
allows one to convert static viscoelastic solutions to elastic
solutions.36 A simple example is a stationary traction free plane
stress or plane strain crack in a linear viscoelastic body sub-
jected to traction boundary conditions. For this case, the
stresses in the viscoelastic body are exactly the same as the
stresses in an elastic body with identical geometry and sub-
jected to the same traction, in particular, they are independent
of the elastic modulus. For example, consider a finite plane
stress/plane strain crack of length 2a in an infinite linear
viscoelastic solid. The body is initially stress free; at time
t = 0+ a constant tension s22(x1,x2 = �N, t 4 0) = sN is imposed
at infinity. The correspondence principle states that the stress
remains independent of time for t 4 0 and is given by the elastic
solution. With respect to a polar coordinate system (r,y) with
origin at the crack tip, the in-plane crack tip stresses are given by

sab r! 0; yð Þ ¼ KIffiffiffiffiffiffiffi
2pr
p ŝab yð Þ a; b ¼ 1; 2 (3)

where KI ¼ s1
ffiffiffiffiffiffi
pa
p

is the Mode I stress intensity factor
and ŝab(y) are universal functions that describe the angular
variation of the stress components.37 Thus, in problems where

traction is prescribed, viscoelastic flow does not shield the crack
tip from the high stress of the elastic solution. Further, the
strains will increase with time according to the creep function.
As a result, viscoelasticity increases the strain and does nothing
to alleviate the stress field near the crack tip. This in turn should
not protect chemical bonds at the crack tip from failure.

3. Nonlinear viscoelasticity

We construct a nonlinear viscoelastic solid by removing the
assumption that the physical cross-links can support arbitrarily
large stresses/strains without increasing their breaking rate.
In this nonlinear theory, the breaking kinetics depend on the
stretch of the chains between physical cross-links. Before we
dive into the details, let’s examine the consequence of this new
theory. Let us suppose that the rate of breaking of physical
bonds increases rapidly when a chain between two physical
cross-links is stretched beyond a critical level. This means that
near the crack tip, practically all the physical cross-links are not
carrying load. Thus the material near the crack tip relaxes much
faster than the material away from the crack tip. For concrete-
ness, let’s compare two identical crack geometries A and B.
Both A and B are subjected to identical traction boundary
conditions, for example, a finite crack in an infinite plate
subjected to a constant remote tension sN for time t 4 0+.
The material occupying A is linear viscoelastic and the material
occupying B is nonlinear viscoelastic. We assume both materi-
als have the same long and short time shear moduli. Before
load is applied, t o 0, the physical cross-links in A and B are in
dynamic equilibrium and the short time modulus m0 is deter-
mined by the number of load bearing chemical and physical
cross-links. The long time modulus, mN, is by definition, the
modulus when all the physical cross-links are broken. In A,
the stresses near the crack tip are given by eqn (3), with
KIA ¼ s1

ffiffiffiffiffiffi
pa
p

, independent of material properties. However,
in B, there is a region O surrounding the crack tip where
relaxation occurs much faster – now material behavior is
spatially inhomogeneous. The consequence of this stress
induced softening can be studied using the simple model
illustrated in Fig. 1. Here we assume O is a circle of radius R
centered at the crack tip. Further, we assume that breaking of
the physical cross-links occurs so fast that the material inside O
behaves like an elastic solid whose elasticity is controlled by the
chemical crosslinks, with the relaxed or plateau modulus mN.
Outside O the material has a shear modulus m c mN. Since the
material inside O is linear elastic, the stress field near the crack
tip in B still has the same form given by eqn (3), but the stress
intensity factor KIB is expected to be much smaller than KIA

(note KIB - 0 as mN - 0 (a hole)) since most of the load is shed
to the stiffer region outside O: the material near the crack tip is
shielded from the high stress field of specimen A.

To understand this shielding effect more quantitatively con-
sider a simple problem, that of a semi-infinite Mode III crack in an
infinite block of an elastic solid, as sketched in Fig. 2. The damage
zone (where most of the physical cross-links are broken) is denoted
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by O. Inside O, the material is linear elastic with a lower shear
modulus mN. The material outside the inclusion has shear mod-
ulus m c mN. The boundary condition in the far field is

srz r!1;yð Þ ¼ KIIIffiffiffiffiffiffiffi
2pr
p sin y=2ð Þ (4)

This elasticity problem was solved by Steif,38 the stress
intensity factor Kin

III inside the soft inclusion is reduced by a

factor of
2m1
mþm1

� 1, i.e.,

K in
III ¼

2m1
mþm1

KIII (5)

The external applied energy release rate Gext is

Gext ¼
KIII

2

2m
(6a)

whereas the local energy release rate Glocal is

Glocal ¼
K in

III

� �2
2m1

¼ 2m1
mþm1

� �2KIII
2

2m1
(6b)

The ratio of the energy release rates is obtained by combin-
ing (6a) and (6b),

Glocal

Gext
¼ 2m1

mþ m1

� �
2m

mþ m1
� 4m1

mþ m1
(6c)

Thus, the local energy release rate is also reduced; indeed, by
almost twice the factor of reduction of the local stress intensity
factor. This reduction in energy release rate is due to the fact
that energy is dissipated by the rapid breaking of physical cross-
links due to the transition from m - mN in O. Note that an
analysis for a Mode I crack was also carried out by Steif,38

yielding similar results. We use the Mode III crack as an
example since the analytical expressions have simpler forms.
In addition, our focus is on explaining the fundamental physics
that distinguishes linear and nonlinear viscoelasticity in stress
concentration problems, so examples and analogies can be
made across different modes of fracture.

Thus, our nonlinear viscoelastic model identifies a length
scale (the size of O) where material damage and rapid stress
relaxation can occur. Note that the correspondence principle
does not hold since the material property is no longer inde-
pendent of stress. Further, if the crack grows, one would expect
that the size of the damage zone as well as the strain and stress
field inside it will depend on the crack speed; hence there is no
need to use a cohesive zone model to introduce a length scale
even though the crack tip stress can still be unbounded. This is
not surprising, the strain fields of growing cracks in elastic–
plastic solids can have a weak singularity inside the plastic
zone.39 The size of this damage region is directly related to the
size of the dissipative zone: at this point we are unable to
determine the size of this zone; to do so we need to use a
nonlinear viscoelastic model, which is discussed below.

The above example is clearly over-simplified since in reality
the transition from stiff to soft or the amount of softening is a
smooth function of position. In particular, O does not need to
be a circle. Furthermore, the material outside of O is not
elastic, since it can also relax with time, though at a slower
rate. In addition, we also assume small strains which is not
usually the case for soft materials. Nevertheless, it supports our
idea that:

1. Nonlinear viscoelasticity shields the crack from the high
stress field predicted by the linear theory, and reduces the local
energy rate available for fracture.

2. Local damage due to rapid bond dissociation gives rise to
a new length scale which can be related to the size of the
dissipation zone.

Fig. 1 A finite plane stress or plane strain crack of length 2a in an infinite
body. Geometries of A and B are identical. A is linear viscoelastic (a) and B is
nonlinear viscoelastic (b). Both A and B have the same long and short time
shear moduli and the same small strain response. There is no damage zone
in (a) in the sense that viscoelastic properties are the same everywhere (the
physical cross-links can reform and bear load). In (b), there is a damage
zone (inside the green circle) where most of the physical bonds are not
bearing load.

Fig. 2 Semi-infinite Mode III crack subjected to a remote applied KIII field.
The damage zone is denoted by O and has shear modulus mN { m, where
m is the shear modulus of the undamaged material outside.
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In the following, we will introduce a specific nonlinear
viscoelasticity model and use it as an example to quantify these
ideas for two problems.

4. Two stress concentration problems:
inflation of a spherical cavity by
internal pressure and the zero degree
peel test

Ideally, we should compare the time dependent large deforma-
tion stress and strain fields near the tip of a crack for linear and
nonlinear models. However, this is a very difficult numerical
problem for the nonlinear model since the entire history of
deformation at every material point needs to be stored and
the memory requirement is exceedingly large. We avoid this
difficulty by considering two well-known stress concentration
problems as analogs: The first is a spherical cavity in an infinite
viscoelastic solid subjected to an internal pressure p 4 0. The
second is a zero degree peel test. Here we note that the
spherical cavity problem has been studied using both nonlinear
elastic40,41 and viscoelastic models.42,43 Our focus here is
not on cavitation phenomena but on highlighting the stress
shielding effect of nonlinear viscoelasticity based on the model
introduced below.

4.1 Nonlinear viscoelastic model

In a series of papers, we have demonstrated that the mechan-
ical behavior of a dual cross-linked PVA hydrogel can be
modeled very well by a linear viscoelastic model provided that
we account for large deformation.3,44,45 Here we extend this
linear model to a nonlinear model by allowing the bond
breaking kinetics to be dependent on the strain history. To
compare the two theories, it is necessary that both linear and
nonlinear model have the same short and long time relaxation
moduli; in addition, the nonlinear model should reduce to the
linear model in the limit of small strains. These conditions are
imposed on the examples in Sections 4.2 and 4.3.

4.1.1 Review of the linear model. First, we briefly summarize
our linear viscoelastic model, details can be found in ref. 3
and 44. Let r denote the molar fraction of chemical crosslinks
and W0 the strain energy per unit volume in the undamaged
network. We assume W0 to be the same for both physical and
chemical network. For simplicity, we assume W0 to be the neo-
Hookean strain energy density function, i.e.,

W0 ¼
mnet
2

I1 � 3ð Þ (7)

where I1 is the trace of right Cauchy-Green tensor and mnet is the
modulus of the network if all the bonds bear load. We assume
the breaking and healing process has achieved dynamic equili-
brium soon after the gel is made. Thus, the healing rate is equal
to the breaking rate and is denoted by the rate constant wN. The
breaking kinetics of physical crosslinks is specified by the
function fB(t0,t) which is defined as the fraction of chains
per unit reference volume which reattaches at t and survives

till t Z t0, where t is the current time. Physically, fB(t0,t) is the
survival probability of physical chains and its value at t = t0 is 1
and at t = N is zero. In the linear theory, fB(t0,t) is independent
of the stretch experienced by the physical chains. For this case,
fB(t0,t) is translational invariant, that is, fB(t0,t) = fB(t � t0).
More importantly, the shear relaxation function m(t) is comple-
tely determined by fB through the simple relation:

dm
dt
¼ �w1mnetfB tð Þ; (8)

where fB(t) = fB(t = 0, t). Eqn (8) states that there is a one-to-one
correspondence between linear viscoelasticity and chain break-
ing kinetics, so one can generate any relaxation function by
specifying the appropriate survivability function. In our linear
viscoelastic model for the PVA gel, the survival probability
function fB(t) is

fB tð Þ ¼ 1þ aB � 1ð Þ t
tB

� � �1
aB�1

(9)

where aB is a material constant satisfying 2 4 aB 4 1 and tB is
the characteristic time of breaking of physical crosslinks. The
shear relaxation function m(t) in this case is obtained using
eqn (8) and (9) and is

m tð Þ ¼ mnetrþ mnetw1
tB

2� aB
fB tð Þ½ �2�aB : (10a)

The instantaneous modulus is

m0 � m t ¼ 0ð Þ ¼ mnetrþ mnetw1
tB

2� aB
: (10b)

The long time modulus is

mN � m(t - N) = mnetr. (10c)

We emphasize that in the linear theory the survival prob-
ability is independent of the stress or strain acting on a chain.
For large deformation, the true stress tensor s is related to the
deformation history by:

r ¼ �qIþ mnetrB
0!t þ mnetw1

ðt
�1

fB t� t 0ð ÞBt 0!tdt 0 (11)

where q is the Lagrange multiplier that enforces incompressibility,
I is the identity tensor, and B = FFT is the left Cauchy-Green
tensor. Here the superscript t0 - t in Bt0-t indicates the deforma-
tion experienced by physical chains reattached at time t0 o t
and survive till t.

4.1.2 A nonlinear model. We now extend the linear model
(11) to a nonlinear model (details are given in the appendix) by
allowing the breaking rate to be strain dependent. Specifically,
the survivability function fB(t0,t) is no longer independent of
the strain history. Instead of eqn (9), it is determined by

fB t 0; tð Þ ¼ 1þ aB � 1

tB

ðt
t 0

1þH t 0; sð Þ � 3

J02

� �m
ds

	 
 �1
aB�1

(12)

where Hðt 0; tÞ � tr Ft 0!t
� �T

Ft 0!t
h i

. Physically, H(t0,t) measures

the square of the effective stretch of chains from the time they
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are born t0 to the current time t. The dimensionless constant J0

can be viewed as a critical strain above which breaking rate
increase rapidly, and m 4 0 is a material constant that
describes the breaking rate’s dependence on the deformation.
In particular, when deformation is small, or equivalently,
Hðt 0; sÞ � 3ð Þ=J02 � 1, eqn (12) reduces to eqn (9). Hence the

nonlinear theory reduces to the linear theory in the limit of
small strains. Clearly, the instantaneous and long time moduli
are the same for both linear and nonlinear model.

A consequence of strain dependent bond breaking is that
dynamic equilibrium cannot be achieved when the material is
under load, so wN in eqn (11) must be replaced by a history
dependent healing rate which satisfies an integral equation. We
denote the healing rate at any time t by w(t), but it is important
to note that w(t) is not only a function of the current time t, but
also depends on the entire loading history. The integral equa-
tion for w(t) is derived in the appendix. In this nonlinear theory,
eqn(11) is replaced by

r ¼ �qIþ mnetrB
0!t þ mnet

ðt
�1

w t 0ð ÞfB t 0; tð ÞBt 0!tdt 0 (13)

Note that when J0 - N (or equivalently, at small strains) in
eqn (12), the bond breaking kinetics is independent of the history
of chain stretch and we recover the linear viscoelastic model
eqn (9)–(11). We emphasize that both the linear and nonlinear
model have the same long time and short time moduli. Further-
more, both models allow for large deformation. Also, they have
identical small strain rheological behaviors (such as loss and

storage moduli) since 1þ Hðt 0; sÞ � 3ð Þ=J02
� �m� 1 in this limit.

We use a constant stretch rate uniaxial tension test to
demonstrate the difference between these two models. Fig. 3
compares the true stresses of this nonlinear viscoelastic model
(determined by eqn (12) and (13)) with the linear viscoelastic
model using the material parameters:

r = 0.03, aB = 1.8, tB/tH = 4, J0 = 0.1, m = 1.7. (14)

where r, aB and tB/tH are the parameters of the linear model
and J0 and m are the additional parameters of the nonlinear
theory. These parameters are chosen to emulate experimental
data by Sun et al.23 on a polyampholyte gel. In uniaxial tension
test, the stress versus strain curves of this gel loaded at different
stretch rates abruptly change slope at a critical strain that is
approximately independent of the strain rate. Sun et al.23 refer
this critical strain as the yield strain. Here we use our nonlinear
model to approximately capture this behavior. In Fig. 3, the two
models are identical when the stretches are small compared
with the effective critical strain J0. For large stretches, the
stress/strain dependent breaking kinetics significantly softens
the material. The nonlinear viscoelastic solid exhibits ‘‘history
dependent yield’’ behavior where there is a rapid change in
slope of the stress-stain curve, consistent with experiment. In
our model this ‘‘yield’’ behavior is associated with the rapid
breaking of physical cross-links when the effective strainffiffiffiffiffiffiffiffiffiffiffiffiffi
H � 3
p

in eqn (12) is close to J0. Note that for different loading
rates yield occurs at strains between 0.05 and 0.1, which is near J0.

In the experiment of Sun et al.,23 the yield strains at different
strain rates are closer than our model. A very rough estimate of
the stress carried by the chains at ‘‘yield’’ is EmnetJ0. Hence we
can identify a characteristic ‘‘yield stress’’ in shear by

sY E mnetJ0. (15)

This is an upper estimate since mnet is the shear modulus
when all the chains are bearing load. As shown in Fig. 3, the
‘‘yield stress’’ is rate dependent since at slower rates, the
physical bonds can break and the effective shear modulus
goes down.

4.2 Inflation of a cavity in a linear viscoelastic/nonlinear
viscoelastic solid

The first case we study is the inflation of a spherical cavity in
an infinite viscoelastic solid subjected to an internal pressure
p 4 0, Fig. 4. The stress free reference configuration is a
traction free cavity with initial undeformed radius is A. In the
following, the deformed radius of the sphere is denoted by a. As
we shall see, this problem bears some similarity to a crack
problem, in the sense that the hoop stress on the surface of the
cavity becomes infinite at some critical pressure.

First, recall that a cavity in an incompressible neo-Hookean
body will become unstable and grow without bound when the
internal pressure p reaches the critical value of pc = 5m0/2, where
m0 is the small strain shear modulus.46,47 In particular, the true
hoop stress goes to infinity at pc = 5m0/2. Let sy denote the true
hoop stress and define a stress concentration factor

k � max(sy/p) (16)

The maximum true hoop stress occurs on the surface of
cavity and is

smax
y ¼ m0 �a2 � 1

2�a4
þ 2

�a
� 5

2

� �
(17a)

Fig. 3 Uniaxial tension test with constant loading rates 1/tB and 1/100tB

for linear and nonlinear viscoelastic models.
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where %a = a/A is the normalized deformed radius and is related
to the applied pressure p by

1

�a4
þ 4

�a
¼ 5� 2p

m0
(17b)

Eqn (17b) implies that, as p - 5m0/2, �a � 2m0
5m0
2
� p

!1 and
by eqn (17a),

smax
y ! m0�a2 � 4m0

3

5m0
2
� p

� �2
!1 (18)

Note that (18) is valid only for large strains. Here it is
interesting to recall that in small strain theory, the stress
concentration factor is exactly 1/2.48 As deformation becomes
large, the stress concentration factor increases rapidly and
approaches infinity when p approaches 5m0/2. This result shows
that large errors can occur using small strain theory in large

deformation problems. The infinitely large tensile hoop stress
near the cavity surface predicted by eqn (18) suggests that small
defects can grow into macroscopic cracks before instability
can occur.

4.2.1 Inflation of cavity in a linear viscoelastic solid. Next,
we replace the neo-Hookean solid by the linear viscoelastic
model described in Section 4.1.1 (the strains can still be
arbitrary large). The geometry is the same as Fig. 4. At time
t = 0+, a sudden pressure p is imposed on the cavity surface. This
pressure is held constant for all t 4 0. In the appendix, we show
that the deformed radius a(t) satisfies the integral equation

m tð Þ 4

�a tð Þ þ
1

�a4 tð Þ

� �
þ
ðt
0

@m t� t 0ð Þ
@t

4�a t 0ð Þ
�a tð Þ þ

�a4 t 0ð Þ
�a4 tð Þ

� �
dt 0 ¼ �2pþ 5m0;

(19)

where %a = a(t)/A is the normalized current radius and m(t) is the
relaxation function given by eqn (10a). The maximum hoop
stress for this case also occurs on the cavity surface and is
related to the history of cavity growth by

smax
y ¼ m tð Þ 2

�a tð Þ �
1

2�a4 tð Þ þ �a2 tð Þ
� �

� 5

2
m0 þ

ðt
0

@m t� t 0ð Þ
@t 0

2�a t 0ð Þ
�a tð Þ �

�a4 t 0ð Þ
2�a4 tð Þ þ

�a2 tð Þ
�a2 t 0ð Þ

� �
dt 0

(20)

Note that if the relaxation function m(t) is a constant, then
eqn (20) reduces to the case of a neo-Hookean solid. The linear
viscoelastic case is easy to understand since the material is
spatially homogeneous – at any instant in time, the material
behaves like a homogenous neo-Hookean solid with shear
modulus m(t) where m0 r m(t) r mN. Since our goal is not to
study instability, the imposed pressure must be smaller
than 5mN/2 if the cavity were to remain stable for all times,
where mN is the long time shear modulus. Fig. 5a and b show
the normalized cavity radius and the stress concentration factor
k versus normalized time %t � t/tB for an imposed pressure of
p = 0.3m0. These results are generated using the material

Fig. 4 Schematic of an infinite body with a spherical hole inside. An
internal pressure of p is applied to the spherical cavity. The cavity has
initial radius A.

Fig. 5 Inflation of cavity in a linear viscoelastic solid: (a) normalized cavity radius and (b) Hoop stress concentration factor as a function of time.
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properties listed in eqn (14) with m0 = 31.8mN or p = 9.54mN.
Since p 4 5mN/2, the cavity will grow without bound at
some finite time. Our choice of parameters is such that the
cavity growth rate starts to increase rapidly around t = 104tB.
At this time, Fig. 5b shows that the stress concentration factor
increases rapidly and eventually becomes unbounded as the
solid relaxes.

4.2.2 Inflation of cavity in a non-linear viscoelastic solid:
shielding due to strain dependent bond breaking. We next
consider the same geometry and loading condition as in the
linear viscoelastic case, except the solid is now nonlinearly
viscoelastic, with behavior given by eqn (13). This case is much
more complex, since there exists a time dependent shell region
near the cavity where the material relaxes much faster (due to
rapid bond breaking near the critical pressure). This ‘‘soft’’
region is surrounded by a ‘‘stiffer’’ material. Therefore, stress
will be shed to this stiff region, causing a reduction in hoop
stress on the cavity surface compared with the linear case.
Unfortunately, there is no closed form solution and the
problem must be solved numerically. Details are given in the
appendix. Fig. 6a–c compare the distribution of hoop stress at
three different normalized times. The simulations are carried
out using the same material parameters (same long time and
short time modulus and small strain behavior) for the linear
and nonlinear models and the numerical values are given in
eqn (14). The pressure in these simulations is p/m0 = 0.3. The
nonlinear viscoelastic solid shows two interesting features: the
hoop stress near the surface of the cavity is much lower than
the corresponding linear viscoelastic solid (recall that they have
the same long and short time relaxation modulus and identical
small strain behavior). Much more surprising is that the hoop
stress of the nonlinear case keeps decreasing with time and
eventually turns compressive (see Fig. 6c). This suggests that
nucleation of defects on the surface of the cavity, if it occurs,
could be suppressed by shielding. It should be noted that cavity
growth is faster for the nonlinear viscoelastic solid (see Fig. 11
in the appendix) because stress shielding requires that the extra
load be shed to a larger region. In other words, nonlinear
viscoelasticity reduces stress concentration by spreading
deformation to a larger region. This is similar to the

toughening mechanism of double-network gels which reduce
stress concentration by developing a damage zone surrounded
by a region of undamaged material.

Eqn (12) and the definition of J0 suggests a way to define the
size of damage zone. We expect that everywhere inside the

damage zone the effective strain
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 R; tð Þ � 3

p
is greater

than the critical effective strain J0. Thus, the radius of the
outer boundary of the damage zone, Rd is defined byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 Rd; tð Þ � 3

p
¼ J0. The size of the damage zone D(t) is defined

as the thickness of this shell which is D � Rd � A. Fig. 7 shows
how this zone evolves with time for different critical effective
strains J0. As time increases and the material creeps, the
cavity expands and overall deformation becomes larger, so
the damage zone also expands. Also, the smaller the critical
effective strain, the faster the physical bonds breaks under the
same stress, and the softer the material, which leads to larger
damage zone sizes. Thus, the damage zone size scales inversely
with J0.

Fig. 6 Distribution of normalized hoop stress syy/m0 at different normalized times t/tB = 0.025, 0.25, 5 of a linear and nonlinear viscoelastic solid. Material
parameters are given in eqn (14), and the constant internal pressure is p/m0 = 0.3 for all t 4 0.

Fig. 7 Time evolution of the normalized damage zone size (A is the initial
cavity radius). The damage zone expands as time increases and the
material creeps. Smaller J0 leads to larger damage zones.
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4.3 Zero degree peel test in a linear viscoelastic/nonlinear
viscoelastic solid

The cavity problem shows that significant stress concentration
and shielding can occur in structures without cracks. In this
section we study crack shielding by considering a simple one
dimensional crack model, the zero degree peel test. This test is
often used by the adhesive industry to study the resistance of
pressure sensitive tapes to shear.49 The geometry is shown in
Fig. 8. A thin adhesive layer of thickness h is sandwiched
between a rigid substrate and a thin stiff backing layer. The
backing layer is linear elastic with plane strain modulus EB and
has thickness hB. The layers are infinite in the x and z direction
and we assume plane strain deformation so fields are indepen-
dent of z, the out of plane coordinate. The peel arm has length L
and occupies �L o x o 0. The adhesive layer is viscoelastic
(linear or nonlinear) and is perfectly bonded to the stiff backing
layer along the interface y = h, �L o x o N. The adhesive is
bonded to the rigid substrate along the interface at y = 0 and
x 4 0. However, along y = 0, �L o x o 0 it is traction free. This
traction free surface can be viewed as the face of an interface
crack between the adhesive and the rigid substrate (see Fig. 8).
The crack tip is at x = y = 0. The tape is pulled horizontally in the
negative x direction in a zero degree peel test.

To simplify the calculations, we determine the stress and
strain in the adhesive layer using a one dimensional shear-lag
model. Details of this model can be found in Hui et al.50 Here
we briefly summarize ideas that are relevant to this work.
In this model, the linear elastic backing layer can only
support in-plane tension, the spatial gradient of this tension
is balanced by the interfacial shear stress t exerted by the
adhesive layer, which is related to the shear strain g of the
adhesive layer by a viscoelastic model. The shear straingis
related to the horizontal displacement of the adhesive/backing
interface u by g = u/h. A limitation of this model is that the
singular field at the crack tip is regularized by the shear-lag
approximation. Nevertheless, there is still a stress concen-
tration at the ‘‘crack’’ tip and we can study how nonlinear
viscoelasticity alters this stress concentration.

We study crack shielding near the crack tip at x = y = 0. In the
following, we normalized all stress quantity by the small strain
shear modulus of the networks, mnet. All distances are normal-

ized by a length parameter llt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB
�hBh=mnet

p
; it represents

the length of adhesive that carries shear and is called the
effective load transfer length. In practice, EB*/mnet E 104–105,
so this length is on the order of hundreds of tape thickness.
Normalized quantities will be topped with a bar.

As shown in Hui,50 the governing equation for the shear
strain in the adhesive layer g is

@2g
@�x2
¼ �t �x; tð Þ �x4 0 (21)

where �t = t/mnet is the normalized shear stress in the adhesive layer
and %x = x/llt is the normalized x coordinate. If the adhesive is linear
viscoelastic, then the shear stress is related to the shear strain by

�t �x; tð Þ ¼ 1

mnet

ðt
0

m t� sð Þ@g �x; sð Þ
@s

ds (22)

where m is given by eqn (10a). In the nonlinear theory, we specialize
eqn (13) for simple shear deformation and find:

�t �x; tð Þ ¼ rg �x; tð Þ þ
ðt
�1

w �x; sð ÞfB s; tð Þ g �x; tð Þ � g �x; sð Þ½ �ds: (23)

The adhesive layer is sheared by imposing a constant dis-
placement rate :uA on the stiff backing layer at x =�L for t Z 0. We
assumed that loading commences at t = 0 so that g(%x,t r 0) = 0.
Using force balance, the displacement boundary condition

g(%x = �L/llt, t 4 0) = :
uAt/h (24a)

can be written as:

EB
�hB

_uAt� u x ¼ 0; tð Þ
L

� �
¼
ð1
0

t xð Þdx

) llt

L
gA � g �x ¼ 0; tð Þ½ � ¼

ð1
0

�t �xð Þd�x

(24b)

where gA = :
uAt/h.

The solution of the linear theory is obtained by numerically
solving eqn (21) with the shear stress on the RHS given by
eqn (22). The initial condition is:

g(%x, %t = 0) = 0 (25)

The boundary conditions are eqn (24a) and the condition that
strain vanishes at infinity. The solution of the nonlinear theory is
obtained by numerically solving eqn (21) and (24b) with the RHS
of eqn (21) given by eqn (23). The parameters used in all the
simulations are given by eqn (14). Fig. 9a–d plots the evolution of
the shear stress and strain at different times for the linear and
nonlinear case. Recall that the linear and nonlinear model have
the same small strain behavior as well as identical long and short
time modulus. For the nonlinear solid, it is clear that there is a
region near the crack tip where the shear stress is lower than the
linear solid. The size of this ‘‘damage’’ zone increases with time.
Time evolution of the maximum shear stress at the crack tip is
shown in Fig. 10a. More importantly, the nonlinear viscoelastic
solid has a much smaller maximum stress as the strain or time
increase. Reduction in stress confirms the shielding effect due to
the rapid breaking of physical cross-links. The stress reduction
factor (�tmax)nonlinear/(�tmax)linear is shown in Fig. 10b.

One way of rationalizing the results in Fig. 9a–d is to use the
concept of ‘‘yield stress’’ introduced earlier. The ‘‘yield stress’’
sY in this simulation is mnetJ0 = 0.1mnet. In Fig. 9a and b, the
maximum shear stress is less than sY, for this case there is

Fig. 8 Schematic of the zero degree peel test. L is the length of the peel
arm, L c h, hB. The air gap between the peel arm and the substrate can be
viewed as an interface crack.
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practically no difference between the linear and nonlinear
model. However, when the maximum shear stress increases
beyond 0.1mnet, the damage zone appears and the cross-over
point between linear and nonlinear theory occurs slightly below
0.1mnet.

5. Summary and discussion

Using a physical model based on bond breaking and healing
kinetics, we present arguments and examples to highlight some
of the pitfalls of employing LVF theory to model fracture.

Fig. 9 Shear stress profile in the zero-degree peel test at different times: t/tB = 0.25, 2.5, 7.5, 15. The applied displacement rate divided by the tape
thickness is

:
uA/h = 1/25tB. The black dash-dotted curves are the stress profiles for the linear case, while the red solid curves are for the nonlinear case. The

blue dashed line indicates the region where the stress of the nonlinear solid is lower than the linear one.

Fig. 10 (a) Maximum shear stress at %x = 0; (b) stress reduction factor (�tmax)nonlinear/(�tmax)linear as a function of normalized time.
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We suggest that many of the paradoxes and difficulties asso-
ciated with LVF can be resolved by allowing the relaxation
times to be dependent on stress/strain histories. For example,
materials under high strains (near the crack tip) relax much
faster, and the stresses carried by these damaged materials are
substantially lower than a material that is linear viscoelastic, and
this results in stress shielding. We illustrate this crack-shielding
effect by surrounding the crack tip by a soft elastic core. To
analyze this crack-shielding effect more quantitatively, we extend
a linear viscoelastic model to a nonlinear one by including
stress-dependent bond breaking kinetics; both models have
the same short and long time behavior, and are identical under
small strains. We use a cavity subjected to internal pressure and
the zero degree peel test to highlight the relevant physics.

At first glance, it seems counter-intuitive that the breakdown
of most the physical bonds near the crack tip would not
immediately lead to failure. This is because fracture requires
the failure of the entire network, which means that chemical
crosslinked network will have to fail too. However, as long as
damage is confined, the chemical crosslinked network will not
failure due to shielding. Of course, eventually the damage zone
will be large enough and the chemical network will fail, because
the polymer chains reach a maximum extensibility that leads to
fracture. This is analogous to the situation of the tough rate
independent double network gel discovered by Gong.51 As
noted by Brown,52 the increase in toughness is due to the
breaking of the stiff network and is directly proportional to
the size of the damage zone (which is controlled also by the
maximum extensibility of the soft network).

The absence of a length scale for the dissipation zone near
the crack tip is a severe limitation of the linear theory. In LVF
theory, a length scale is introduced using a cohesive zone
model5,6 to eliminate the stress singularity. The size of this
zone scales with the size of the dissipative zone, which is found
to be of atomic dimensions. In the nonlinear theory, the rapid
breaking of bonds near the crack tip introduces a physically
relevant length scale in the bulk that can be identified with
dissipation. Specifically, the nonlinear viscoelastic model used
in this work exhibits a rate dependent ‘‘yield stress’’. Many
tough gels as well as pressure sensitive adhesives exhibit such
‘‘yield’’ behavior, see for example ref. 23, 53 and 54. In our
model, the physical cross-links break much faster when they
are stretched to a critical strain, thus the material ‘‘yields’’ at
this critical strain, but the stress associated with this ‘‘yield’’
depends on the loading history (such as loading rate). Although
the actual yield stress in shear sY is history dependent, an
upper estimate of sY is roughly mnetJ0, where mnet is the modulus
of the undamaged network and J0 is the effective critical strain
where chain breaking rate increases rapidly. Similar to elastic–
plastic fracture in metals where a plastic zone size can be
defined, this time dependent yield stress introduces naturally
a new length scale in the fracture problem. For example, let’s
assume small scale yielding, that is, that damage is confined to
a region that is very small in comparison with crack length, so
that the stress intensity factor KI of the linear theory controls
the local nonlinear fields. Then the size of the damage zone

can be estimated by setting the effective strain equals to J0.
Roughly,

KI

m tð Þ
ffiffiffiffiffiffiffiffiffi
2pD
p � J0 ) D � KI

2

2p m tð ÞJ0½ �2
(26)

where m(t) is the relaxation modulus. The smallest D is obtained
by setting m(t) = m0 in eqn (26). Let us compare D with the
cohesive zone size d E KI

2/s0
2 in LVF. A rough estimate is that

the cohesive stress s0 equals the average stress needed to break
all the chains crossing a unit surface area. In the appendix,
we show that this is roughly 4 GPa. This is much greater than
sY E mnetJ0. For example, the undamaged network modulus of
the polyampholyte gel23 is roughly 1 MPa, and J0 E 0.1, thus
sY E 0.1 MPa. For the same stress intensity factor KI, the ratio
D/d E (s0/sY)2 E 108. Thus the dissipation zone size is at least on
the order of mms which is appropriate for soft, tough materials.
Indeed, in the cavity example studied the damage zone sizes are
comparable to the characteristic size of the geometry.

We emphasize that nonlinear viscoelastic behavior can arise
from a broad spectrum of mechanisms other than the stress
dependent bond breaking and healing kinetics we considered
in this work. For example, Elziere et al.55 have shown that the
nonlinear viscoelastic behavior of poly(vinylbutyral), a tough
polymer used for the interlayer of laminated glass, is controlled
by a completely different mechanism. In this polymer, viscoe-
lastic flow is inhibited by high strains. The dissipative zone size
in this case can be identified with the hardening region near
the crack tip. A series of nanostructured waterborne adhesives
designed with this nonlinear softening mechanism are intrin-
sically shielded from crack propagation.54 Also, there are alter-
native bond breaking models where the bond breaking rate is
affected by the stretch rate rather than the stretch experience by
the polymer strands.56,57

The fact that the cohesive zone size does not scale with the
dissipative zone size does not mean that the cohesive zone model
is not useful. It merely points to the fact that dissipation
and failure processes involve different physics. These different
mechanisms do not mean that these processes are weakly coupled.
Indeed, it is commonly assumed that the cohesive properties are
independent of continuum crack tip fields while in reality there are
significant interactions between separation process and local
viscoelastic deformation. The coupling of these two processes is
a challenging problem that requires further study.

Finally, we address an excellent question raised by an anon-
ymous reviewer: what happens to the concept of fracture energy
which is so widely used in fracture mechanics? Although experi-
mentalists use fracture mechanics concepts as an approximation
in weakly viscoelastic materials, the use of fracture energy to
quantify rate dependent fracture in general is full of theoretical
difficulties. This is because energy release rate is not well defined
in viscoelastic solids (linear or nonlinear) except under very
special circumstances, e.g. steady state crack growth under
condition where the material away from the crack tip is fully
relaxed and therefore elastic. A difficulty is that dissipation
occurs everywhere in the specimen, independent of whether a
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material point is close to or far away from the crack tip. In
addition, the mechanical energy at a material point depends on
the entire history of loading and it is difficult to separate this
energy into a dissipative and a non-dissipative part. Even if this
can be done, the amount of energy dissipated can be specimen
dependent and strongly coupled to the intrinsic energy of
fracture. Due to these difficulties, we have avoided the use of
fracture energy and focus on the effect of nonlinear viscoelasti-
city on dissipation near a crack tip.
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Appendix
A1. Healing rate in the nonlinear viscoelastic model and
strain energy density

As was described in our previous work,44 the healing rate w(t) is
assumed to be directly proportional to nb(t) which is the
number of physical cross-links per unit reference volume that
are broken at the current time, i.e.,

w tð Þ ¼ 1

tH

nb tð Þ
N0

; (A1)

where tH is a characteristic time for healing which is assumed
to be insensitive to chain stretch, and N0 is the total number of
bonds. Because breaking rate is dependent on strain history,
the steady state assumption of the linear theory where breaking
and healing rates are equal is no longer valid. The number of
unconnected bonds nb in eqn (A1) is dependent on the strain
history:

N0 = N1 + N2(t) + nb(t) (A2)

where N1 = rN0 is the number of chemically cross-linked
bonds and N2(t) is the number of surviving physical bonds. We
evaluate N2(t) by summing all the healed bonds that survive to
current time t. This is calculated by noting that the number of
physical bonds that are borne between t0 and t0 + dt0 is by
definition w(t0)N0dt0, so the number of bonds that are connected
is the integral of w(t0)N0dt0	fB(t0,t) from t0 = �N to the current
time, i.e.,

N 2 tð Þ¼N0

ðt

�1
w t 0ð ÞfB t 0; tð Þdt 0: (A3a)

Combining eqn (A1), (A2) and (A3a) and divide the equation
by N0, we have

1� r ¼
ðt
�1

w t 0ð ÞfB t 0; tð Þdt 0 þ w t 0ð ÞtH (A3b)

The total strain energy density at a material point in the
stress-free reference configuration is

WðtÞ ¼ rW0 Hðt 0 ¼ 0; tÞ½ � þ
ðt
�1

w t 0ð ÞfB t 0; tð ÞW0 Hðt 0; tÞ½ �dt 0

(A4)

The 1st term is the strain energy per unit reference volume
of the chemical cross-linked network. The 2nd term is the
strain energy per unit reference volume carried by the physical
bonds. To see this, we note that w(t0)fB(t0,t)dt0 is the molar
fraction of physical chains that reattaches between (t0,t0 + dt0)
and survives till t. Since the strain energy density carried by
these chains is W0[H(t0,t)], the total strain energy density carried
by all physical chains is the integral of w(t0)fB(t0,t)dt0	W0[H(t0,t)]
from t0 = �N to the current time t. The relation between
Cauchy (true) stress r and history of deformation can be
computed using eqn (A4) and following the Coleman–Noll
procedure.

A2. Cavity growth in a linear viscoelastic solid: eqn (19)
and (20)

Using P = rF�T, eqn (10a) and (11), and the deformation
gradient is the identity tensor for time less than zero, the first
Piola-Kirchoff stress of the linear viscoelastic solid is

P ¼ �q F0!t
� ��Tþm tð ÞF0!t

þ
ðt
0

@m t� t 0ð Þ
@t 0

Ft 0!t F0!t 0

 ��T

dt 0 (A5)

where m(t) is defined by eqn (10a). The deformation gradient

Ft 0!t ¼ F0!t F0!t 0
� ��1

is

Ft 0!t ¼

r;R R; tð Þ
r;R R; t 0ð Þ 0 0

0
r R; tð Þ
r R; t 0ð Þ 0

0 0
r R; tð Þ
r R; t 0ð Þ

2
6666664

3
7777775

¼

r2 R; t 0ð Þ
r2 R; tð Þ 0 0

0
r R; tð Þ
r R; t 0ð Þ 0

0 0
r R; tð Þ
r R; t 0ð Þ

2
6666664

3
7777775

(A6a)

where we have used the incompressibility condition. The r,R

denotes partial derivative with respect to R.

detF ¼ dr

dR
	 r
R
	 r
R
¼ 1) r2dr ¼ R2dR) r R; tð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3 þ a3 tð Þ � A33

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3 þ c tð Þ3

q (A6b)

where a(t) is the radius of the cavity at time t and

c(t) � a3(t) �A3 = r3(R,t) � R3 ) r3(R,t) = R3 + c(t).
(A6c)

Because of symmetry, the only non-trivial equilibrium equa-
tions is in the radial direction. This equation, in the reference
configuration is

@PRR

@R
þ 2PRR � 2PYY

R
¼ 0: (A7)
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Substituting eqn (A5), (A6) into (A7) and using (A6c), the first
term is

@PRR

@R
¼ � @q

@R

r2 R; tð Þ
R2

� 2q �r
2 R; tð Þ
R3

þ 1

r R; tð Þ

� �

þ 2m tð Þ R

r2 R; tð Þ �
R4

r5 R; tð Þ

� �

þ
ðt
0

@m t� t 0ð Þ
@t 0

4r R; t 0ð Þ
r2 R; tð Þ �

2r4 R; t 0ð Þ
r5 R; tð Þ �

2r4 R; t 0ð Þ
r2 R; tð ÞR3

� �
dt 0

(A8a)

The second term in eqn (A7) is

2PRR � 2PYY

R
¼ 2q

1

r R; tð Þ �
r2 R; tð Þ
R3

� �

þ 2m tð Þ R

r2 R; tð Þ �
r R; tð Þ
R2

� �

þ 2

ðt
0

@m t� t 0ð Þ
@t 0

r4 R; t 0ð Þ
r2 R; tð ÞR3

� r R; tð Þ
r2 R; t 0ð Þ

� �
dt 0

(A8b)

Adding (A8a), (A8b) and (A7) simplifies to

� @q

@R

r2 R; tð Þ
R2

þ m tð Þ 4R

r2 R; tð Þ �
2R4

r5 R; tð Þ �
2r R; tð Þ

R2

� �

þ
ðt
0

@m t� t 0ð Þ
@t 0

4r R; t 0ð Þ
r2 R; tð Þ �

2r4 R; t 0ð Þ
r5 R; tð Þ �

2r R; tð Þ
r2 R; t 0ð Þ

� �
dt 0 ¼ 0:

(A9a)

It can be shown (e.g. by direct differentiation) that the
solution of (A9a) is

q ¼ � m tð Þ 3

2

R

r R; tð Þ þ
c tð Þ
2

R

r4 R; tð Þ

� �

�
ðt
0

@m t� t 0ð Þ
@t 0

3

2

r R; t 0ð Þ
r R; tð Þ þ

c tð Þ � c t 0ð Þ
2

r R; t 0ð Þ
r4 R; tð Þ

� �
dt 0

þ q0 tð Þ
(A9b)

where c(t) is defined by (A6c) and q0(t) is an arbitrary function of
time only. The PK-I radial stress is obtained by substituting
(A9b) into (A5)

PRR R; tð Þ ¼ m tð Þ 2r R; tð Þ
R

þ R2

2r2 R; tð Þ

� �

þ
ðt
0

@m t� t 0ð Þ
@t 0

2r R; t 0ð Þr R; tð Þ
R2

þ r4 R; t 0ð Þ
2r2 R; tð ÞR2

� �
dt 0

� q0 tð Þr
2 R; tð Þ
R2

(A9c)

We determine q0(t) from (A9c) using the far field boundary
condition

PRRðtÞjR!1¼ 0;
r R; tð Þ
R

����
R!1

¼ 1) 5

2
m tð Þ þ 5

2

ðt
0

@m t� t 0ð Þ
@t 0

dt 0 � q0 tð Þ ¼ 0

) q0 tð Þ ¼ 5

2
m tð Þ þ

ðt
0

@m t� t 0ð Þ
@t 0

dt 0
� �

¼ 5

2
m0

(A10)

Combining eqn (A9b) and (A10) along with the deformation
gradient given by eqn (A6a), the true stresses are

srr r; tð Þ ¼ m tð Þ 2R

r R; tð Þ þ
R4

2r4 R; tð Þ

� �

� 5

2
m0 þ

ðt
0

@m t� t 0ð Þ
@t 0

2r R; t 0ð Þ
r R; tð Þ þ

r4 R; t 0ð Þ
2r4 R; tð Þ

� �
dt 0

(A11a)

syy r; tð Þ ¼ sff r; tð Þ

¼ m tð Þ 2R

r R; tð Þ �
R4

2r4 R; tð Þ þ
r2 R; tð Þ
R2

� �
� 5

2
m0

þ
ðt
0

@m t� t 0ð Þ
@t 0

2r R; t 0ð Þ
r R; tð Þ �

r4 R; t 0ð Þ
2r4 R; tð Þ þ

r2 R; tð Þ
r2 R; t 0ð Þ

� �
dt 0

(A11b)

The inner radius a(t) is determined by the boundary condition

srrjr¼a¼ �p

) m tð Þ 2A

a tð Þ þ
A4

2a4 tð Þ

� �
� 5

2
m0

þ
ðt
0

@m t� t 0ð Þ
@t 0

2a t 0ð Þ
a tð Þ þ

a4 t 0ð Þ
2a4 tð Þ

� �
dt 0 ¼ �p

(A12a)

We normalize all lengths by A, e.g. %r � r/A. Then eqn (A12a)
reduces to

m tð Þ 2

�a tð Þ þ
1

2�a4 tð Þ

� �

þ
ðt
0

@m t� t 0ð Þ
@t 0

2�a t 0ð Þ
�a tð Þ þ

�a4 t 0ð Þ
2�a4 tð Þ

� �
dt 0 ¼ 5

2
m0 � p

(A12b)

which is eqn (19) divided by 2. The instantaneous response due
to the sudden pressure load is determined by setting t = 0 in
eqn (A12b):

m0
2

�a 0ð Þ þ
1

2�a4 0ð Þ

� �
¼ 5

2
m0 � p) 1

�a4 0ð Þ þ
4

�a 0ð Þ ¼ 5� 2p

m0
: (A13)

Eqn (A13) is the same as the elastic solution given by eqn (17b)
of a neo-Hookean solid with small strain modulus m = m0.

A3. Nonlinear case

In the nonlinear case, the survivability function becomes

fB t 0; tð Þ ¼ 1þ aB � 1

tB

ðt
t 0

1þH t 0; sð Þ � 3

J02

� �m
ds

	 
 1
1�aB

(A14a)
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with

H t 0; sð Þ ¼ r4 R; t 0ð Þ
r4 R; sð Þ þ 2

r2 R; sð Þ
r2 R; t 0ð Þ: (A14b)

Note that fB(t0,t) is a function of radial coordinate R, and so
is the healing rate w which is determined by eqn (A3b). To
explicitly express this dependence, we denote these quantities
as fB(R,t0,t), w(R,t), and H(R,t0,s) respectively. From eqn (13) and
using P = rF�T, and assuming that there is no load for t o 0, the
nonzero PK-I stress components for the nonlinear viscoelastic
solid are

PRR ¼ � q
r2 R; tð Þ
R2

þ m rþ w1
tB

2� aB
fB R; 0; tð Þ 2�aBð Þ

� �
R2

r2 R; tð Þ

þ m
ðt
0

w R; t 0ð ÞfB R; t 0; tð Þ r
4 R; t 0ð Þ

r2 R; tð ÞR2
dt 0

(A15a)

PYY ¼ PFF

¼ � q
R

r R; tð Þ þ m rþ w1
tB

2� aB
fB R; 0; tð Þ 2�aBð Þ

� �
r R; tð Þ
R

þ m
ðt
0

w R; t 0ð ÞfB R; t 0; tð Þr R; tð ÞR
r2 R; t 0ð Þdt

0

(A15b)

and the equilibrium eqn (A7) becomes

0 ¼� @q

@R

r2 R; tð Þ
R2

� q
@

@R

r2 R; tð Þ
R2

� �

þ @

@R
m rþ w1

tB

2� aB
fB R; 0; tð Þ 2�aBð Þ

� �
R2

r2 R; tð Þ

	

þm
ðt
0

w R; t 0ð ÞfB R; t 0; tð Þ r
4 R; t 0ð Þ

r2 R; tð ÞR2
dt 0



� 2

R
q

r2 R; tð Þ
R2

� R

r R; tð Þ

� �

þ 2

R
m rþ w1

tB

2� aB
fB R; 0; tð Þ 2�aBð Þ

� �


 R2

r2 R; tð Þ �
r R; tð Þ
R

� �

þ 2

R
m
ðt
0

w R; t 0ð ÞfB R; t 0; tð Þ r4 R; t 0ð Þ
r2 R; tð ÞR2

� r R; tð ÞR
r2 R; t 0ð Þ

� �
dt 0

) @q

@R

r2 R; tð Þ
R2

¼ @f R; tð Þ
@R

þ 2

R
f R; tð Þ

� 2

R
m rþ n R; tð Þ½ �r R; tð Þ

R

� 2

R
m
ðt
0

w R; t 0ð ÞfB R; t 0; tð Þr R; tð ÞR
r2 R; t 0ð Þdt

0

(A16a)

where

n R; tð Þ ¼ w1
tB

2� aB
fB R; 0; tð Þ½ � 2�aBð Þ (A16b)

f R; tð Þ ¼ m rþ n R; tð Þ½ � R2

r2 R; tð Þ

þ m
ðt
0

w R; t 0ð ÞfB R; t 0; tð Þ r
4 R; t 0ð Þ

r2 R; tð ÞR2
dt 0

(A16c)

To integrate for q, we rewrite (A16a)

@q

@R
¼ R2

r2 R; tð Þ
@f R; tð Þ
@R

þ 2R

r2 R; tð Þf R; tð Þ

� 2R

r2 R; tð Þm rþ n R; tð Þ½ �r R; tð Þ
R

� 2R

r2 R; tð Þm
ðt
0

w R; t 0ð ÞfB R; t 0; tð Þr R; tð ÞR
r2 R; t 0ð Þdt

0

¼ @

@R

R2

r2 R; tð Þf R; tð Þ
� �

þ 2R4

r5 R; tð Þf R; tð Þ � m rþ n R; tð Þ½ � 2

r R; tð Þ

� m
ðt
0

w R; t 0ð ÞfB R; t 0; tð Þ 2R2

r2 R; t 0ð Þr R; tð Þdt
0

¼ @

@R

R2

r2 R; tð Þf R; tð Þ
� �

þ m rþ n R; tð Þ½ � 2

r R; tð Þ
R6

r6 R; tð Þ � 1

� �

þ m
ðt
0

w R; t 0ð ÞfB R; t 0; tð Þ 2R2

r2 R; t 0ð Þr R; tð Þ
r6 R; t 0ð Þ
r6 R; tð Þ � 1

� �
dt 0

)q¼q0ðtÞþm rþn R;tð Þ½ � R4

r4 R;tð Þ

þm
ðt
0

w R;t 0ð ÞfB R;t 0;tð Þr
4 R;t 0ð Þ
r4 R;tð Þ dt

0

þm
ðR
A

rþn R0;tð Þ½ � 2

r R0;tð Þ
R06

r6 R0;tð Þ�1
� �	 


dR0

þm
ðR
A

ðt
0

w R0;t 0ð ÞfB R0;t 0;tð Þ 2R02

r2 R0;t 0ð Þr R0;tð Þ
r6 R0;t 0ð Þ
r6 R0;tð Þ �1
� �

dt 0
	 


dR0

(A17)

Combining eqn (A15a) and (A17) and using r = PFT, the true
stress in the radial direction is

srr¼�q0 tð Þ

þm
ðR
A

rþn R0;tð Þ½ � 2

r R0;tð Þ 1� R06

r6 R0;tð Þ

� �	 

dR0

þm
ðR
A

ðt
0

w R0;t 0ð ÞfB R0;t 0;tð Þ 2R02

r2 R0;t 0ð Þr R0;tð Þ 1�r
6 R0;t 0ð Þ
r6 R0;tð Þ

� �
dt 0

	 

dR0

(A18)
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The unknown q0(t) in (A18) is determined by the far field
boundary condition

srrjR!1¼0

)q0¼m
ð1
A

rþn R0;tð Þ½ � 2

r R0;tð Þ 1� R06

r6 R0;tð Þ

� �	 

dR0

þm
ð1
A

ðt
0

w R0;t 0ð ÞfB R0;t 0;tð Þ 2R02

r2 R0;t 0ð Þr R0;tð Þ 1�r
6 R0;t 0ð Þ
r6 R0;tð Þ

� �
dt 0

	 

dR0

(A19)

Substituting (A19) back into (A18), the true radial stress is:

srr¼�m
ð1
R

rþn R0;tð Þ½ � 2

r R0;tð Þ 1� R06

r6 R0;tð Þ

� �	 

dR0

�m
ð1
R

ðt
0

w R0;t 0ð ÞfB R0;t 0;tð Þ 2R02

r2 R0;t 0ð Þr R0;tð Þ 1�r
6 R0;t 0ð Þ
r6 R0;tð Þ

� �
dt 0

	 

dR0

(A20a)

The other true stress components are obtained using (A19)
and (A15b),

syy ¼ sff

¼ srr þ m rþ n R; tð Þ½ � r
2 R; tð Þ
R2

� R4

r4 R; tð Þ

� �

þ m
ðt
0

w R; t 0ð ÞfB R; t 0; tð Þ r2 R; tð Þ
r2 R; t 0ð Þ �

r4 R; t 0ð Þ
r4 R; tð Þ

� �
dt 0

(A20b)

The unknown deformed radius a(t) is determined by the
boundary condition

srrjR¼A¼�p

) p

mnet
¼
ð1
A

rþn R0;tð Þ½ � 2

r R0;tð Þ 1� R06

r6 R0;tð Þ

� �	 

dR0

þ
ð1
A

ðt
0

w R0;t 0ð ÞfB R0;t 0;tð Þ 2R02

r2 R0;t 0ð Þr R0;tð Þ 1�r
6 R0;t 0ð Þ
r6 R0;tð Þ

� �
dt 0

	 

dR0

(A21)

a(t) is implicit in eqn (A21) through r R; tð Þ ¼ R3 þ a3 tð Þ � A3
� �1

3.
Note since the instantaneous modulus for the linear and

nonlinear cases are the same, the instantaneous responses for
both cases are identical. Hence eqn (A13) is valid. The equation
to be solved numerically in the nonlinear case is eqn (A21), with
fB(R,t0,t), H(R,t0,s), n(R,t) given by eqn (A14a), (A14b) and
(A16b), respectively. Eqn (A21) must be solved together with
eqn (A3b) (with w(R,t o 0) = wN) to determine the unknown
healing rate w(R,t). The solution is obtained iteratively: we start
from t = 0 with a0 determined by eqn (A13). For each time
increment, we guess the next cavity radius a(t + Dt) and use this
guess to find the healing rate w(R,t + Dt) from eqn (A3b) or more

precisely,

1� r ¼
ðtþDt
�1

w R; t 0ð ÞfB R; t 0; tþ Dtð Þdt 0 þ w R; tþ Dtð ÞtH

(A22)

Using the guessed value a(t + Dt) we evaluate fB(R,t,t + Dt)
using (A14b) and (A14a). The updated healing rate w(R,t + Dt)
can now be found using (A22). Once we know a(t + Dt) and
w(R,t + Dt), we can evaluate the RHS of (A21) at t + Dt and
determine the residue (res) which is the difference between this
value and p/mnet. If the residue is too large, we will iterate with an
updated guess of a(t + Dt) based on the residue (via a Newton–
Raphson scheme). Specifically, we take the first guess, a1(t + Dt)
to be a(t), the 2nd guess to be a2(t + Dt) = 2a(t) � a(t � Dt). In

general, ak tþ Dtð Þ ¼ ak�1 tþ Dtð Þ þ resk�1
resk�2 � resk�1

ak�1 tþ Dtð Þ.

We continue with this iteration scheme until the residue is
smaller than 10�4p/mnet.

A4. Cavity growth for linear and nonlinear viscoelastic solids

Fig. 11 shows the time evolution of the normalized cavity radius
%a(t). The cavity grows faster in a nonlinear viscoelastic solid
(three colored lines) compared to the linear viscoelastic case
(black symbol). The smaller the critical strain J0, the faster the
bonds breaks at a given strain, and the faster the cavity grows.

A5. Estimate of cohesive stress for elastomers

The areal density of chains crossing a surface, S, is roughly35

S � nxa
ffiffiffiffiffiffi
Nx

p

where a is the size of a monomer, nx is the density of cross-links
and Nx is the number of monomers in a chain. nx can be
estimated from the small strain shear modulus, m by m = nxkBT
where kB is the Boltzmann constant and T the absolute

Fig. 11 Time evolution of the normalized cavity radius (A is the initial
cavity radius and a(t) is the current cavity radius). The black symbol is the
linear viscoelastic case, whereas the three colored lines are the nonlinear
viscoelastic cases with different J0s. The cavity grows faster for the non-
linear viscoelastic solids. Smaller J0 leads to faster cavity growth.
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temperature. The cohesive stress sc can be estimated using
sc E S 
 fc–c where fc–c E 10�9 Newtons is roughly the force
needed to break a carbon–carbon bond. Thus,

sc �
ma
kBT

fc�c
ffiffiffiffiffiffi
Nx

p

At room temperature 298 K, kBT E 4 
 10�21 J, the shear
modulus of elastomers m is roughly 0.5 
 106 Pa, a E 0.5
 10�9 m
so

sc �
ffiffiffiffiffiffi
Nx

p
108 Pa:

If we take Nx = 1000, then sc E 3.5 
 109 Pa.
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