Jérôme Dedecker 
  
Florence Merlevède 
  
Emmanuel Rio 
  
  
Rates of convergence in the central limit theorem for martingales in the non stationary setting

Keywords: Minimal distances, ideal distances, Gaussian approximation, Berry-Esseen type inequalities, martingales, ρ-mixing sequences, sequential dynamical systems Mathematics Subject Classification (2020). 60F05, 60G42, 60G48

In this paper, we give rates of convergence, for minimal distances and for the uniform distance, between the law of partial sums of martingale differences and the limiting Gaussian distribution. More precisely, denoting by P X the law of a random variable X and by G a the normal distribution N (0, a), we are interested by giving quantitative estimates for the convergence of P Sn/ √ Vn to G 1 , where S n is the partial sum associated with either martingale differences sequences or more general dependent sequences, and V n = Var(S n ). Applications to linear statistics, non stationary ρ-mixing sequences, and sequential dynamical systems are given.

Introduction and Notations

Let (ξ i ) i∈N denote a sequence of martingale differences in L 2 , with respect to the increasing filtration (F i ) i∈N . Let M n = n k=1 ξ k and V n = n k=1 E(ξ 2 k ). If

V -1/2 n E max 1≤i≤n |ξ i | → 0 and V -1 n n k=1 ξ 2 k → P 1 as n → ∞, (1.1) 
then V -1/2 n M n converges in distribution to a standard normal variable (see [START_REF] Gänssler | Remarks on the functional central limit theorem for martingales[END_REF]). Other sets of conditions implying the central limit theorem can be found in [START_REF] Helland | Central limit theorems for martingales with discrete or continuous time[END_REF]. In particular, under the first part of condition (1.1), its second part is implied by

V -1 n M n → P 1 as n → ∞, where M n := n k=1 E(ξ 2 k |F k-1 ) .
We are interested in bounds on the speed of convergence in this central limit theorem and in particular by giving upper bounds for the L 1 and L ∞ distances defined respectively as ∆ n,1

:= F n -Φ 1 and ∆ n,∞ := F n -Φ ∞ , (1.2) 
where F n is the cdf of M n / √ V n and Φ is the cdf of a standard normal variable. Both of these distances have their own interests. For instance, ∆ n,∞ provides useful estimates of the quantile F -1 n (u) of M n / √ V n when min(u, 1 -u) is large enough, whereas the L 1distance provides estimates of the super quantile (also called the conditional value at risk) as stated in [23, Theorem 2].

Concerning the L ∞ -distance ∆ n,∞ for martingales, several results have been obtained under different kinds of assumptions.

One of the first results is due to Heyde and Brown [START_REF] Heyde | On the departure from normality of a certain class of martingales[END_REF] and can be stated as follows. For p ∈]2, 4], there exists a positive constant C p such that for any n ≥ 1,

∆ n,∞ ≤ C p V -1 n M n -1 p/2 p/2 + V -p/2 n n k=1 E(|ξ k | p ) 1/(p+1)
.

(

This result has been extended to any p ∈ (2, ∞) by Haeusler [START_REF] Haeusler | On the rate of convergence in the central limit theorem for martingales with discrete and continuous time[END_REF]. See also Mourrat [START_REF] Mourrat | On the rate of convergence in the martingale central limit theorem[END_REF] for an improvement of (1.3) in the bounded case. If the conditional variances are constant meaning that E(ξ 2 k |F k-1 ) = E(ξ 2 k ) a.s. for any k, and if

sup i≥1 E(|ξ i | p ) E(|ξ i | 2 ) < ∞ , (1.4) 
the rates in the central limit theorem in terms of the L ∞ -distance are of order V -(p-2)/(2p+2) n . For p = 3 this gives the rate V -1/8 n . However in that case, under the additional assumption that there exist two positive constants α and β such that for any i ≥ 1, α ≤ E(|ξ i | 2 ) ≤ β, Grams [START_REF] Grams | Rates of convergence in the central limit theorem for dependent variables[END_REF] proved that the rate is of order V -1/4 n (see Theorem 1 in Bolthausen [START_REF] Bolthausen | Exact convergence rates in some martingale central limit theorems[END_REF]). Even if this rate can appear to be poor compared with the iid case, it cannot be improved without additional assumptions as shown in [2, Section 6, Example 1]. More generally, when p ∈ (2, 3), under the same condition on the conditional variances and assuming (1.4), one can reach the rate V -(p-2)/(2p-2) n (see our Corollary 3.1). Again this rate cannot be improved without additional assumptions as shown by our Proposition 3.1. The paper [START_REF] El Machkouri | Exact convergence rates in the central limit theorem for a class of martingales[END_REF] is in this direction. For instance, still in the case where the conditional variances are constant, Theorem 2 in [START_REF] El Machkouri | Exact convergence rates in the central limit theorem for a class of martingales[END_REF] states that ∆ n,∞ ≤ CV -1/2 n log n provided V n ≤ 4 n and there exists γ > 0 such that E(|ξ k | 3 |F k-1 ) ≤ γE(ξ 2 k |F k-1 ) a.s. for any k (see [START_REF] Fan | Exact rates of convergence in some martingale central limit theorems[END_REF] for related results). Let us now comment on the quantity V -1 n M n -1 p/2 appearing in the right hand side of (1.2) when it is not equal to zero. For stationary sequences (except in some degenerate cases), V -1 n M n -1 p/2 is typically of order V -1/2 n which leads at best to the rate V -p/(4p+4) n

. It is therefore clear that, in these non-degenerate situations, the rate V -1/4 n cannot be reached, whatever the value of p.

One of the goals of this paper is to give tractable conditions (not assuming that

E(ξ 2 k |F k-1 ) = E(ξ 2 k ) a.s. or V -1 n M n = 1 a.s.) for p ∈ (2, 3] under which the rate V -(p-2)/(2p-2) n
can be reached for ∆ n,∞ (up to a logarithmic term when p = 3). These conditions will be expressed with the help of quantities involving a sum of conditional expectations and allow to use martingale approximations techniques, as introduced by Gordin [START_REF] Gordin | The central limit theorem for stationary processes[END_REF] (see also Volný [27]), to get rates when the sequence is not a martingale differences sequence. Applications via martingale approximations are provided in Section 4. The case of sequential dynamical systems as developed by Conze and Raugi [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1[END_REF] is considered in Subsection 4.3.

To derive the rates concerning ∆ n,∞ , we shall rather work with minimal distances also called Wasserstein distances of order r (see Inequality (3.1) below for the connection between ∆ n,∞ and these distances). In particular, we shall also exhibit rates for the minimal distance ∆ n,1 (see the equality (1.8) below).

Let us recall the definitions of these minimal distances. Let L(µ, ν) be the set of probability laws on R 2 with marginals µ and ν. Let us consider the following minimal distances: for any r > 0, W r (µ, ν) = inf |x -y| r P (dx, dy) : P ∈ L(µ, ν) .

We consider also the following ideal distances of order r (Zolotarev distances of order r).

For two probability measures µ and ν, and r a positive real, let

ζ r (µ, ν) = sup f dµ -f dν : f ∈ Λ r ,
where Λ r is defined as follows: denoting by l the natural integer such that l < r ≤ l + 1, Λ r is the class of real functions f which are l-times continuously differentiable and such that

|f (l) (x) -f (l) (y)| ≤ |x -y| r-l for any (x, y) ∈ R × R . (1.5)
For r ∈]0, 1], applying the Kantorovich-Rubinstein theorem (see for instance [START_REF] Dudley | Real analysis and probability[END_REF]Theorem 11.8.2]) to the metric d(x, y) = |x -y| r , we infer that

W r (µ, ν) = ζ r (µ, ν) . (1.6)
For r > 1 and for probability laws on the real line, the following inequality holds

W r (µ, ν) ≤ c r ζ r (µ, ν) 1/r , (1.7) 
where c r is a constant depending only on r (see [START_REF] Rio | Upper bounds for minimal distances in the central limit theorem[END_REF]Theorem 3.1]). Note that for r = 1, (1.6) ensures that

W 1 (P Mn/ √ V n , G 1 ) = ζ 1 (P Mn/ √ V n , G 1 ) = ∆ n,1 , (1.8) 
where P Mn/

√

V n is the law of M n / √ V n and G 1 the N (0, 1) distribution. The paper is organized as follows. In Section 2, we give rates in terms of Zolotarev and then in terms of Wasserstein distances between the law of the martingale having a moment of order p ∈ (2, 3] and the Gaussian distribution with the same variance. Upper and lower bounds for the uniform distance ∆ n,∞ are provided in Section 3. Applications to linear statistics associated with stationary sequences, ρ-mixing sequences in the sense of Kolmogorov and Rozanov [START_REF] Kolmogorov | On a strong mixing condition for stationary Gaussian processes[END_REF] and sequential dynamical systems are presented in Section 4. All the proofs are postponed to Section 5.

In the rest of the paper, we shall use the following notations: we will denote by P X the law of a r.v. X and by G a the N (0, a) distribution, and for two sequences (a n ) n≥1 and (b n ) n≥1 of positive reals, a n b n means there exists a positive constant C not depending on n such that a n ≤ Cb n for any n ≥ 1. Moreover, given a filtration F , we shall often use the notation

E (•) = E(•|F ).

Rates for Zolotarev and Wasserstein distances

In this section (ξ i ) i∈N will denote a sequence of martingale differences in L 2 , with respect to the increasing filtration (F i ) i∈N and with E(ξ 2 i ) = σ 2 i . We shall use the following notations:

M n = n i=1 ξ i , V n = n i=1 σ 2 i , δ n = max 1≤i≤n |σ i | , v n (a) = a 2 δ 2 n + αV n ,
where a is a positive real and α = (1 + a 2 )/a 2 . Moreover, for p ≥ 2 and ≥ 2, we denote by

U ,n (p) = (|ξ -1 | ∨ σ -1 ) p-2 n k= (E -1 (ξ 2 k ) -σ 2 k ) 1 .
(2.1)

Theorem 2.1. Let p ∈]2, 3] and r ∈ (0, p]. There exist positive constants C r,p depending on (r, p) and κ r depending on r such that for every positive integer n and any a ≥ 1,

ζ r (P Mn , G Vn ) ≤ C r,p δ r n √ vn(a)/δ 2 n a 1 x 3-r dx+δ r-1 n √ vn(a)/δ 2 n a ψ n (κ r x) x 2-r dx+L n (p, r, aδ n ) + 4 √ 2a r δ r n , (2.2) 
where

ψ n (t) = sup 1≤k≤n E inf(tδ n ξ 2 k , |ξ k | 3 ) σ 2 k (2.3) and L n (p, r, aδ n ) = n =2 U ,n (p) (V n -V -1 + a 2 δ 2 n ) (p-r)/2 .
(2.4)

Remark 2.1. Let p ∈]2, 3] and r ∈ (0, p]. Using (1.6) or (1.7), the fact that

ζ r (P Mn/ √ Vn , G 1 ) = V -r/2 n ζ r (P Mn , G Vn )
and inequality (2.2), we derive upper bounds for W r (P Mn/ √ Vn , G 1 ) and then rates in the central limit theorem. In particular for W r (P Mn/ √ Vn , G 1 ) to converge to zero as n → ∞ it is necessary that V -1/2 n max 1≤i≤n |σ i | → 0 as n → ∞ which is also a necessary condition for the CLT to hold.

In particular, for r ∈ (0, 1], the following corollary holds.

Corollary 2.1. Let p ∈]2, 3] and r ∈ (0, 1]. Under the assumptions and notations of Theorem 2.1, there exists a positive constant C r,p depending on (r, p) such that

W r (P Mn , G Vn ) ≤ 4 √ 2(aδ n ) r + C r,p √ vn(a)/δ 2 n a ψ n (6x) x dx + L n (p, r, aδ n ) .
In particular if the ξ i 's are in L p with p ∈]2, 3] and (r, p) = (1, 3),

W r (P Mn , G Vn ) ≤ 4 √ 2(aδ n ) r + Cr,p sup 1≤k≤n E(|ξ k | p ) σ 2 k (v n (a)) (2+r-p)/2 + L n (p, r, aδ n ) ,
and if the ξ i 's are in L 3 ,

W 1 (P Mn , G Vn ) ≤ 4 √ 2aδ n + C3 sup 1≤k≤n E(|ξ k | 3 ) σ 2 k log( v n (a)/δ n ) + L n (3, 1, aδ n ) .
Remark 2.2. Note that if (ξ i ) i≥1 is a sequence of integer valued random variables then, whatever its dependence structure, setting S n = n k=1 ξ i and proceeding as in the proof of [START_REF] Rio | Upper bounds for minimal distances in the central limit theorem[END_REF]Theorem 5.1] we derive that for any r > 0,

lim inf n→∞ W r (P Sn , G Var(Sn) ) max(1,r) ≥ 2 -r /(r + 1) provided Var(S n ) → ∞ as n → ∞. Hence, in the case of martingale differences, if p ∈ (2, 3), sup 1≤k≤n σ -2 k E(|ξ k | p ) ≤ C 1 and L n (p, p -2, δ n ) ≤ C 2 , we get 2 -(p-2) /(p -1) ≤ lim inf n→∞ W p-2 (P Mn , G Vn ) ≤ lim sup n→∞ W p-2 (P Mn , G Vn ) ≤ K for some positive constant K. In addition, if p = 3, sup 1≤k≤n σ -2 k E(|ξ k | 3 ) ≤ C 1 and L n (3, 1, δ n ) ≤ C 2 , we have W 1 (P Mn , G Vn ) log( v n (1)/δ n ) .
3 Berry-Esseen type results

Using [START_REF] Dedecker | Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF]Remark 2.4] stating that, for any p ∈]2, 3] and any integrable real-valued random variable Z, 

sup x∈R P(Z ≤ x) -Φ(x) ≤ (1 + (2π) -1/2 ) W p-2 (P Z , G 1 ) 1/(p-
∆ n,∞              V - (p-2) 2(p-1) n sup 1≤k≤n E(|ξ k | p ) σ 2 k + L n (p, p -2, δ n ) 1/(p-1)
if p ∈ (2, 3)

V -1/4 n sup 1≤k≤n E(|ξ k | 3 ) σ 2 k log( v n (1)/δ n ) + L n (3, 1, δ n ) 1/2 if p = 3.
In particular if

sup 1≤k≤n E(|ξ k | p ) σ 2 k ≤ C and E(ξ 2 k |F k-1 ) = σ 2 k a.s. (3.2) it follows that ∆ n,∞    V - (p-2) 2(p-1) n if p ∈ (2, 3) V -1/4 n log 1/2 ( v n (1)/δ n ) if p = 3.
It turns out that one can construct a non stationary sequence of martingale differences satisfying (3.2) with σ 2 k = 1 and such that there exists a positive constant c > 0 for which ∆ n ≥ cn

- (p-2)
2(p-1) for any p > 2 and any n ≥ 20. This shows that for p ∈ (2, 3) the rate given in Corollary 3.1 is optimal and quasi optimal (up to 2) , where S n = n k=1 X k .

√ log n) in case p = 3. Proposition 3.1. Let p > 2 and n ≥ 20. There exists (X 1 , . . . , X n ) such that 1. E(X k |σ(X 1 , . . . , X k-1 )) = 0 and E(X 2 k |σ(X 1 , . . . , X k-1 )) = 1 a.s., 2. sup 1≤k≤n E(|X k | p ) ≤ E(|Y | p ) + 5 p-2 where Y ∼ N (0, 1), 3. sup t∈R P(S n ≤ t √ n) -Φ(t) ≥ 0.06 n -(p-2)/(2p-
Note that in case p = 3, Example 1 in [START_REF] Bolthausen | Exact convergence rates in some martingale central limit theorems[END_REF] also shows that even for martingales with conditional variances equal to one and moments of order 3 uniformly bounded, the rate n -1/4 cannot be improved in general.

Proof of Proposition 3.1. Let n be an integer satisfying n ≥ 20. Let a be a real in [1, √ n/4[, to be fixed later, and k = inf{j ∈ N : j ≥ 4a 2 }. Then k < 1 + (n/4), which ensures that k < n. Set m = n -k. We now define the sequence (X j ) j∈ [1,n] of martingale differences as follows.

(i) The random variables (X j ) j∈ [1,m] are independent and identically distributed with common law the standard normal law.

(ii) Let U m+1 , . . . , U n be a sequence of independent random variables with uniform distribution over [0, 1], independent of (X 1 , X 2 , . . . , X m ). Let

S m = X 1 + X 2 + • • • + X m . If |S m | / ∈ [a, 2a], set X j = Φ -1 (U j ) for any j in [m + 1, n]. If |S m | ∈ [a, 2a], set X j = -(S m /k)I U j ≤k 2 /(S 2 m +k 2 ) + (k/S m )I U j >k 2 /(S 2 m +k 2 ) . (3.3)
From the definition of the random variables

X j , if |S m | ∈ [a, 2a] and U j ≤ k 2 /(S 2 m + k 2 ) for any j in [m + 1, n], then S n = 0. It follows that P(S n = 0) ≥ exp -k log(1 + 4a 2 /k 2 ) 2 √ 2πm 2a a exp(-x 2 /2m)dx. (3.4) 
We now estimate the conditional moments of the random variables X j for j > m. From the definition of these random variables, for any measurable function f such that f (X j ) is integrable

E(f (X j ) | F j-1 ) = E(f (X j ) | S m ). (3.5) Now, if (S m = x) for some x such that |x| / ∈ [a, 2a], then X j = Φ -1 (U j ) and consequently E(X j | S m = x) = 0 , E(X 2 j | S m = x) = 1 and E(|X j | p | S m = x) = E(|Y | p ) (3.6) 
for any p > 0. Here Y is a random variable with law N (0, 1). Next, if (S m = x) for some x such that |x| ∈ [a, 2a], then, according to (3.3),

E(X j | S m = x) = 0 , E(X 2 j | S m = x) = 1 (3.7)
and, for any p > 2,

E(|X j | p | S m = x) = |x| p k 2-p + k p |x| 2-p x 2 + k 2 . (3.8) In that case, since k ∈ [4a 2 , 5a 2 ] and |S n | ∈ [a, 2a], E(|X j | p | S m = x) ≤ |x| p k -p + k p-2 |x| 2-p ≤ 1 + (5a) p-2 ≤ 2 (5a) p-2 .
(3.9)

From (3.6), the above upper bound and the fact that, since n ≥ 20, m ≥ (3n/4) -1 ≥ (7n/10) and then 2) in the above inequality, we get that

E(|X j | p ) ≤ E(|Y | p ) + 2 (5a) p-2 P(|S m | ∈ [a, 2a]) ≤ E(|Y | p ) + 5 p-2 2a p-1 n -1/2 . (3.10) Now, for p > 2, choosing a = (n/4) 1/(2p-
E(|X j | p ) ≤ E(|Y | p ) + 5 p-2 . (3.11)
Consequently, for this choice of a, the absolute moments of order p of the random variables X j are bounded by some positive constant depending only on p. Now, using (3.4) we bound from below P(S n = 0). First 4a 2 ≤ k, which ensures that exp -k log(1 + 4a 2 /k 2 ) ≥ 1/e, and second, for x in [a, 2a], exp(-x 2 /2m) ≥ exp(-2a 2 /m) ≥ exp(-n/8m) ≥ exp(-10/56) since a 2 ≤ n/16 and m ≥ 7n/10. Hence P(S n = 0) ≥ 0.24 an -1/2 ≥ 0.12 n -(p-2)/(2p-2) .

(3.12)

Therefrom, Item 3 of the proposition follows.

Applications

Proposition 5.1 of Section 5 (which is the main ingredient for proving Theorem 2.1), combined with a suitable martingale approximation, can also be used to derive upper bounds for the Wasserstein distances between the law of partial sums of non necessarily stationary sequences and the corresponding limiting Gaussian distribution. This leads to new results for linear statistics, ρ-mixing sequences and sequential dynamical systems. Note that for these non stationary dynamical systems, a reversed martingale version of our Theorem 2.1 will be needed.

Linear statistics

Let p ∈]2, 3] and (Y i ) i∈Z be a strictly stationary sequence of centered real-valued random variables in

L p . Let G k = σ(Y i , i ≤ k). Define γ k = Cov(Y 0 , Y k ) and λ k = max Y 0 E(Y k |G 0 ) p/2 , sup j≥i≥k E(Y i Y j |G 0 )) -E(Y i Y j ) p/2 .
Let also

Λ n = n i=1 iλ i and η n = n i=0 E(Y i |G 0 ) p . (4.1) 
Let (α i,n ) i≥1 a triangular array of real numbers and define

m n = max 1≤ ≤n |α ,n | , X i,n = α i,n Y i , S n = n i=1 X i,n and V n = Var(S n ) .
We refer to S n as a "linear statistic" based on the stationary sequence (Y i ) i∈Z . Such linear statistics appear in many statistical contexts, for instance when considering least square estimators in a regression model with stationary errors (see for instance [START_REF] Dedecker | Rates of convergence in the central limit theorem for linear statistics of martingale differences[END_REF]).

In the two corollaries below we shall assume that

k≥0 |γ k | < ∞ which implies in particular that (Y i ) i∈Z has a bounded spectral density f Y (θ) = 1 2π k∈Z γ k e ikθ on [-π, π].
Moreover, in the first corollary, we assume in addition that the spectral density is bounded away from 0 (we refer to [START_REF] Bradley | On positive spectral density[END_REF] for conditions ensuring such a fact). To state these corollaries, it is convenient to introduce the following quantity:

B(n, p) :=            m p-2 n η p-2 n (Λ n + η 2 n ) n =1 α 2 ,n (3-p)/2 if p ∈ (2, 3) m n η n (Λ n + η 2 n ) log m -1 n n =1 α 2 ,n if p = 3. (4.2) Corollary 4.1. Let p ∈ (2, 3]. Assume that k≥0 |γ k | < ∞ and that inf t∈[-π,π] |f Y (t)| = m > 0. Then W 1 (P Sn , G Vn ) m n n k=0 E(Y k |G 0 ) 2 + B(n, p) . Note that if i≥1 E(Y i |G 0 ) 2 < ∞ , (4.3) 
then k≥0 |γ k | < ∞ (see for instance [18, p. 106]). If in addition to (4.3), we assume that sup n≥0 (Λ n + η n ) < ∞, then we get

W 1 (P Sn , G Vn )            m p-2 n n =1 α 2 ,n (3-p)/2 if p ∈ (2, 3) m n log m -1 n n =1 α 2 ,n if p = 3. (4.4)
For additional results in the special case where (Y i ) i∈Z is a stationary sequence of martingale differences, we refer to [START_REF] Dedecker | Rates of convergence in the central limit theorem for linear statistics of martingale differences[END_REF].

Remark 4.1. If, for any positive k,

lim n→∞ n-k =1 α ,n α +k,n n =1 α 2 ,n = c k ,
and k≥0 |γ k | < ∞, then V n n =1 α 2 ,n → σ 2 = γ 0 + 2 k≥1 c k γ k , as n → ∞ . (4.5) Moreover if inf t∈[-π,π] |f Y (t)| = m > 0, then σ 2 > 0. Let T n = S n / n =1 α 2 ,n . Under (4.3) and if f Y is bounded away from zero, sup n≥0 (Λ n + η n ) < ∞ and (4.5) holds, it follows that W 1 (P Tn , G σ 2 ) V 1/2 n n =1 α 2 ,n -σ +                    m n n =1 α 2 ,n   p-2 if p ∈ (2, 3) m n n =1 α 2 ,n log m -1 n n =1 α 2 ,n if p = 3.
In case where

α k,n = κk α with α > -1/2, then m n ( n =1 α 2 ,n ) -1/2 is exactly of order n -(α+1/2) 1 -1/2<α<0 + n -1/2 1 α≥0 and we can show (since i≥1 i|γ i | < ∞ and σ > 0), that V 1/2 n n =1 α 2 ,n -σ = O(1/n) .
Hence, for instance if α ≥ 0,

W 1 (P Tn , G σ 2 ) n -(p-2)/2 if p ∈ (2, 3) n -1/2 log(n) if p = 3.
Remark 4.2. Let (α Y (k)) k>0 be the usual Rosenblatt strong mixing coefficients [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] of the sequence (Y i ) i∈Z . If we assume that

P(|Y 0 | ≥ t) ≤ Ct -s for some s > p and k≥1 k(α Y (k)) 2/p-2/s < ∞ ,
then condition (4.3) holds and sup n≥0 (Λ n + η n ) < ∞. Hence in this case (4.4) holds and Remark 4.1 applies.

If we do not require the spectral density bounded away from 0 but only that f Y (0) > 0 then an additional term appears in the bound of the Wasserstein distance between P Sn and G Vn .

Corollary 4.2. Let p ∈ (2, 3]. Assume that k≥1 k 2 |γ k | < ∞ and f Y (0) > 0. Then W 1 (P Sn , G Vn ) m n n k=0 E(Y k |G 0 ) 2 + B(n, p) + n+1 k=1 (α k,n -α k-1,n ) 2 1/2 ,
where B(n, p) is defined in (4.2).

ρ-mixing sequences

In this section we consider a sequence (X i ) i≥1 of centered (E(X i ) = 0 for all i), real-valued bounded random variables, which are ρ-mixing in the sense that

ρ(k) = sup j≥1 sup v>u≥j+k ρ σ(X i , 1 ≤ i ≤ j), σ(X u , X v ) → 0 , as k → ∞ ,
where σ(X t , t ∈ A) is the σ-field generated by the r.v.'s X t with indices in A and we recall that the maximal correlation coefficient ρ(U, V) between two σ-algebras is defined by

ρ(U, V) = sup{|corr(X, Y )| : X ∈ L 2 (U), Y ∈ L 2 (V)} .
In this section we shall also assume that the r.v.'s (X i ) i≥1 satisfies the following set of assumptions

(H) :=      1) Θ = k≥1 kρ(k) < ∞ .
2) For any n ≥ 1,

C n := max 1≤ ≤n n i= E(X 2 i ) E(S n -S -1 ) 2 < ∞ . Remark 4.3. Note that in (H 2 ) necessarily C n ≥ 1.
In many cases of interest the sequence (C n ) n is bounded: for example, when 3 provides a rate in the central limit theorem for S n / √ V n . More precisely,

X i = f i (Y i ) where Y i is a Markov chain satisfying ρ Y (1) < 1, then according to [20, Proposition 13], C n ≤ (1 + ρ Y (1))(1 -ρ Y (1)) -1 . Here (ρ Y (k)) k≥0 is the sequence of ρ-mixing coefficients of the Markov chain (Y i ) i . Corollary 4.3. Let (X i ) i≥1 be a sequence of centered bounded real-valued random variables such that (H) is satisfied. Let V n = Var(S n ) and K n = max 1≤i≤n X i ∞ . Then for any positive integer n, W 1 (P Sn , G Vn ) K n (1 + C n log(1 + C n V n )) .
W 1 (P Sn/ √ Vn , G 1 ) = O(V -1/2 n log(V n )) and F n -Φ ∞ = O(V -1/4 n log(V n )) .
where F n is the c.d.f. of S n / √ V n (the second inequality follows from (3.1)). Note that the above upper bounds hold even if we do not require a linear growth of the variance V n as it is imposed for instance in [28, Theorem 3.1] and of course, in the stationary case, in [START_REF] Zuparov | The rate of convergence in the central limit theorem for weakly dependent variables[END_REF][START_REF] Rio | About the Lindeberg method for strongly mixing sequences[END_REF][START_REF] Tikhomirov | Convergence rate in the central limit theorem for weakly dependent random variables[END_REF].

Sequential dynamical systems

The term sequential dynamical system, introduced by Berend and Bergelson [START_REF] Berend | Ergodic and Mixing Sequences of Transformations[END_REF], refers to a non-stationary system defined by the composition of deterministic maps

T k • T k-1 • • • • • T 1 acting on a space X.
More precisely, we consider here the setting described by Conze and Raugi [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1[END_REF] and Haydn et al. [START_REF] Haydn | Almost sure invariance principle for sequential and non-stationary dynamical systems[END_REF]. Let (T k ) k≥1 be a sequence of maps from X to X, where X is either a compact subset of R d or the d-dimensional torus T d . Let also m be the Lebesgue measure defined on the Borel σ-algebra B of X, normalized in such a way that m(X) = 1. We assume that each T k is non singular with respect to m i.e. m(A) > 0 =⇒ m(T (A)) > 0.

Let P k be the Perron-Frobenius operator, that is the adjoint of the composition by

T k : for any f ∈ L 1 (m), g ∈ L ∞ (m), X f (x) g • T k (x) m(dx) = X (P k f )(x) g(x) m(dx) . Let also τ k = T k • T k-1 • . . . • T 1 and π k = P k • P k-1 • . . . • P 1 ,
and note that π k is the Perron-Frobenius operator of τ k .

Let V ⊂ L ∞ (m), (1 ∈ V), be a Banach space of functions from X to R with norm • v , such that φ ∞ ≤ κ 1 φ v for some κ 1 > 0. We assume moreover that if φ 1 , φ 2 are two functions in V, then the usual product φ 1 φ 2 belongs to V and satisfies

φ 1 φ 2 v ≤ κ 2 φ 1 v φ 2 v for some κ 2 > 0.
In what follows, we set κ = max(κ 1 , κ 2 ). Typical examples of Banach spaces V are the space BV of functions with bounded variation on a compact interval of R, or the space H α of α-Hölder function on a compact set of R d , equipped with their usual norms.

We now recall the properties (DEC) and (MIN) introduced in [4] (we use the formulation of [START_REF] Haydn | Almost sure invariance principle for sequential and non-stationary dynamical systems[END_REF]):

Property (DEC):

There exist two constants C > 0 and γ ∈ (0, 1) such that: for any positive integer n, any n-tuple (j 1 , . . . , j n ) of positive integers, and any f ∈ V,

P jn • • • • • P j 1 (f -m(f )) v ≤ Cγ n f -m(f ) v .

Property (MIN):

There exist δ > 0 and γ ∈ (0, 1) such that: for any positive integer n, and any n-tuple (j 1 , . . . , j n ) of positive integers, we have the uniform lower bound

inf x∈X P jn • • • • • P j 1 1(x) ≥ δ .
The main result of this subsection is the following corollary.

Corollary 4.4. Let (φ n ) n≥1 be a sequence of functions in V such that sup n≥1 φ n v < ∞. Let S n = n k=1 (φ k (τ k ) -m(φ k (τ k ))) , and V n = X S 2 n (x) m(dx) .
Assume that the properties (DEC) and (MIN) are satisfied. Then, on the probability space (X, B, m), W 1 (P Sn , G Vn ) log(n + 1) log(2 + V n ) .

Remark 4.5. Under the assumptions of Corollary 4.4, we derive that

W 1 (P Sn/ √ Vn , G 1 ) V -1/2 n log(n + 1) log(2 + V n ) and F n -Φ ∞ V -1/2 n log(n + 1) log(2 + V n ) 1/2
, where F n is the cdf of S n / √ V n (the second inequality follows from (3.1)). In particular, Corollary 4.4 provides a rate in the central limit theorem for S n / √ V n as soon as (log n log log n)/ √ V n → 0 as n → ∞.

Proofs

Proof of Theorem 2.1

The proof is based on the following proposition:

Proposition 5.1. Let δ be a positive real and denote by t ,n = V n -V + δ 2 1/2 . Let p ∈]2, 3] and r ∈ (0, p]. Then, there exist positive constants C r,p depending on (r, p) and κ r depending on r such that for every positive integer n,

ζ r (P Mn , G Vn ) ≤ 4 √ 2δ r +C r,p n k=1 1 t 3-r k,n E ξ 2 k min(κ r t k,n , |ξ k |) + σ 4 k t 4-r k,n + n =2 U ,n (p) (t -1,n ) p-r , (5.1)
where, for ≥ 2, U ,n (p) is defined in (2.1).

Remark 5.1. When r = 1, p = 3 and U ,n (p) = 0 for any , our bound is similar to the one stated in [24, Theorem 2.1]. However our quantity n =2 (t -1,n ) r-p U ,n (p) can be handled in many cases (see Section 4) while his condition V -1 n M n = 1 a.s. is very restrictive.

We end the proof of the theorem with the help of this proposition taking δ = aδ n . Hence we shall give an upper bound for

n k=1 1 t 3-r k,n E ξ 2 k min(κ r t k,n , |ξ k |) + σ 4 k t 4-r k,n
,

where t k,n = (a 2 δ 2 n + σ 2 k+1 + • • • + σ 2 n ) 1/2
. With this aim note first that

1 t 3-r k,n E ξ 2 k min(κ r t k,n , |ξ k |) ≤ σ 2 k t 3-r k,n ψ n (κ r δ -1 n t k,n ) ,
where ψ n (t) is defined in (2.3). Let σk = σ k /δ n . Note that since σk ≤ 1,

σ 2 k t 2 k,n = σ2 k a 2 + σ2 k+1 + • • • + σ2 n ≤ ασ 2 k a 2 + σ2 k + α n =k+1 σ2 , where α = (a 2 + 1)/a 2 . Let u k = a 2 + α n =k+1 σ2 . It follows that σ 2 k t 2 k,n ≤ u k-1 -u k (u k-1 -u k )/α + u k = α(u k-1 -u k ) (u k-1 -u k ) + αu k = αa k a k + α where a k = (u k-1 -u k )/u k .
But since a 2 ≥ 1 we have α ≤ 2. Hence, for any x ≥ 0,

αx x + α ≤ log(1 + x) , implying that σ 2 k t 2 k,n ≤ log(1 + a k ) = log(u k-1 /u k ) . (5.2) It follows that, if r ≥ 1, since t → ψ n (t) is non decreasing and t 2 k,n ≤ δ 2 n u k (since α ≥ 1), σ 2 k t 3-r k,n ψ n (κ r δ -1 n t k,n ) = σ 2 k t 2 k,n ψ n (κ r δ -1 n t k,n )t r-1 k,n ≤ 2 log( √ u k-1 / √ u k )ψ n (κ r √ u k )δ r-1 n u (r-1)/2 k ≤ 2ψ n (κ r √ u k )δ r-1 n u (r-1)/2 k √ u k-1 √ u k 1 x dx ≤ 2δ r-1 n √ u k-1 √ u k ψ n (κ r x) x 2-r dx . Hence, if r ≥ 1, n k=1 σ 2 k t 3-r k,n ψ n (κ r δ -1 n t k,n ) ≤ 2δ r-1 n √ a 2 +α n =1 σ2 a ψ n (κ r x) x 2-r dx ≤ 2δ r-1 n √ vn(a)/δ 2 n a ψ n (κ r x) x 2-r dx . (5.3) 
We study now the case r < 1. With this aim, note first that taking into account that σ2 k ≤ 1, α ≤ 2 and that a ≥ 1, we have

t 2 k,n = δ 2 n a 2 + n =k+1 σ2 ≥ a 2 (a 2 + α) -1 δ 2 n u k-1 ≥ δ 2 n u k-1 /3 , (5.4) 
(for the first inequality, use the fact that a 2 (a 2 + α) -1 ≤ α -1 ). When r < 1, taking into account the upper bound (5.4), we then derive

σ 2 k t 3-r k,n ψ n (κ r δ -1 n t k,n ) ≤ 2 × 3 (1-r)/2 δ r-1 n u (r-1)/2 k-1 ψ n (κ r √ u k ) log( √ u k-1 / √ u k ) .
Hence, when r < 1,

n k=1 σ 2 k t 3-r k,n ψ n (κ r δ -1 n t k,n ) ≤ 2 × 3 (1-r)/2 δ r-1 n √ vn(a)/δ 2 n a ψ n (κ r x) x 2-r dx .
The bound (5.4) and (5.2) also implies that, for any r ≤ 2,

n k=1 σ 4 k t 4-r k,n ≤ δ 2 n n k=1 σ 2 k t 2 k,n × 1 t 2-r k,n ≤ 3 (2-r)/2 δ r n n k=1 σ 2 k t 2 k,n × 1 u (2-r)/2 k-1 ≤ 2 × 3 (2-r)/2 δ r n n k=1 log( √ u k-1 / √ u k ) × 1 u (2-r)/2 k-1 = 2 × 3 (2-r)/2 δ r n n k=1 1 u (2-r)/2 k-1 √ u k-1 √ u k 1 x dx ≤ 2 × 3 (2-r)/2 δ r n n k=1 √ u k-1 √ u k 1 x 3-r dx ≤ 2 × 3 (2-r)/2 δ r n √ u 0 a 1 x 3-r dx . When r > 2, we use the fact that t 2 k,n ≤ δ 2 n u k to derive that n k=1 σ 4 k t 4-r k,n ≤ 2δ r n √ u 0 a 1 x 3-r dx .
All these considerations end the proof of Theorem 2.1. It remains to prove Proposition 5.1.

Proof of Proposition 5.1. Let (Y i ) i∈N be a sequence of N (0, σ 2 i )-distributed independent random variables, independent of the sequence (ξ i ) i∈N . For n > 0, let T n = n j=1 Y j . Let also Z be a N (0, δ 2 )-distributed random variable independent of (ξ i ) i∈N and (Y i ) i∈N . Using Lemma 5.1 in [START_REF] Dedecker | Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF] together with the fact that, for any real c, ζ r (P cX , P cY ) = |c| r ζ r (P X , P Y ), we derive that for any r in ]0, p], ζ r (P Mn , P Tn ) ≤ 2ζ r (P Mn * P Z , P Tn * P Z ) + 4 √ 2δ r .

(5.5)

Consequently it remains to bound up ζ r (P Mn * P Z , P Tn * P Z ) = sup

f ∈Λr E(f (M n + Z) -f (T n + Z)) .
Recall that V n = n i=1 σ 2 i and, for any k ≤ n, set

f Vn-V k (x) = E(f (x + T n -T k + Z)).
Then, from the independence of the above sequences,

E(f (M n + Z) -f (T n + Z)) = n k=1 D k ,
where

D k = E f Vn-V k (M k-1 + ξ k ) -f Vn-V k (M k-1 + Y k ) .
By the Taylor formula, we get

f Vn-V k (M k-1 + ξ k ) -f Vn-V k (M k-1 + Y k ) = f Vn-V k (M k-1 )(ξ k -Y k ) + 1 2 f Vn-V k (M k-1 )(ξ 2 k -Y 2 k ) - 1 6 f (3) Vn-V k (M k-1 )(Y 3 k ) + R k ,
where

R k ≤ ξ 2 k f Vn-V k ∞ ∧ 1 6 f (3) Vn-V k ∞ |ξ k | + 1 24 f (4) Vn-V k ∞ Y 4 k .
Using the fact that (ξ k ) k∈N is a sequence of martingale differences independent of the sequence of iid Gaussian random variables (Y k ) k∈N , we then get

E(f (M n + Z) -f (T n + Z)) = 1 2 n k=1 E f Vn-V k (M k-1 )(ξ 2 k -Y 2 k ) + n k=1 E(R k ) . (5.6)
Note first that

E(R k ) ≤ E ξ 2 k f Vn-V k ∞ ∧ 1 6 f (3) Vn-V k ∞ |ξ k | + σ 4 k 8 f (4) Vn-V k ∞ . Recall the notation t k,n = (δ 2 + σ 2 k+1 + • • • + σ 2 n ) 1/2
. By Lemma 6.1 in [START_REF] Dedecker | Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF], we have that for any integer i ≥ 1,

f (i) Vn-V k ∞ ≤ c r,i t r-i k,n . (5.7) 
Hence, setting κ r = 6c r,2 /c r,3 , we get

E(R k ) ≤ c r,3 6 × 1 t 3-r k,n E ξ 2 k min(κ r t k,n , |ξ k |) + c r,4 8 
σ 4 k t 4-r k,n . (5.8) 
For r = 1, we can take κ r = 6, c r,3 = 1 and c r,4 = 8/5.

We study now the quantity

n k=1 E f Vn-V k (M k-1 )(ξ 2 k -Y 2 k ) . With this aim let us consider a sequence (Y k ) of real-valued random variables independent of (Y k ) and (ξ k ) and such that L(Y k ) = L(Y k ). Note first that E (f Vn-V k (M k-1 +Y k )-f Vn-V k (M k-1 ))(ξ 2 k -Y 2 k ) = E f (3) Vn-V k (M k-1 )Y k (ξ 2 k -Y 2 k ) +E(R k ) ,
where, by taking into account (5.7) and the independence between

(Y k ) k and (ξ k , Y k ) k , E(|R k |)) ≤ f (4) Vn-V k ∞ E (Y k ) 2 (ξ 2 k -Y 2 k ) ≤ 2c r,4 σ 4 k t 4-r k,n . Since E(Y k ) = 0 and (Y k ) k is independent of (ξ k , Y k ) k , we get n k=1 E (f Vn-V k (M k-1 + Y k ) -f Vn-V k (M k-1 ))(ξ 2 k -Y 2 k ) ≤ 2c r,4 n k=1 σ 4 k t 4-r k,n . (5.9) 
Now

E f Vn-V k (M k-1 + Y k )(ξ 2 k -Y 2 k ) = E f Vn-V k-1 (M k-1 )(ξ 2 k -Y 2 k ) = k =2 E f Vn-V k-1 (M -1 + T k-1 -T -1 ) -f Vn-V k-1 (M -2 + T k-1 -T -2 ) (ξ 2 k -Y 2 k ) = k =2 E f Vn-V -1 (M -1 ) -f Vn-V -1 (M -2 + T -1 -T -2 ) (ξ 2 k -Y 2 k ) .
Hence, by using Lemma 6.1 in [START_REF] Dedecker | Rates of convergence for minimal distances in the central limit theorem under projective criteria[END_REF], there exists a positive constant c r,p depending on (r, p) such that for any n ≥ 1,

n k=1 E f Vn-V k (M k-1 + Y k )(ξ 2 k -Y 2 k ) = n =2 E f Vn-V -1 (M -1 ) -f Vn-V -1 (M -2 + T -1 -T -2 ) n k= (E -1 (ξ 2 k ) -σ 2 k ) ≤ c r,p n =2 1 (V n -V -1 + δ 2 ) (p-r)/2 |ξ -1 -Y -1 | p-2 n k= (E -1 (ξ 2 k ) -σ 2 k ) 1 . (5.10) 
Starting from (5.6) and taking into account the upper bounds (5.8), (5.9) and (5.10), the desired inequality follows since for any integer ∈ [2, n] and any p ∈ [2, 3], we have

E(|Y -1 | p-2 ) ≤ (E|Y -1 |) p-2 ≤ σ p-2 -1 .

Proof of Corollary 4.1

For any k ≥ 1, let F k = σ(X 1 , . . . , X k ) and F 0 = {∅, Ω}. Write first

S n = n k=1 (E k (S n ) -E k-1 (S n )) =: n k=1 d k,n .
Note that (d k,n ) 1≤k≤n is a triangular array of martingale differences with respect to (F k ) k≥1 and that

V n = n k=1 E(d 2 k,n ) = E(S 2 n ).
Hence, setting δ n = max 1≤k≤n d k,n 2 and applying Proposition 5.1 we get that, for any a ≥ 1, 

W 1 (P Sn , G Vn ) aδ n + n k=1 E(|d k,n | p ) B (p-1)/2 k+1,n (a) 
B ,n (a) = n k= E(d 2 k,n )+a 2 δ 2 n and U ,n (p) = (|d -1,n |∨σ -1,n ) p-2 n k= (E -1 (d 2 k,n )-σ 2 k,n ) 1 .
Proceeding as in the proof of Theorem 2.1, we get that

n k=1 σ 4 k,n B 3/2 k+1,n (a) 
δ n .

(5.12)

Next, setting α = (a 2 + 1)/a 2 , note that

B k+1,n (a) ≥ α -1 a 2 δ 2 n + σ 2 k,n + α n =k+1 σ 2 ,n ≥ 2 -1 B k,n (a) 
.

Note also that

U ,n (p) ≤ 2 d -1,n p-2 p n k= (E -1 (d 2 k,n ) -σ 2 k,n ) p/2 .
But, setting A k,n = E k (S n -S k ), note that the following decomposition is valid:

d k,n = X k,n + A k,n -A k-1,n . (5.13) 
Hence

3 1-p d ,n p p ≤ X ,n p p + A ,n p p + A -1,n p p ≤ |α n, | p Y 0 p p + 2 n i= |α i,n | E(Y i |G -1 ) p p .
But, by convexity, setting

β i = E(Y i |G -1 ) p n u= E(Y u |G -1 ) p -1 , we get n i= |α i,n | E(Y i |G -1 ) p p ≤ n i= |α i,n | p β 1-p i E(Y i |G -1 ) p p ≤ n u=1 E(Y u |G 0 ) p p-1 n i= |α i,n | p E(Y i |G -1 ) p , implying that d ,n p p n u=0 E(Y u |G 0 ) p p-1 n i= |α i,n | p E(Y i |G ) p . (5.14) 
It follows that max

1≤ ≤n d ,n p-2 p max 1≤i≤n |α i,n | p-2 n u=0 E(Y u |G 0 ) p p-2 := max 1≤i≤n |α i,n | p-2 η p-2 n . (5.15) 
On another hand

n k= (E -1 (d 2 k,n ) -σ 2 k,n ) p/2 = E -1 n k= d k,n 2 -E n k= d k,n 2 p/2 = E -1 (S n -E -1 (S n )) 2 -E(S n -E -1 (S n )) 2 p/2 ≤ E -1 (S n -S -1 ) 2 -E(S n -S -1 ) 2 p/2 + 2 E -1 (S n -S -1 ) 2 p . (5.16)
Note that

E -1 (S n -S -1 ) 2 -E(S n -S -1 ) 2 p/2 ≤ 2 n i= n j=i E -1 (X i,n X j,n ) -E(X i,n X j,n ) p/2 ≤ 2 n i= n j=i α i,n α j,n E(Y i Y j |G -1 ) -E(Y i Y j ) p/2 ≤ 2 n i= 2i- j=i α i,n α j,n E(Y i Y j |G -1 ) -E(Y i Y j ) p/2 + 4 n i= n j=2i-+1 α i,n α j,n Y i E(Y j |G i ) p/2 .
(5.17)

Hence by stationarity,

E -1 (S n -S -1 ) 2 -E(S n -S -1 ) 2 p/2 ≤ 4 n i= n∧(2i-) j=i α i,n α j,n λ i-+1 + n i= n j=2i-+1 α i,n α j,n λ j-i .
It follows that

E -1 (S n -S -1 ) 2 -E(S n -S -1 ) 2 p/2 ≤ 2 n i= α 2 i,n (i -+ 1)λ i-+1 + 2 n j= α 2 n,j j- u=[(j-)/2] λ u + n i= α 2 i,n n-i u=i-+1 λ u .
In addition, setting

β i = E(Y i |G -1 ) p n u= E(Y u |G -1 ) p -1
, we get by convexity,

E -1 (S n -S -1 ) 2 p = n i= α i,n E(Y i |G -1 ) p 2 ≤ n i= α 2 i,n β -1 i E(Y i |G -1 ) 2 p ≤ n u=1 E(Y u |G 0 ) p n i= α 2 i,n E(Y i |G -1 ) p . (5.18) So, overall, recalling that η n = n i=0 E(Y i |G 0 ) p , we get U ,n (p) max 1≤ ≤n |α ,n | p-2 η p-2 n n i= α 2 i,n (i -+ 1)λ i-+1 + n j= α 2 n,j n-j u=[(j-)/2] λ u + η n n i= α 2 i,n E(Y i |G -1 ) p .
Hence, setting

Λ i, = (i -+ 1)λ i-+1 + n-i u=[(i-)/2] λ u + η n E(Y i-+1 |G 0 ) p . we get n =2 1 
B (p-1)/2 ,n (a) U ,n (p) max 1≤ ≤n |α ,n | p-2 η p-2 n n i=1 α 2 i,n B (p-1)/2 i,n (a) 
i =1 Λ i, .
Since, for any i ≤ n,

i =1 Λ i, n u=0 ((u + 1)λ u + η n E(Y u |G 0 ) p ) ≤ Λ n + η 2 n , it follows that n =2 1 B (p-1)/2 ,n (a) U ,n (p) max 1≤ ≤n |α ,n | p-2 η p-2 n (Λ n + η 2 n ) n i=1 α 2 i,n B (p-1)/2 i,n (a) 
.

(5. [START_REF] Mourrat | On the rate of convergence in the martingale central limit theorem[END_REF])

Let a = max 1≤k≤n |α k,n | max( Y 0 2 , √ 2πm) + 2 max 1≤k≤n-1 A k,n 2 max 1≤k≤n d k,n 2 ,
where m = inf t∈[-π,π] f Y (t). The decomposition (5.13) entails that a ≥ 1. On another hand, for any integer in [1, n],

B ,n (a) = E(S n -S -1 -A -1 ) 2 + a 2 δ 2 n = E(S n -S -1 ) 2 -E(A -1 ) 2 + a 2 δ 2 n ≥ S n -S -1 2 2 + max 1≤k≤n |α k,n | 2 max( Y 0 2 2 , 2πm . But Var(S n -S -1 ) = π -π n k= α k,n e itk 2 f Y (t)dt ≥ m π -π n k= α k,n e itk 2 dt = 2πm n k= α 2 k,n .
It follows that, for any integer in [1, n],

B ,n (a) ≥ 2πm n i= α 2 i,n + max 1≤k≤n α 2 k,n . (5.20) 
Starting from (5.19) and taking into account (5.20) and the fact that m > 0, it follows that Hence proceeding as in the proof of Theorem 2.1, we get

n =2 1 B (p-1)/2 ,n (a) U ,n (p)            max 1≤ ≤n |α ,n | p-2 η p-2 n (Λ n + η 2 n ) n =1 α 2 ,n (3-p)/2 if p ∈ (2, 3) max 1≤ ≤n |α ,n |η n (Λ n + η 2 n ) log m -1 n n =1 α 2 ,n if p = 3.
(5.21) On another hand, taking into account (5.14) and proceeding as before we get

n =2 1 B (p-1)/2 ,n (a) d ,n p p            max 1≤ ≤n |α ,n | p-2 η p n n =1 α 2 ,n (3-p)/2 if p ∈ (2, 3) max 1≤ ≤n |α ,n |η 3 n log m -1 n n =1 α 2 
,n if p = 3.

(5.22)

Starting from (5.11) and taking into account (5.12), (5.21) and (5.22) together with the fact that

aδ n max 1≤ ≤n |α ,n | √ m + n k=0 E(Y k |G 0 ) 2 ,
the corollary follows.

Proof of Corollary 4.2

The proof follows the lines of the proof of Corollary 4.1. The only difference is in the choice of a. We take here

a = max 1≤k≤n |α k,n | max( Y 0 2 , 2πf Y (0) + 2 max 1≤k≤n-1 A k,n 2 + K(n) max 1≤k≤n d k,n 2 ,
where

K(n) = k≥1 k 2 |γ k | n+1 i=1 |α i,n -α n,i-1 | 2 .
Once again, the decomposition (5.13) entails that a ≥ 1. On another hand,

B ,n (a) = E(S n -S -1 -A -1 ) 2 + a 2 δ 2 n = E(S n -S -1 ) 2 -E(A -1 ) 2 + a 2 δ 2 n ≥ S n -S -1 2 2 + max 1≤k≤n |α k,n | 2 max( Y 0 2 2 , 2πf Y (0) + K(n) .
But, setting αu = α u,n if u ∈ [ , n] and 0 otherwise, we get

Var(S n -S -1 ) = k∈Z γ k i∈Z αi αi+k = 2πf Y (0) n i= α 2 i,n -2 -1 k∈Z γ k i∈Z (α i -αi+k ) 2 . Setting K = k≥1 k 2 |γ k |, it follows that S n -S -1 2 2 + K n+1 i=1 |α i,n -α i-1,n | 2 ≥ 2πf Y (0) n i= α 2 i,n , implying that B ,n (a) ≥ 2πf Y (0) n i= α 2 i,n + max 1≤k≤n α 2 k,n .
Using the fact that f Y (0) > 0, the rest of the proof is the same as that of Corollary 4.1.

Proof of Corollary 4.3

We start as in the proof of Corollary 4.1 and use the notation introduced there. So we have the upper bound (5.11) with p = 3. Recalling the notation

A k,n = E(S n -S k |F k ), we select a = max 1≤k≤n X k 2 + 2 max 1≤k≤n-1 A k,n 2 max 1≤k≤n d k,n 2 .
n and any real a ≥ 1,

ζ r (P Mn , G Vn ) ≤ C r,p δ r n √ vn(a)/δ 2 n a 1 x 3-r dx + δ r-1 n √ vn(a)/δ 2 n a ψ n (κ r x) x 2-r dx + n-1 k=1 Ũk,n (p) (a 2 δ 2 n + k i=1 σ 2 i ) (p-r)/2 + 4 √ 2a r δ r n . (5.28)
We go back to the proof of Corollary 4.4. Let B n = τ -1 n B and φk = φ k -m(φ k (τ k )). As quoted by Conze and Raugi [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1[END_REF], the following martingale-coboundary decomposition is valid: for any n ∈ N,

φn = ψ n -h n + h n+1 • T n+1 , (5.29) 
where (d n ) n≥0 defined by d n = ψ n • τ n is a sequence of reversed martingale differences with respect to the filtration (B n ) n≥0 and (h n ) n≥0 is such that m(h n (τ n )) = 0, and there exists a positive constant

K such that sup n≥0 h n ∞ ≤ K. Set M n = n k=1 d n and V (M n ) = X M 2 n (x) m(dx) = n k=1 X d 2 n (x) m(dx). We have W 1 (P Sn , G Vn ) ≤ W 1 (P Sn , P Mn ) + W 1 (P Mn , G V (Mn) ) + W 1 (G V (Mn) , G Vn ) . Using that W 1 (G V (Mn) , G Vn )) ≤ V (M n ) - √ V n ≤ S n -M n 2
and the martingalecoboundary decomposition (5.29), it follows that . With this aim, note that by (5.29), we have

W 1 (P Sn , G Vn ) ≤ W 1 (P Mn , G V (Mn) ) + 4 sup n≥0 h n ∞ ≤ W 1 (P Mn , G V (Mn) ) + 4K . ( 5 
d 2 i = φ2 i (τ i ) + 2 φi (τ i )(h i (τ i ) -h i+1 (τ i+1 )) + h i (τ i ) -h i+1 (τ i+1 ) 2 ,
implying that

E(d 2 i |B +1 )-E(d 2 i ) ∞ ≤ E( φ2 i (τ i )-m( φ2 i (τ i ))|B +1 ) ∞ + E(h 2 i (τ i )-m(h 2 i (τ i ))|B +1 ) ∞ + E(h 2 i+1 (τ i+1 ) -m(h 2 i+1 (τ i+1 ))|B +1 ) ∞ + 2 E( φi (τ i )h i (τ i ) -m( φi (τ i )h i (τ i ))|B +1 ) ∞ + 2 E(h i (τ i )h i+1 (τ i+1 ) -m(h i (τ i )h i+1 (τ i+1 ))|B +1 ) ∞ + 2 E( φi (τ i )h i+1 (τ i+1 ) -m( φi (τ i )h i+1 (τ i+1 ))|B +1 ) ∞ . (5.31)
From Relations (1.8) and (1.10) in [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1[END_REF], we get that for any function f in V and any i ≤ ,

E(f (τ i ) -m(f (τ i ))|B +1 ) = P +1 • • • • • P i+1 ( fi π i 1) π +1 1 • τ +1 , (5.32) 
where fi = f -m(f π i 1). Hence taking into account the properties (DEC) and (MIN), we get that

E(f (τ i ) -m(f (τ i ))|B +1 ) ∞ ≤ κδ -1 P +1 • • • • • P i+1 ( fi π i 1) v ≤ κδ -1 Cγ +1-i fi π i 1 v .
Hence, using Relation (3.10) in [START_REF] Conze | Limit theorems for sequential expanding dynamical systems on [0, 1[END_REF], we get overall that there exists a positive constant M such that, for any function f in V and any i ≤ ,

E(f (τ i ) -m(f (τ i ))|B +1 ) ∞ ≤ M γ +1-i f v .
(5.33)

Taking into account (5.33), it follows that the sum of the four first terms in the right-hand side of (5.31) can be bounded by a positive constant times

γ -i sup n≥0 h n 2 v + sup n≥0 φ n 2 v .
(5.34)

To take care of the two last terms in (5.31), we shall use the following fact: for any functions f and g in V, by using twice (5.32) and setting

Q i+1 f = P i+1 (f π i 1) π i+1 1 ,
the following relation holds: for any i ≤ ,

E(f (τ i )g(τ i+1 )|B +1 ) = E(g(τ i+1 )E(f (τ i )|B i+1 )|B +1 ) = E g • τ i+1 P i+1 (f π i 1) π i+1 1 • τ i+1 B +1 = P +1 • • • • • P i+2 (gQ i+1 f π i+1 1) π +1 1 • τ +1 .
Therefore, for any functions f and g in V and any i ≤ , E(f (τ i )g(τ i+1 ) -m(f (τ i )g(τ i+1 ))|B +1 )

= P +1 • • • • • P i+2 ((gQ i+1 f -m(gQ i+1 f ))π i+1 1) π +1 1 • τ +1 .
Hence, taking into account the properties (DEC) and (MIN), we get that for any i ≤ ,

E(f (τ i )g(τ i+1 ) -m(f (τ i )g(τ i+1 ))|B +1 ) ∞ ≤ κδ -1 P +1 • • • • • P i+2 ((gQ i+1 f -m(gQ i+1 f ))π i+1 1) v ≤ κδ -1 Cγ -i (gQ i+1 f -m(gQ i+1 f ))π i+1 1 v . But (gQ i+1 f -m(gQ i+1 f ))π i+1 1 v ≤ (gQ i+1 f )π i+1 1 v + m(gQ i+1 f )π i+1 1 v ≤ gP i+1 (f π i 1) v + gQ i+1 f ∞ π i+1 1 v ≤ κ g v P i+1 (f π i 1) v + gQ i+1 f ∞ π i+1 1 v .
By the property (DEC) we have P i+1 (f π i 1) v ≤ κ 3 f v where κ 3 is a positive constant not depending on i and on f . On another hand, by the properties (DEC) and (MIN), we have

gQ i+1 f ∞ ≤ κδ -1 g ∞ P i+1 (f π i 1) v ≤ κ 4 f v g v ,
where κ 4 is a positive constant not depending on (i, f, g). So overall, there exists a positive constant M such that, for any functions f and g in V and any i ≤ , .

E(f (τ i )g(τ i+1 ) -m(f (τ i )g(τ i+1 ))|B +1 ) ∞ ≤ M γ -i f v g v . ( 5 
Let α be a positive real and ϕ α ( ) = [α log( )]. Let 0 = inf{ ≥ 1 : -ϕ α ( ) ≥ 1}. We then have

n-1 =1 Ũ ,n (3) 
a 2 δ 2 n + k=1 E(d 2 k ) n-1 =1 -ϕα( ) i=1 γ -i + n-1 =1 i= -ϕα( )+1 E(d 2 i ) 1 + δ 2 n + i k=1 E(d 2 k )
n-1

=1

(1 -γ) -1 γ ϕα( ) + (log n)

n-1 i=1 E(d 2 i ) 1 + δ 2 n + i k=1 E(d 2 k )
.

Selecting α such that α log(1/γ) > 1 and using similar arguments as those developed in Theorem 2.1, it follows that

n-1 =1 Ũ ,n (3) 
a 2 δ 2 n + k=1 E(d 2 k ) 1 + (log n) log(1 + V (M n )) .
Hence by taking into account this upper bound in (5.28) (with r = 1 and p = 3), we derive that W 1 (P Mn , G V (Mn) ) + 4 sup Starting from (5.30) and considering (5.37) together with the fact that sup i≥1 d i ∞ < ∞ and that there exists a positive constant B such that V (M n ) ≤ 2V n + B, the result follows.

Remark 4 . 4 .

 44 If the sequences (C n ) n and (K n ) n are bounded and V n → ∞, then Corollary 4.

  U ,n (p) , (5.11) where σ k,n = d k,n 2 and

d

  i ∞ + log n log(1 + V (M n )) .(5.37) 

  .35) Taking into account(5.35), it follows that the sum of the two last terms in the right-hand side of (5.31) can be bounded by a positive constant times the quantity (5.34). So, overall, for any i ≤ ,|d +1 | E(d 2 i |B +1 ) -E(d 2 i )Therefore, recalling the notation (5.27) and setting δ 2 n = max 1≤i≤n E(d 2 i ) and a 2 = 1 + δ -2

			1	sup n≥0	d n ∞ min(E(d 2 i ), γ -i ) .	(5.36)
					n ,
	we get			
	n-1	Ũ ,n (3)	n-1		min(E(d 2 i ), γ -i )
	=1	a 2 δ 2 n + k=1 E(d 2 k )	=1 i=1	1 + δ 2 n + i k=1 E(d 2 k )

The decomposition (5.13) entails that a ≥ 1 and also that

It follows that

Using (H 2 ) and the fact that C n ≥ 1, we derive

On another hand, for any 1 ≤ k ≤ n -1 and any η > 1/2, by the definition of the ρ-mixing coefficients,

According to (H 1 ) we can take η > 1/2 such that

On another hand, from decomposition (5.13),

But, for any 1 ≤ k ≤ n -1 and any η > 2/3, by the definition of the ρ-mixing coefficients,

So, overall,

According to (H 1 ) we can take η > 2/3 such that

With similar arguments as those leading to (5.3), we get

On another hand, we have

To give an upper bound of this quantity we start from (5.16) with p = 4. Note first that

Hence, by the definition of the ρ-mixing coefficients, we get

On another hand, by the definition of the ρ-mixing coefficients, we have: for

and

(5.26)

Hence starting from (5.16) with p = 4 and taking into account (5.24) and the upper bounds (5.17) and (5.18) together with (5.25) and (5.26), we derive

Hence, taking into account (H 1 ) and (5.23),

. With similar arguments as those leading to (5.3), we get

This ends the proof of the corollary since n k=1 X k

Proof of Corollary 4.4

As we shall see the result will use an approximation by a "reversed" martingale differences sequence. Hence, as a preliminary, we first state the following fact: 

in place of U ,n (p). In particular, the following "reversed" version of Theorem 2.1 holds: setting E(d 2 i ) = σ 2 i and ψ n (t) = sup 1≤k≤n σ -2 k E inf(tδ n d 2 k , |d k | 3 ), there exist positive constants C r,p depending on (r, p) and κ r depending on r such that for every positive integer