
HAL Id: hal-03112423
https://hal.science/hal-03112423v1

Submitted on 16 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Image Processing on Mobile Devices: An Overview
Rafika Thabet, Ramzi Mahmoudi, Mohamed Hedi Bedoui

To cite this version:
Rafika Thabet, Ramzi Mahmoudi, Mohamed Hedi Bedoui. Image Processing on Mobile Devices: An
Overview. 2014 First International Image Processing, Applications and Systems Conference (IPAS),
Nov 2014, Sfax, Tunisia. �10.1109/IPAS.2014.7043267�. �hal-03112423�

https://hal.science/hal-03112423v1
https://hal.archives-ouvertes.fr

1

Image Processing on Mobile Devices: An Overview

Rafika THABET
1
, Ramzi MAHMOUDI

1,2
 and Mohamed Hedi BEDOUI

1

1
Laboratoire Technologie Imagerie Médicale - LTIM-LR12ES06

Faculté de Médecine de Monastir - 5019 Monastir, Tunisie

2
IGM, Unité Mixte CNRS-UMLV-ESIEE UMR8049, University Paris-Est

Cité Descartes, BP99, 93162 Noisy Le Grand, France

rafika.thabet@gmail.com, ramzi.mahmoudi@esiee.fr, medhedi.bedoui@fmm.rnu.tn

Abstract—Image processing technology has grown

significantly over the past decade. Its application on low-power

mobile devices has been the interest of a wide research group

related to newly emerging contexts such as augmented reality,

visual search, object recognition, and so on. With the emergence

of general-purpose computing on embedded GPUs and their

programming models like OpenGL ES 2.0 and OpenCL, mobile

processors are gaining a more parallel computing capability.

Thereby, the adaptation of these advancements for accelerating

mobile image processing algorithms has become actually an

important topical issue. In this paper, our interest is based on

reviewing recent challenging tasks related to mobile image

processing using both serial and parallel computing approaches

in several emerging application contexts.

Keywords—image processing, mobile devices; mobile GPUs;

multi-threading; mobile GPGPU; OpenGL ES 2.0; OpenCL

I. INTRODUCTION

Image processing allows extracting the meaning of an
observed scene from the acquired information. Nowadays,
there is a great interest in image processing algorithms able to
work on mobile platforms [1]. Indeed, incorporating image
processing capabilities on mobile devices open new
opportunities in different application contexts such as
augmented reality, visual search, object recognition, and so on.
However, the high computational complexity of some image
processing algorithms and both their long processing time and
energy consumption prevent them from being effectively used
in real-time mobile applications. Thus, the practice of these
algorithms on such a device is still a challenging task since
these devices are typically limited by: power supply, battery
capacity, energy consumption, computational power, RAM
amount, etc.

In the past few years, exploring the use of desktop GPUs as
a general-purpose co-processor [2] to accelerate compute-
intensive applications has been an active research subject.
Several speedups have been reported in the literature,
depending on the applications, the algorithms parallelism, and
the computing capability provided by the GPUs. Recently,
these programmable GPUs have proved their feasibility on
mobile devices [1], such as smartphones and tablets. In fact,
rapid advancements of mobile computational capabilities and
memory specifications have allowed making processor-
intensive applications more possible, which were considered
infeasible just a few years ago. So, as the GPUs have become

an integrated component with a multi-core architecture in
mobile devices, researchers have explored the opportunities of
using the low-power mobile GPUs as a general-purpose
accelerator, similar to its role in a desktop [3], by diverting
their limits. Therefore, General-Purpose computing on GPUs
(GPGPU) for mobile devices has become possible [1], which
has opened new opportunities to speed up mobile image
processing algorithms. In addition, several emerging
programming models – such as Open Graphics Library for
Embedded System 2.0 (OpenGL ES 2.0) [4] and Open
Computing Language (OpenCL) [5] – for the mobile GPGPU
computing have become recently supported by various mobile
processors.

Eventually, our interest is to survey recent researches
related to image processing running on low-power mobile
devices in order to have a new idea about the most and least
extensively studied application areas, algorithms and concepts
explored for each area, improvements made by exploiting
parallel computing, and speedups achieved using programming
models for mobile GPGPU. Accordingly, researchers will be
guided in their future choices.

II. STATE OF THE ART

A. Mobile-serial-computing approaches

Image processing on mobile platforms has become an area
of research that keeps an important key to future advances in
augmented reality, visual search, object recognition, and
several other application domains. This section will be devoted
to present the recent works of the previously mentioned fields
using mainly serial computation on mobile devices.

1) Mobile Augmented Reality

Augmented Reality (AR) is a type of virtual reality that
allows seeing the real world and the virtual objects together by
superimposing virtual objects upon the real world. So, the
Mobile Augmented Reality (MAR) system is designed
specifically for mobile platforms that must track objects,
recognized from a database. A 2009 overview on the tracking
history for the MAR was presented in [6]. Indeed, the MAR
algorithms were divided into two types: the first one used
natural features and the second one used artificial markers.

For the first type, several MAR systems based on visual
feature recognition and tracking [7, 8, 9, 10, 11, 12, 13] have
been recently proposed. Most of these research efforts have

mailto:rafika.thabet@gmail.com
mailto:akilm%7d@esiee.fr

2

focused on improving the tracking speed for the MAR. In fact,
in [7] the speed was improved by tracking Speeded-Up Robust
Features (SURF) [14] in constrained locations. In addition, in
[8, 9, 10, 11, 12] significant advancement were made in pose
tracking to respond to strict real time constraints. Actually, in
[8] two techniques for natural feature tracking from planar
targets were presented in a real-time way. These techniques
used an approach based on the modified descriptors: Scale
Invariant Feature Transform (SIFT) [15] and Ferns [16]. This
work presented the first fully self-contained natural feature
tracking system able to track the full six degrees of freedom at
up to 20 Hz of real-time frame rates from natural features using
only the integrated camera phone. The latter work was first
resumed in [9] then in [10], where a template-matching-based
tracker was used at frame rates of up to 30 Hz on mobile
phones of their generation. The resumed approaches increased
the performance and the robustness of the initial approach.

Yet, in [11] a method for real-time creation and tracking of
panoramic maps was presented. This method ran also on
mobile phones at 30Hz and the generated maps allowed a drift-
free rotation tracking in outdoor scenarios. Whereas, in [12] a
real-time parallel tracking and mapping was presented with a
monocular camera in a small workspace. That work was an
adaptation of a simultaneous localization and mapping
approach on mobile devices.

However, the scalability of the MAR systems was not
addressed by any of these last efforts. By contrast, in [13] a
binary descriptor, called Local Difference Binary (LDB), was
introduced to facilitate the MAR scalability. This descriptor
was computed by using the integral image technique. For a
large database, the LDB achieved a greater accuracy and a
faster matching speed than the Binary Robust Independent
Elementary Features (BRIEF) [17] descriptor.

For the second type, few marker-based MAR systems [18,
19] were suggested in the literature. In [18] a successor of the
popular ARToolKit marker tracking library [20] was presented
for the use of the AR on mobile devices such as smartphones,
PDAs and Utra Mobile PCs. It was also called ARToolKitPlus.
Besides, in [19] a real-time AR program was implemented on a
smart phone by using the OpenCV library [16], the
ARToolKitPlus and the VRToolKit [21].

2) Mobile Visual Search

A Mobile Visual Search (MVS) is a type of search engine
designed specifically for mobile devices. In Mobile Image
Search (MIS), through a query image taken with the mobile
phone or using certain keywords, any information can be found
on the Internet. Therefore, the content, shape, texture and color
of the image are used to be compared to a database, and then
the approximate results from the query are delivered.

Various recent MVS systems have been developed to
search for camera phone images of CD covers [22, 23, 24],
photos [25], printed documents [26, 27, 28], locations [29, 30,
31], and so on [32, 33]. Most of these studies were interested in
performing a visual search on mobile devices.

In the aim of searching for mobile images of CD covers, in
[22] a mobile image searching method was put forward by
consistently exploiting visual and spatial information to

improve feature-discriminative power. Also, in [23] a CD
cover search system was used to compare different local
descriptors. As a result, the SIFT descriptor was broadly
accepted as the best performed feature. However, in a low-bit
transmission, a Compressed Histogram of Gradients (CHoG)
[34] descriptor had an advantage over the SIFT. Nevertheless,
in [24], an image segmentation technique was applied to a CD
cover retrieval system on mobile devices. Given a mobile-
device image, this technique used edge detection and region
merging mechanisms to extract the interest region from a
complex background scene. The suggested method consisted
in: initially, an image segmentation by a mean-shift [35]
algorithm; next, an automatic region merging; and then, an
object-contour extraction by the labeled regions as either
foreground or background. Compared with other automatic
segmentation methods and without the user interaction, the
proposed method demonstrated its efficiency.

However, in [25] a complete photo-to-search overview was
given, starting with the architecture of an efficient mobile
system until arriving at the framework of an image recognition
algorithm.

In the goal of searching for mobile images of printed
documents [26], a hybrid book recognition system on a
bookshelf was suggested for use in book management systems.
This approach consisted of the spine recognition pipeline based
on combining both text and image features of the book spine
image. In the case of text-based recognition system, a high
recall at low precision was achieved, and in the case of an
image feature-based recognition system, a moderate recall at
high precision was attained. In the same context, in [27] a
mobile printed-document retrieval system was presented using
both text and image-based features. An algorithm based on
edge-enhanced Maximally Stable Extremal Regions (MSER)
[36] was used for text detection, a gradient-based algorithm
was employed for rectifying the extracted title text image
patch, and an optical character recognition was used for
recognition during image-feature extraction. Both text and
image-based features were transmitted to a server. The title text
was used to make an online search and the image-based
features were used to check the search results. The proposed
system was able to perform a web-scale document search using
the title text and to achieve an accuracy of retrieved documents
using the image-based features. The latter work was resumed in
[28], where the system was improved by using a geometric
verification framework incorporating both text and image-
feature information.

In order to search landmarks and locations, the authors in
[29] put forward a discovery of disappearance points and an
identification of facades; whereas, the authors in [30] used a
fusion of multiple image representations, with an aligned
facade and viewpoint, to improve the search accuracy.
However, the authors in [31] presented an active query-sensing
system to help users to take the best second query for an
ulterior location search, which was not addressed by any
previous work. Actually, it was about an interactive mobile
vision system.

Similarly, in [32] a multimodal interactive image search
system, called Joint search with ImaGe, Speech And Word

3

(JIGSAW), was described on mobile devices. This system took
advantage of the multimodal input and multi-touch natural user
interactions of mobile devices. The JIGSAW was deployed and
evaluated on a real-world phone system. After that, this system
was resumed in [33] to achieve a better gain in terms of time
and search performance. The proposed algorithm was therefore
called JIGSAW+ for Joint search with ImaGe, Speech And
Word Plus.

3) Mobile Object Recognition

Mobile Object Recognition (MOR) is a fundamental task
for many mobile computer vision applications, such as MAR,
MIS, and so on. For realizing this case study, several
researches exist in literature which allow recognizing food
ingredients [37], characters [38], faces [39, 40, 41, 42, 43, 44,
45, 46], objects [47, 48, 49, 50], etc. The focus investigation of
all these studies was to prove the feasibility of performing
object recognition systems on mobile platforms.

Few researchers have been interested in recognizing food
ingredients. Accordingly, in [37] a system of recipe
recommendation on mobile devices was carried out allowing
extracting color feature, recognizing 30 kinds of food
ingredients, and recommending food recipes.

Also, few researches have focused on recognizing
characters from mobile-platform images. In order to develop a
business card reader, in [38] a character segmentation
technique was presented for business card images taken using a
mobile phone camera. The proposed technique consists in
extracting text regions from card images and segmenting them
into characters, which was successfully implemented on a
moderately powerful notebook.

The practice of face detection and recognition on mobile
platforms have become increasingly frequent in the literature
[39, 40, 41, 42, 43, 44, 45, 46], where most of them use the
OpenCV library. Thus, in [39] a cascade-subspace face/eye
detector was put forward and compared to an AdaBoost [51]
detector whose results showed that at a comparable speed the
suggested detector could detect eyes at more precise locations.
However, in [40, 41, 42] face-recognition systems using the
OpenCV library were proposed. These systems are based on
the AdaBoost algorithm for the face detection stage. A real-
time Eigenfaces algorithm [52] and a Local Binary Pattern
(LBP) [53] were used, respectively in [40] and [41, 42], for the
face recognition stage. Nevertheless, in [43] the face
recognition performance was improved on a mobile phone by
using a selective method that generated Gabor features [54]
based on a contribution measurement got by a discriminant
analysis. Likewise, in [44] the skin-color image segmentation
was presented as a preprocessing stage for human-face
detection on a mobile platform. The RGB-H-CbCr skin-color
model introduced in [55] was applied with few minor
adjustments for a better result. Indeed, compared with few
other types of skin-color models, the suggested model showed
better results of skin extraction. Nonetheless, in [45, 46] web
services were used for improving the face recognition system
on Android platforms. So, in [45], besides the face recognition
process using a locally-implemented-Eigenfaces
decomposition, a web service using SOAP messages [56] was
also developed for a more advanced feature extraction and

face-image classification. On the other hand, in [46] a cloud
computing service [57] with a Representation State Transfer
(REST) [58] communication and an Android face detector API,
as a library, were used for performing the recognition system.

To recognize objects, in [47] local-feature descriptors and
their matching method were devised for recognizing registered
objects in a real-time way. Yet, in [48] an accelerated MOR
system was presented using an adapted version of the SURF
which was based on two new techniques: content-aware tiling
and gradient-moment-based orientation assignment. The first
technique improved the data locality and reduced the memory
traffic, whereas the second avoided the penalties caused by
pipeline hazards. Thus, the performance and robustness of the
suggested techniques were evaluated on three mobile platforms
and compared with the original SURF algorithm, where the
accelerated SURF achieved a higher speedup without affecting
the recognition accuracy.

In the context of interactive image segmentation for mobile
object recognition, such researches have been proposed [49,
50]. Also, the authors in [49] performed the tracking of
multiple seeds that improved the segmentation results. Those
seeds were points indicated by the real-world user, following a
laser pointer on a smartphone. The implementation of this
method, which was based on the optical flow algorithm of
Lucas-Kanade [59] and the Fast Multi Object Fuzzy
Segmentation (Fast-MOFS) [60] algorithm, proved its real-
time feasibility with high frame rates on limited-resource
devices. However, in [50] the proposed algorithm starts with
pre-segmentation by the mean-shift algorithm, followed by
merging regions using discriminative clustering and completed
by a local-neighborhood-region classification and pruning.
Compared to the method GraphCut [61], with pre-segmented
regions using the Watershed algorithm [62], and to the
Maximal-Similarity-based Region Merging (MSRM) [63], the
proposed method had better quality results.

On the other hand, in order to compare the performances of
the following mobile platforms: Nokia N900, LG Optimus One
and Samsung Galaxy SII, the authors in [64] ported and tested
few classic computer vision algorithms by using the OpenCV
Library. These algorithms were dedicated to three tasks: feature
extraction, face detection, and image segmentation. For the first
task, three algorithms were employed: Features from
Accelerated Segment Test (FAST) [65], a Modified Upright
SURF (MU-SURF) [66], and the SURF. Concerning the
second task, the AdaBoost algorithm was used. For the final
task, the GraphCut algorithm was considered.

B. Mobile-parallel-computing approaches

In this section, we investigate the computational capability
and energy efficiency of mobile CPU-GPUs systems to
accelerate image processing applications. In this connection,
we give an existing and recent overview of mobile parallel
computing utilizing both multi-threading and GPGPU
concepts.

1) Multi-threading concept on mobile devices

In order to achieve optimizations, many developers have
resorted to the use of the multi-threading concept in the MAR

4

[67, 68, 69], Mobile Food Recognition (MFR) [70, 71, 72],
Mobile Optical Character Recognition (MOCR) [73] contexts.

Some researchers [67, 68, 69] have been interested in
optimizing the MAR context by using a multi-threading
model. In [67] the workloads of the MAR system, running on
a low-power Intel® Atom™ processor of Mobile Internet
Devices (MIDs), were analyzed. After identifying the hotspot
functions that took the largest part of the overall response
time, an architectural characterization of those hotspot
functions was presented in terms of Cycles Per Instruction
(CPI), Misses Per Instruction (MPI), etc. Also, implementing
several software optimizations – such as multi-threading,
vectorization, cache conflict avoidance, and various code
optimizations that reduce the number of computations –
improved 3X the performance in the overall execution time.
The last work was resumed in [68] to show the benefits of
hardware accelerations for the MAR that needed important
computation processing for object recognition and matching.
Therefore, two proposed hardware accelerations were
designed: one for object recognition and the other for match
processing. As a result, those hardware accelerations
significantly enhanced the overall response time by 7X.
Similarly, in [69] a MAR system of tourist guides was
presented. This system combined the camera, location,
orientation and motion sensors to put forward a new manner to
bring more tourism information to users. So, to track objects
of interest in the live camera view and to place augmented
information on top of them, a combination of motion
estimation algorithms and orientation sensors was used.
Significant speedups were attained by identifying the hotspots
in the MAR source codes and using the following
optimizations: resolving hotspots by multi-threading approach,
converting data and computation type, and vectorization.

In the context of the MFR, enough research efforts have
been presented in [70, 71, 72]. All these works are focused on
improving the speed of their MFR systems by using the multi-
threading concept. All of them had the same purposes, which
are: (i) implementing an interactive and real time MFR system
running on the Android smartphone Samsung Galaxy Note II
(1.6GHz Quad Core), (ii) estimating calories and nutritious
food, (iii) recording the user’s eating habits, (iv) adopting a
linear SVM and an histogram χ2 kernel based on kernel-
feature maps [74], (v) and implementing a multi-threaded
system on Quad CPU cores. Furthermore, in these works, an
automatic adjustment was applied by using the GrabCut [75]
method. After that, the user drew a bounding box over the
food region. However, the authors in [70] used a color
histogram and the SURF-based bag of features for the food
recognition stage; whereas, the authors in [71, 72] adopted a
Fisher Vector (FV) [76], an Histogram of Oriented Gradients
(HOG) [77] patches, and color patches. According to the
experiments of recognition accuracy and processing time, the
proposed method in [70] has been the least efficient of all.
Note that [71] and [72] offered the same method but the
second one gave a more detailed study with several versions
and more tests of the suggested method.

On the other hand, in [73] a reference implementation of
the MOCR workload was analyzed, on the low-power Intel®
Atom™ processor for handheld devices. Also, the elementary

hotspot functions that incurred most of the overall response
time were identified. A detailed architectural characterization
of those hotspot functions, in terms of CPI, MPI, and various
phases of memory bandwidth, were also presented. Moreover,
several software/algorithmic optimizations – such as multi-
threading, image sampling for a hotspot function, and various
code optimization – as well as hardware acceleration were
implemented and analyzed. The optimization results could
significantly improve the overall processing time and the
power consumption.

2) GPGPU concept on mobile devices

The emerging and advent of the GPUs with programmable

shaders on mobile devices like smart phones and tablets have

motivated developers to utilize the GPUs to offload

computationally intensive tasks and relieve the burden from

the mobile CPU. In fact, the capability of the GPGPU on

mobile devices has opened a new era for mobile computing

and has enabled many computationally demanding mobile

image processing algorithms [1]. Recently, programming

models supporting mobile GPGPU computing such as

OpenGL ES 2.0 and OpenCL, has become available on most

mobile devices. Thus, in this section, we review the recent

studies that use each of these frameworks for controlling

mobile-GPU tasks.

a) Using the OpenGL ES 2.0 programming model

Originally, the OpenGL ES programming model was
designed for 3D-graphics rendering for embedded systems.
From version 2.0, the OpenGL ES framework has become
able to support programmable shaders. Thus, most of recent
researches have benefited from this version so as to harness
the computation power of the mobile battery-powered GPUs.
Their special investigation has focused on the role of mobile
GPUs for energy or/and time optimization in real-time
applications. Accordingly, we present recent studies using the
OpenGL ES 2.0 shading language to support the GPGPU on
mobile platforms for optimizing image processing algorithms.

In the literature, few research efforts [78] are interested in
accelerating edge-detection algorithms. Nevertheless, most of
them [79, 80, 81, 82, 83, 84, 85, 86] have focused on
accelerating corner-detection algorithms.

For the edge detection context, in [78] a programmable
shader implementation of a Canny edge detection [87] was
presented for measuring the performance of the GPUs on a
range of devices. The Open Graphics Library Shading
Language (GLSL) [4] from the OpenGL ES 2.0 was used. The
purpose was to determine the advantages of utilizing mobile
GPUs for image analysis instead of the usual processing
performed entirely on the mobile CPU.

However, much effort [79, 80, 81, 82, 83, 84, 85, 86] has
focused on corner detection. Indeed, in [79] the FAST corner
detection algorithm was implemented using parallel
computing on GPUs with the GLSL tool. The results increased
significantly the computational speed. Even compared to the
SURF algorithm, the speed of the proposed method is much
faster. In addition, the suggested method was well performed

5

for processing different images and using various mobile
devices.

Yet, in [80] a GPGPU implementation of a modified
SURF descriptor (called uSURF-ES) was presented. The
proposed method used a shader generator to adjust the
variations in the GPU capabilities. The main contribution was
to prove the feasibility of modern mobile-graphic accelerators
for GPGPU tasks, particularly for the detection phase in the
natural-feature tracking used in the MAR applications. So to
determine the speedup, the mobile-GPU implementation of the
uSURF-ES was compared to the mobile-CPU implementation
of the SURF in the OpenCV library.

In [81] the main elements, underlying the implementation,
evaluation and optimization of computer-vision and image-
processing algorithms, were analyzed. First, the characteristics
of the embedded GPUs and their limits compared to the
embedded CPU, were presented. Secondly, techniques with an
optimized shader design were put forward to achieve
enhanced performances. In order to prove the validity and
effectiveness of the proposed techniques, three algorithms –
which are: cartoon-style Non-Photorealistic Rendering (NPR)
[88], Belief propagation (BP) stereo matching [89], and SURF
– were selected and implemented on embedded GPUs. Finally,
the performance between the implementation on embedded
CPU and GPUs was evaluated in terms of the achieved
speedup and execution time. Note that an initial version of the
latter work had been presented in [82] where a Harris corner
detection [90] algorithm was implemented instead of the
SURF algorithm. In the same context, in [83] a set of metrics
to measure the characteristics were presented for image
processing algorithms running on mobile phone GPUs. These
measurements allow assisting users in the design and
implementation stage as well as in the bottlenecks
classification. Also, techniques with an optimized shader
design were proposed to obtain an increased performance. As
a case study, the algorithms used in [81] were also employed
to prove the effectiveness of the suggested techniques.

In [84] an implementation of the SIFT algorithm was
presented using the GPU acceleration in mobile devices. The
main contributions resided in: first, profiling the major stages
of the algorithm on both mobile CPU and GPUs which
allowed the development of a dataflow schema describing the
methodical partitioning of the workload between the mobile
CPU and GPUs; and second, reordering and compressing the
input image to minimize the communication overhead of the
CPU-GPUs memory transfers and to accelerate the GPU
computation. The performances of the proposed
implementation were tested using various mobile devices. A
considerable speedup was achieved unlike an optimized CPU
version running in a single thread and unlike a GPU
implementation published in [91]. In addition, total energy and
power consumption were greatly reduced. A significant
speedup was achieved over an optimized CPU version and
related GPU work, resulting in a near real-time detection.

Moreover, few works [85, 86] has been interested in

computing power and energy consumption running on a

mobile CPU-GPUs platform for face recognition, as a case

study. Indeed, in [85] the first accelerated implementation of

the LBP feature extraction for a face tracking approach was

presented. The two contributions of the latter research are:

describe the challenges of designing on mobile GPUs, and

prove the performance achieved for mobile image recognition

applications on mobile GPUs in terms of speedup and power

consumption in comparison to using the mobile CPU on the

same platform. However, in [86] a comparison between the

performance and power efficiency of mobile GPUs, a mobile

CPU, and a desktop GPU was made. An accelerated Gabor

face feature extraction on mobile GPUs was implemented as a

case study, and the results confirmed that utilizing the mobile

GPUs could achieve a significant performance speedup and a

substantial energy reduction, but a slight power increase, for

the proposed application.

b) Using the OpenCL programming model

The OpenCL is a new standard of the GPGPU tool for
mobile GPUs. Unlike the OpenGL ES 2.0, the OpenCL is a
pure parallel computing library on heterogeneous platforms
including the CPU, the GPU, and even the DSP.

In the literature, few studies [92, 93, 94] have been
interested in implementing general-purpose computing using
an OpenCL framework on mobile GPUs. Indeed, in [92] an
OpenCL Embedded Profile prototype emulated by the
OpenGL ES was demonstrated and its advantages in
performance and energy efficiency were also shown.
However, to the best of our knowledge, the work presented in
[93] introduced the first study of the GPGPU computing
capability using the OpenCL framework on real mobile GPUs.
Therefore, the indicated work suggested an accelerated object
removal algorithm, as a case study. The results showed that
offloading the core computations to mobile GPUs using the
OpenCL framework could significantly reduce the processing
time, hence the feasibility of intensive computing algorithms
such as computer vision for mobile devices. Recently, the
latter work has been resumed in [94] with more tests and
details.

Newly, in [95] a comparison between the GLSL and the
OpenCL as GPGPU software platforms has been presented in
terms of implementation efficiency and speed performance.
Another comparison between the mobile GPUs and CPU can
also be found in the same reference. As a case study, the
feature detection algorithms, SIFT and SURF, have been
parallelized and optimized on mobile GPUs. Accordingly, the
results have shown that the mobile GPUs has significantly
surpassed the comparable mobile CPU on the same platforms.
The implementation using the GLSL has been less efficient
even if it has a comparable performance with the OpenCL.
Furthermore, the power consumption on each implementation
has been measured and compared, which has shown that the
GLSL has consumed more energy than the OpenCL.

III. CONCLUSION

The ability of mobile platforms for image processing seems
to have achieved a tipping point since 2010, mainly because
several devices could benefit from offloading the processing to
the GPUs.

6

Despite the fact that some image processing algorithms
expressing a high degree of parallelism have been successfully
accelerated, using the OpenGL ES 2.0 and the OpenCL
frameworks, the emerging applications need more speedups.
So, efficient implementations of image processing techniques
are still remaining challenging tasks.

In order to efficiently and fully use the limited computation
resources on mobile processors, some points should be
carefully considered to achieve a high performance: (i) explore
the algorithmic parallelism, (ii) partition the tasks between the
CPU and the GPUs, (iii) optimize the overhead of CPU-GPUs
memory transfers, (iv) avoid useless access to the memory (v)
choose the appropriate programming model for using the
mobile GPGPU, (vi) and select the right hardware design
including a unified shader design, a tiling architecture, and a
texture compression.

According to this recent overview, to the best of our
knowledge, none of the mentioned researches have taken into
consideration the set of these points; so it will be interesting to
impose selection criteria in order to discover an efficient
parallelization strategy of image processing algorithms running
on low-power mobile GPUs, englobing all these points.

IV. REFERENCES

[1] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Real-time
computer vision with opencv,” Communications of the ACM, vol. 55,
no. 6, pp. 61–69, 2012.

[2] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5,
pp. 879–899, 2008.

[3] T. Akenine-Moller and J. Strom, “Graphics processing units for
handhelds,” Proceedings of the IEEE, vol. 96, no. 5, pp. 779–789, 2008.

[4] A. Munshi and J. Leech, “the khronos group, the opengl es
specification,” [Online]. Available: http://www.khronos.org/opengles

[5] A. Munshi, “the khronos group, the opencl specification,” [Online].
Available: http://www.khronos.org/opencl

[6] D. Wagner and D. Schmalstieg, “History and future of tracking for
mobile phone augmented reality,” in International Symposium on
Ubiquitous Virtual Reality, pp. 7–10, Citeseer, 2009.

[7] D.-N. Ta, W.-C. Chen, N. Gelfand, and K. Pulli, “Surftrac: Efficient
tracking and continuous object recognition using local feature
descriptors,” in Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pp. 2937–2944, IEEE, 2009.

[8] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and
D. Schmalstieg, “Pose tracking from natural features on mobile phones,”
in Proceedings of the 7th IEEE/ACM International Symposium on Mixed
and Augmented Reality, pp. 125–134, IEEE Computer Society, 2008.

[9] D. Wagner, D. Schmalstieg, and H. Bischof, “Multiple target detection
and tracking with guaranteed framerates on mobile phones,” in Mixed
and Augmented Reality, 2009. ISMAR 2009. 8th IEEE International
Symposium on, pp. 57–64, IEEE, 2009.

[10] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and
D. Schmalstieg, “Real-time detection and tracking for augmented reality
on mobile phones,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 16, no. 3, pp. 355–368, 2010.

[11] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg, “Real-time
panoramic mapping and tracking on mobile phones,” in Virtual Reality
Conference (VR), 2010 IEEE, pp. 211–218, IEEE, 2010.

[12] G. Klein and D. Murray, “Parallel tracking and mapping on a camera
phone,” in Mixed and Augmented Reality, 2009. ISMAR 2009. 8th IEEE
International Symposium on, pp. 83–86, IEEE, 2009.

[13] X. Yang and K.-T. Cheng, “Ldb: An ultra-fast feature for scalable
augmented reality on mobile devices,” in Mixed and Augmented Reality

(ISMAR), 2012 IEEE International Symposium on, pp. 49–57, IEEE,
2012.

[14] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in Computer Vision–ECCV 2006, pp. 404–417, Springer,
2006.

[15] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International journal of computer vision, vol. 60, no. 2,
pp. 91–110, 2004.

[16] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the
OpenCV library. O’Reilly Media, Inc., 2008.

[17] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust
independent elementary features,” in Computer Vision–ECCV 2010,
pp. 778–792, Springer, 2010.

[18] D. Wagner and D. Schmalstieg, “Artoolkitplus for pose tracking on
mobile devices,” in Proceedings of 12th Computer Vision Winter
Workshop (CVWW’07), pp. 139–146, 2007.

[19] J. Kim and H. Jun, “Implementation of image processing and augmented
reality programs for smart mobile device,” in Strategic Technology
(IFOST), 2011 6th International Forum on, vol. 2, pp. 1070–1073,
IEEE, 2011.

[20] H. Kato and M. Billinghurst, “Marker tracking and hmd calibration for a
video-based augmented reality conferencing system,” in Augmented
Reality, 1999.(IWAR’99) Proceedings. 2nd IEEE and ACM
International Workshop on, pp. 85–94, IEEE, 1999.

[21] B. Loulier, “Virtual reality on iphone,” [Online]. Available:
http://www.benjaminloulier.com/posts/virtual-reality-on-iphone-code-
inside

[22] X. Liu, Y. Lou, A. W. Yu, and B. Lang, “Search by mobile image based
on visual and spatial consistency,” in Multimedia and Expo (ICME),
2011 IEEE International Conference on, pp. 1–6, IEEE, 2011.

[23] V. Chandrasekhar, D. M. Chen, A. Lin, G. Takacs, S. S. Tsai, N.-M.
Cheung, Y. Reznik, R. Grzeszczuk, and B. Girod, “Comparison of local
feature descriptors for mobile visual search,” in Image Processing
(ICIP), 2010 17th IEEE International Conference on, pp. 3885–3888,
IEEE, 2010.

[24] Y. Liu, H. Zhang, L. Chai, and Y. Qi, “A foreground segmentation
method for mobile image retrieval system,” in Network Infrastructure
and Digital Content (IC-NIDC), 2012 3rd IEEE International
Conference on, pp. 492–497, IEEE, 2012.

[25] B. Girod, V. Chandrasekhar, D. M. Chen, N.-M. Cheung,
R. Grzeszczuk, Y. Reznik, G. Takacs, S. S. Tsai, and R. Vedantham,
“Mobile visual search,” Signal Processing Magazine, IEEE, vol. 28,
no. 4, pp. 61–76, 2011.

[26] S. S. Tsai, D. Chen, H. Chen, C.-H. Hsu, K.-H. Kim, J. P. Singh, and
B. Girod, “Combining image and text features: a hybrid approach to
mobile book spine recognition,” in Proceedings of the 19th ACM
international conference on Multimedia, pp. 1029–1032, ACM, 2011.

[27] S. S. Tsai, H. Chen, D. Chen, G. Schroth, R. Grzeszczuk, and B. Girod,
“Mobile visual search on printed documents using text and low bit-rate
features,” in Image Processing (ICIP), 2011 18th IEEE International
Conference on, pp. 2601–2604, IEEE, 2011.

[28] S. S. Tsai, H. Chen, D. Chen, R. Vedantham, R. Grzeszczuk, and
B. Girod, “Mobile visual search using image and text features,” in
Signals, Systems and Computers (ASILOMAR), 2011 Conference Record
of the Forty Fifth Asilomar Conference on, pp. 845–849, IEEE, 2011.

[29] G. Baatz, K. Köser, D. Chen, R. Grzeszczuk, and M. Pollefeys,
“Handling urban location recognition as a 2d homothetic problem,” in
Computer Vision–ECCV 2010, pp. 266–279, Springer, 2010.

[30] D. M. Chen, G. Baatz, K. Koser, S. S. Tsai, R. Vedantham,
T. Pylvanainen, K. Roimela, X. Chen, J. Bach, M. Pollefeys, et al.,
“City-scale landmark identification on mobile devices,” in Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on,
pp. 737–744, IEEE, 2011.

[31] F. X. Yu, R. Ji, and S.-F. Chang, “Active query sensing for mobile
location search,” in Proceedings of the 19th ACM international
conference on Multimedia, pp. 3–12, ACM, 2011.

7

[32] H. Li, Y. Wang, T. Mei, J. Wang, and S. Li, “Interactive multimodal
visual search on mobile device,” Multimedia, IEEE Transactions on,
vol. 15, no. 3, pp. 594–607, 2013.

[33] Y. Wang, T. Mei, J. Wang, H. Li, and S. Li, “Jigsaw: interactive mobile
visual search with multimodal queries,” in Proceedings of the 19th ACM
international conference on Multimedia, pp. 73–82, ACM, 2011.

[34] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk, and
B. Girod, “Chog: Compressed histogram of gradients a low bit-rate
feature descriptor,” in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pp. 2504–2511, IEEE, 2009.

[35] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 24, no. 5, pp. 603–619, 2002.

[36] H. Chen, S. S. Tsai, G. Schroth, D. M. Chen, R. Grzeszczuk, and
B. Girod, “Robust text detection in natural images with edge-enhanced
maximally stable extremal regions,” in Image Processing (ICIP), 2011
18th IEEE International Conference on, pp. 2609–2612, IEEE, 2011.

[37] T. Maruyama, Y. Kawano, and K. Yanai, “Real-time mobile recipe
recommendation system using food ingredient recognition,” in
Proceedings of the 2nd ACM international workshop on Interactive
multimedia on mobile and portable devices, pp. 27–34, ACM, 2012.

[38] A. F. Mollah, S. Basu, and M. Nasipuri, “Segmentation of camera
captured business card images for mobile devices,” arXiv preprint
arXiv:1101.0457, 2011.

[39] J. Ren, X. Jiang, and J. Yuan, “A fast and accurate cascade subspace
face/eye detector on mobile devices,” in Computer Vision Workshops
(ICCV Workshops), 2011 IEEE International Conference on, pp. 84–91,
IEEE, 2011.

[40] G. Yang and J. N. Luo, “A real-time face recognition system for android
smart phone,” Advanced Materials Research, vol. 756, pp. 4006–4010,
2013.

[41] E. Vazquez-Fernandez, H. Garcia-Pardo, D. Gonzalez-Jimenez, and
L. Perez-Freire, “Built-in face recognition for smart photo sharing in
mobile devices,” in Multimedia and Expo (ICME), 2011 IEEE
International Conference on, pp. 1–4, IEEE, 2011.

[42] B. Chen, J. Shen, and H. Sun, “A fast face recognition system on mobile
phone,” in Systems and Informatics (ICSAI), 2012 International
Conference on, pp. 1783–1786, IEEE, 2012.

[43] J. Oh, S.-I. Choi, C. Kim, J. Cho, and C.-H. Choi, “Selective generation
of gabor features for fast face recognition on mobile devices,” Pattern
Recognition Letters, vol. 34, no. 13, pp. 1540–1547, 2013.

[44] D. Bong, L. Ngui, and A. Joseph, “Skin color segmentation in mobile
platform,” in Industrial Electronics & Applications (ISIEA), 2010 IEEE
Symposium on, pp. 646–650, IEEE, 2010.

[45] C. Doukas and I. Maglogiannis, “A fast mobile face recognition system
for android os based on eigenfaces decomposition,” in Artificial
Intelligence Applications and Innovations, pp. 295–302, Springer, 2010.

[46] R. F. Sari and P. Indrawan, “Cloud computing services in mobile
devices using android face detector api and rest communication,” in The
Third International Conference on Digital Information Processing and
Communications (ICDIPC2013), pp. 529–537, The Society of Digital
Information and Wireless Communication, 2013.

[47] T. Lee and S. Soatto, “Learning and matching multiscale template
descriptors for real-time detection, localization and tracking,” in
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pp. 1457–1464, IEEE, 2011.

[48] X. Yang and K.-T. T. Cheng, “Accelerating surf detector on mobile
devices,” in Proceedings of the 20th ACM international conference on
Multimedia, pp. 569–578, ACM, 2012.

[49] R. B. Gomes, R. V. Aroca, B. M. de Carvalho, and L. M. G. Gonçalves,
“Real time interactive image segmentation using user indicated real-
world seeds,” in Graphics, Patterns and Images (SIBGRAPI), 2012 25th
SIBGRAPI Conference on, pp. 182–189, IEEE, 2012.

[50] D. Liu, K. Pulli, L. G. Shapiro, and Y. Xiong, “Fast interactive image
segmentation by discriminative clustering,” in Proceedings of the 2010
ACM multimedia workshop on Mobile cloud media computing, pp. 47–
52, ACM, 2010.

[51] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on, vol. 1, pp. I–511, IEEE, 2001.

[52] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of
cognitive neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[53] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 24, no. 7, pp. 971–987, 2002.

[54] C. Liu and H. Wechsler, “Gabor feature based classification using the
enhanced fisher linear discriminant model for face recognition,” Image
processing, IEEE Transactions on, vol. 11, no. 4, pp. 467–476, 2002.

[55] N. A. bin Abdul Rahman, K. C. Wei, and J. See, “Rgb-h-cbcr skin
colour model for human face detection,” Faculty of Information
Technology, Multimedia University, 2007.

[56] J. Roy and A. Ramanujan, “Understanding web services,” IT
professional, vol. 3, no. 6, pp. 69–73, 2001.

[57] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud computing:
Principles and paradigms, vol. 87. John Wiley & Sons, 2010.

[58] R. Fielding, “Representational state transfer,” Architectural Styles and
the Design of Netowork-based Software Architecture, pp. 76–85, 2000.

[59] B. D. Lucas, T. Kanade, et al., “An iterative image registration
technique with an application to stereo vision.,” in IJCAI, vol. 81,
pp. 674–679, 1981.

[60] B. M. Carvalho, G. T. Herman, and T. Y. Kong, “Simultaneous fuzzy
segmentation of multiple objects,” Discrete Applied Mathematics,
vol. 151, no. 1, pp. 55–77, 2005.

[61] R. Zabih and V. Kolmogorov, “Spatially coherent clustering using graph
cuts,” in Computer Vision and Pattern Recognition, 2004. CVPR 2004.
Proceedings of the 2004 IEEE Computer Society Conference on, vol. 2,
pp. II–437, IEEE, 2004.

[62] L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient
algorithm based on immersion simulations,” IEEE transactions on
pattern analysis and machine intelligence, vol. 13, no. 6, pp. 583–598,
1991.

[63] J. Ning, L. Zhang, D. Zhang, and C. Wu, “Interactive image
segmentation by maximal similarity based region merging,” Pattern
Recognition, vol. 43, no. 2, pp. 445–456, 2010.

[64] S. Battiato, G. Farinella, E. Messina, G. Puglisi, D. Rav, A. Capra, and
V. Tomaselli, “On the performances of computer vision algorithms on
mobile platforms,” in ÌS&T/SPIE Electronic Imaging, pp. 82990L–
82990L, International Society for Optics and Photonics, 2012.

[65] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in Computer Vision–ECCV 2006, pp. 430–443, Springer,
2006.

[66] M. Agrawal, K. Konolige, and M. R. Blas, “Censure: Center surround
extremas for realtime feature detection and matching,” in Computer
Vision–ECCV 2008, pp. 102–115, Springer, 2008.

[67] S. Srinivasan, Z. Fang, R. Iyer, S. Zhang, M. Espig, D. Newell,
D. Cermak, Y. Wu, I. Kozintsev, and H. Haussecker, “Performance
characterization and optimization of mobile augmented reality on
handheld platforms,” in Workload Characterization, 2009. IISWC 2009.
IEEE International Symposium on, pp. 128–137, IEEE, 2009.

[68] S. E. Lee, Y. Zhang, Z. Fang, S. Srinivasan, R. Iyer, and D. Newell,
“Accelerating mobile augmented reality on a handheld platform,” in
Computer Design, 2009. ICCD 2009. IEEE International Conference
on, pp. 419–426, IEEE, 2009.

[69] M. El Choubassi, O. Nestares, Y. Wu, I. Kozintsev, and H. Haussecker,
“An augmented reality tourist guide on your mobile devices,” in
Advances in Multimedia Modeling, pp. 588–602, Springer, 2010.

[70] Y. Kawano and K. Yanai, “Real-time mobile food recognition system,”
in Computer Vision and Pattern Recognition Workshops (CVPRW),
2013 IEEE Conference on, pp. 1–7, IEEE, 2013.

[71] Y. Kawano and K. Yanai, “Foodcam: A real-time mobile food
recognition system employing fisher vector,” in MultiMedia Modeling,
pp. 369–373, Springer, 2014.

8

[72] Y. Kawano and K. Yanai, “Foodcam: A real-time food recognition
system on a smartphone,” Multimedia Tools and Applications, pp. 1–25,
2014.

[73] S. Srinivasan, L. Zhao, L. Sun, Z. Fang, P. Li, T. Wang, R. Iyer,
R. Illikkal, and D. Liu, “Performance characterization and acceleration
of optical character recognition on handheld platforms,” in Workload
Characterization (IISWC), 2010 IEEE International Symposium on,
pp. 1–10, IEEE, 2010.

[74] A. Vedaldi and A. Zisserman, “Efficient additive kernels via explicit
feature maps,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 34, no. 3, pp. 480–492, 2012.

[75] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: Interactive
foreground extraction using iterated graph cuts,” in ACM Transactions
on Graphics (TOG), vol. 23, pp. 309–314, ACM, 2004.

[76] F. Perronnin, J. Sánchez, and Y. Liu, “Large-scale image categorization
with explicit data embedding,” in Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pp. 2297–2304, IEEE,
2010.

[77] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1, pp. 886–893,
IEEE, 2005.

[78] A. Ensor and S. Hall, “Gpu-based image analysis on mobile devices,”
arXiv preprint arXiv:1112.3110, 2011.

[79] C.-H. Chou, P. Liu, T. Wu, Y. Chien, and Y. Zhao, “Implementation of
parallel computing fast algorithm on mobile gpu,” in Unifying Electrical
Engineering and Electronics Engineering, pp. 1275–1281, Springer,
2014.

[80] R. Hofmann, H. Seichter, and G. Reitmayr, “A gpgpu accelerated
descriptor for mobile devices.,” in ISMAR, pp. 289–290, 2012.

[81] N. Singhal, J. W. Yoo, H. Y. Choi, and I. K. Park, “Implementation and
optimization of image processing algorithms on embedded gpu,” IEICE
TRANSACTIONS on Information and Systems, vol. 95, no. 5, pp. 1475–
1484, 2012.

[82] N. Singhal, I. K. Park, and S. Cho, “Implementation and optimization of
image processing algorithms on handheld gpu,” in Image Processing
(ICIP), 2010 17th IEEE International Conference on, pp. 4481–4484,
IEEE, 2010.

[83] N. Singhal, J. W. Yoo, H. Y. Choi, and I. K. Park, “Design and
optimization of image processing algorithms on mobile gpu,” in ACM
SIGGRAPH 2011 Posters, p. 21, ACM, 2011.

[84] B. Rister, G. Wang, M. Wu, and J. R. Cavallaro, “A fast and efficient
sift detector using the mobile gpu,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on,
pp. 2674–2678, IEEE, 2013.

[85] M. B. López, H. Nykänen, J. Hannuksela, O. Silvén, and
M. Vehviläinen, “Accelerating image recognition on mobile devices
using gpgpu,” in IS&T/SPIE Electronic Imaging, pp. 78720R–78720R,
International Society for Optics and Photonics, 2011.

[86] K.-T. Cheng and Y.-C. Wang, “Using mobile gpu for general-purpose
computing–a case study of face recognition on smartphones,” in VLSI
Design, Automation and Test (VLSI-DAT), 2011 International
Symposium on, pp. 1–4, IEEE, 2011.

[87] J. Canny, “A computational approach to edge detection,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, no. 6,
pp. 679–698, 1986.

[88] T. Strothotte and S. Schlechtweg, Non-photorealistic computer
graphics: modeling, rendering, and animation. Elsevier, 2002.

[89] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nister, “Real-
time global stereo matching using hierarchical belief propagation.,” in
BMVC, vol. 6, pp. 989–998, 2006.

[90] C. Harris and M. Stephens, “A combined corner and edge detector.,” in
Alvey vision conference, vol. 15, p. 50, Manchester, UK, 1988.

[91] G.-R. Kayombya, SIFT feature extraction on a Smartphone GPU using
OpenGL ES2. 0. PhD thesis, Massachusetts Institute of Technology,
2010.

[92] J. Leskela, J. Nikula, and M. Salmela, “Opencl embedded profile
prototype in mobile device,” in Signal Processing Systems, 2009. SiPS
2009. IEEE Workshop on, pp. 279–284, IEEE, 2009.

[93] G. Wang, Y. Xiong, J. Yun, and J. R. Cavallaro, “Accelerating computer
vision algorithms using opencl framework on the mobile gpu-a case
study,” in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, pp. 2629–2633, IEEE, 2013.

[94] G. Wang, Y. Xiong, J. Yun, and J. R. Cavallaro, “Computer vision
accelerators for mobile systems based on opencl gpgpu co-processing,”
Journal of Signal Processing Systems, pp. 1–17, 2014.

[95] S. H. Kang, S. J. Lee, and I. K. Park, “Parallelization and optimization
of feature detection algorithms on embedded gpu,” in International
Workshop on Advanced Image Technology, pp. 164–167, 2014.

