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A Statistical Distribution Function of
Wide Applicability

By WALODDI WEIBULL,* STOCKHOLM, SWEDEN

This paper discusses the applicability of statistics to a
wide field of problems. Examples of simple and complex
distributions are given.

F a variable X is attributed to the individuals of a population,

the distribution function (df) of X, denoted F(z), may be

defined as the number of all individuals having an X < r,
divided by the total number of individuals. This function also
gives the probability P of choosing at random an individual
having a value of X equal to or less than z, and thus we have

PXLz)=F) oo . n
Any distribution function may be written in the form
Fz) =1—e™9& ... [2]

This seems to be a complication, but the advantage of this formal
transformation depends on the relationship

The meri
problem.

Assume that we have a chain consisting of several links. If we
have found, by testing, the probability of failure P at any load z
applied to a “single'” link, and if we want to find the probability
of failure P, of a chain consisting of n links, we have to base our
deductions upon the proposition that the chain as a whole has
failed, if any one of its parts has failed. Accordingly, the proba-
bility of nonfailure of the chain, (1 — P,), is equal to the
probability of the simultaneous nonfailure of ail the links. Thus
we have (1 — P,) = (1— P)". If then thedf of asingle link takes
the form LEquation {2], we obtain

of this formula will be demonstrated on a simple

P, =

Equation [4} gives the appropriate mathematical expression
for the principle of the weakest link in the chain, or, more gen-
erally, for the size effect on failures in solids.

The same method of reasoning may be applied to the large
group of problems, where the occurrence of an event in any part
of an object may be 6aid to have oscurred in the object as a whole,
e.g., the phenomenu of yield limits, statical or dynamicalstrengths,
electrical insulation breakdowns, life of electric bulbs, or even
death of man, as the probability of surviving depends on the
probability of not having died from many different causes.

Now we have to specify the function ¢(z). The only neces-

! Professor at the lioyal Institute of I'echnology; Scientific Adviser
to AB Bofors: mailing addrees Bofors, Sweden.

sary genera!l condition this function bas to satisfy ia to be a posi-
tive, nondecreasing function, vanishing at & value z,, which is
not of necessity equal to zero.

The most simple function satisfying thia condition is

(z —x)"
To
and thus we put
= (2 — Zzu}m
Flz) = 1—e U {5)

The only merit of this df is to be found in the fact that it is the
simplest mathematical expression of the appropriate ferm, Equa-
tion (2], which satisfies the necessary general conditions. Experi-
ence bas shown that, in many cases, it fits the observations better
than other known distribution functions.

The objection has been stated that this distribution function
has no theoretical basis. But in 8o far as the author understands,
there are—with very few exceptions—the same objections
against al) other df, applied to real populations from natural or
biological fields, at least in 8o far as the theoretical basis hasany-
thing to do with the population in question. Furtbermore, it is
uttetly hopeless to expect a theoretical basis for distribution
functions of random variables such as strength properties of ma-
terials or of machine parts or particle sizes, the “particles” being
fly ash, Cyrtoideae, or even adult males, born in the British Ides.

It is believed that in such cases the only practicable way of
progressing is to choose a simple function, test it empirically, and
stick to it as long as none better has been feund. In accordance
with this program the df Equation {5], has been applied not, only
to populations, for which it was originally intended, but also to
populations from widely different fields, and, in many cases, wmith
quite satisfactory results. The author has never been of the
opinion that this function is always valid. On the contrary, he
very much doubts the sense of speaking of the “correct' distri-
bution function, just as there is no meaning in asking for the
correct strength values of an SAE steel, depending as it does, not
only on the material itself, but also upon the manufacturer and
many other factors. In most cases, it is hoped that these factors
wil} influence only the parameters. However, accidentally they
may even affect the function itself.

The purpose of this paper has been to illustrate with a few
examples the experience that the df, Equation [5], may some-
times render good service.

The number of examples has, hy space, been limited to the
following:

1 Yield strength of a Bofors stec!

Size distribution of fly ash

Fiber strength of [ndian cotion

Length of Cyrtoideae

Fatigue life of a St-37 steel

In the Appendix:

6 Statures for adult males, morn in the British Isles
7 Breadth of beans of Phaseolus Vulgaris
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The correctness of fit has been checked by applying the chi-
square method

Of those populations, Nos. 1-3 are distributed in good agree-
ment with the df Equation [5], whereas the four remaining popu-~
lations have to be split up into two components, before such an
agreement is obtained. The first type will be called a “‘stmple”
and the secomd type a ‘‘complex” distribution.

The fundamental question now arises, whether this splitting-
up is a purely formal operation, or whether it might unveil some
hidden real causes. It may be said that any distribution may be
represented by a sum of a sufficiently great number of sitnple
distributions, just as any periodical function may be developed in
a Fourier series. However, if the number of the components be
small and the number of observations sufficiently Jarge, the like-
lihood of real causes seems to increase. In any case, it is very
easy to preduce real complex distributions by syntheses.

It seems obvicus that the components of examples 4 and 5 ave
due to real causes. In examples 6 and 7 it is impossible to
decide whether the division is a forma! one or a real one, but the
fact itself may be a valuable stimulus to a closer examination of
the observed material.

The specific data for the examples follow,

YIELD STRENGTH OF A BOFORS STEEL

The observed values are obtained as routine tests of a Bofors
steel, the quality ef which was chosen at random for purposes of
demonstration only. Fig. 1 gives the curve and Table 1 the

TABLE 1 YIELD STRENGTH OF A BOF®RS STEEL
{x = yield strength in 1.275 kg/mm?)

Exwected Observed Normal
values values distribution
z n n n
1 32 1¢ 10
2 33 36 33 28
3 34 84 81 71
4 35 150 161 141
5 36 224 224 225
] 37 291 289 301
7 38 340 336 3351
8 39 389 389 376
9 40 383 383 386
10 42 389 389 388
17 1T 1 A
Yield Strength of a o
oo
Bofors Steel /{
N=389 P
8- Pa
% ..|°|~ -
g‘- xy©38.57 kg /mm?®
-0-1 » 7 Xg= 774 ka/mm?
3 / m. 29342
-6-2 72 X% $.40;i "6
P <039
-2-2 T
/‘I/ log (x-1y) | |
5 4 5 0§ q B .8 i
Fic. 1 YieLv STREXGTH oF A Berors STEEL

values, observed and calculated. The parameters are z, = 38.57
kg/mm? o = 7.74 kg/mm?, m = 2.934. Witheut pooling, the
degrees of freedom (d of f) arc9 —3 = 6. Then X% = 5.40 gives
P = 0.49. The agreement is thus very satisfactory.

As a comparisen, the values expected on the hypothesis of a
normal distridution have been computed and are given in the
last column of Table 1. If the classes $-10 are pooled, the
dof fare 8 — 2 = 6. Then a x* = 18.17 gives a P = (.008,
which is not satisfactory at all.

Size DISTRIBUTION OF FLY AsH

The observed values are taken from J. M. Dalla Valle’s work.?
Fig. 2 gives the curve and Table 2 the values. The param.eters
arez, = 30u, 7 = 128 u, m = 2.288. Without pooling, the d of f
are12—3 = 9. Then x® = 8.44givesa P = 0.49. If the (lasses
2-3 and 13-14 are pooled, the d of f are 7 and x* = 8.44 gives a
P =029

TABLE 2 SIZE DISTRIBUTI@N OF FLY AS8H
{x = particle diameter in 20 microns)

Expected Observed
values values
z n 23
2 3 3
3 14 i4
4 34 84
5 62 56
6 92 85
7 122 126
8 150 150
] 172 173
10 188 188
11 199 197
12 205 202
1 209 208
14 211 211
. T__l _[__ ey
4-0 . P i
Size Distribution 3
Lg-0— of Fly-ash oL
N=2n ]
{
6-1 / 7
6
__2_‘__IT /
g ;‘/65 Xy=30 4
8-2-g %o #128 4
/ ™ -2.2683
H4-2 A3 A2<8.44,i-7
/ Pa029
-0-2
T Ao T 1
i) 5 3 .9 1

Fic. 2 Size WisTRIBUTION OF FLY AsK

FiBER STRENGTH OF INDIAN COTTON

The observed values are taken from R. S. Koshal and A. J.
Turner.? Fig. 3 gives the curve, and ‘T'able 3 the values, The
parameters are z, = 0.539 gram, zo = 3.73 grams, m = 1.456.
If the classes 14 to 16 are pooled, the d of f are 13—3 = 10. Then
xt = 11.45 gives a P = 0.35.

The authors? have pointed out that the most striking feature
aout the frequency curve is its asymmetry, showing a well-
marked predominance of weak fibers. It was found-—they say-—
that the observation curve would be well fitted by a theoretical
curve of Pearson’s Type 1, having the following equation

z 0.876716 ( z 13.631284
=503 (1 ~ — s
y =599 < +18.777> ! 29.1947)

In this equation y represents the frequency of any strength z,
expressed in grams,

The values computed from this not very handy eguation are
shown in the last column of Table 3. Thed of fare 13— 35 =8
(as there are 5 parameters). Then X2 = 1443 givesa P = 0.07.

¢ “Micromeritics,” by J. M. Dalla Valle, Pitman
Corsoration, New York, N. Y., 1948 p. 57, Fig. 2

3 “Studies in the Swmpling of Cetten fcr the Determinatien of
Fiber Properties,” by R. S. Koshal and A. J. Turner, Journal of the
Textile [nstitute Transactions, vol. 21, 1930, pp. 325-370,
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TABLE 3 FIBER STRENGTH OF INPIAN COTTON

(¥ = tensile strength in grama)
Expected Observed Pearson
values values Type 1
I n " n
1 118 177 127
2 646 667 659
3 1232 1219 1255
4 1751 1729 1777
o) 2161 2153 2184
6 2461 2465 2480
7 2667 2664 2683
8 2802 2813 2816
9 2886 2887 2899
10 2937 2933 2949
11 2966 2962 2978
12 2982 2985 2994
13 2991 2991 3003
14 2996 2993 3007
15 2999 2999 3009
16 3000 3000 3010
: | |-|ﬁ5
4-0 - : 1 12
Fiber Strength of | ;
r0-0 Indian Cotton ; “‘?pg
N=3000 /ﬁr{
r6-1 -[‘E I T i
s | /{ %y = 0.59gr
[2-1-1 & xg = 3.73q¢
- /)’( | m = 14661
-8-2 o - L X2=1195,is10
l’ P =035
F4-2
i i
Log (x-x |
| ’ag;! 81 i ¥l 3 i
F16.3 FisEr STRENGTH or INplaN CoTron
TABLE 4 LENGTH OF CYRTOIDEAE
{(x = leagth in micreas)
@bserved
Expected values——-, values
z n n: i+t st
1 10 ) e 1 0
2 20 B . 3 5
8 30 13 i 13 12
4 40 23 . 23 24
5 30 35 E 35 38
6 60 47 . 47 45
7 70 58 R 38 38
8 80 67 . 67 69
9 90 74 = 74 70
10 100 79 . 79 20
11 110 82 B 82 82
12 120 85 ars 85 84
13 130 86 v 86 86
14 110 86 4 90 90
15 150 86 7 93 93
16 160 86 9 95 95
17 170 86 11 97 97
18 180 86 12 98 98
19 190 86 13 99 99
20 200 86 14 100 100

| | log (x-xy} |
16

1.4 1.8 20

22

Fi6. 4 LexgTtH oF CYRTOIDEAE

In spite of the greater number of parameters, the fit of this dis-
tribution functien is net as clese as that of the first ene,

LexGTH oF CYRTOIDEAE

This is the first example of a complex distribution. The ob-
served values have heen obtained from investigations by Dr.
Gustaf Arrhenius, on submarine cores from the Swedish Deep-Sea
Expedition With Albatress. The measurements were made by
®r. C. Jungk, taking samples from each 10 cm of the core,
corresponding to an age interval of about 100,000 years. Some
fifty populations have been analyzed statistically. About 2@ per
cent of the populations showed a simple distribution, as exempli-
fi in a previous paper.® The remaining samples showed a two-
component distribution.

Fig. 4 gives the curves and Tablc 4 the values of one of the
complex populations. The undivided sample gives the curve
marked N, + N: It is casy to see that the distribution is a
complex one, and that it is necessary to split up the populatien in
two parts. By trial it was found that 86 of the individuals be-
longed to component Ne. 1, and 14 to component No. 2,

The parameters are: Componert No. 1: z, = 3.75 u, zo = 63.2
2, m = 2.097. Pooling the classes 2-3, 9-10, and 11-13 gives
x? =3.59. Thedof fare7— 3 = 4,and P = 0.47.

Cemponent No. 2: z, = 1220 g, 2¢ = 1241 g, m = 1.479.
The number of individuals is too small for the x*-test.

FaTicue Lire oF 4N S1-37 STEEL

The observed values are taken from Maiiller-Stock.5 The fre-
quency curve in Fig. 5% gives no impression of a complex dis-
tribution, which, on the other hand, may easily be seen when

4 A Statisticul Analysis of the Size ef Cyrtoideae in Albatross
Ceres From the East Pacific @cean,” by W. Weibull, Nature, vol.
164, 1949, p. 1047.

% **Der Einfluss dauernd und untecbrochen wirkender, schwingender
(berbesanspruchung auf die Katwicklung des Daucrbruchs,” by H.
Muller-Stock, Mitteitungen Kehle- und Essenforschung, (March, 1938),
by measurements from his Fig. 13; reproduced in Fig. 5 of this paper.

TABLE 3 FATIGUE LIFE OF ST-37
(Rotating—beam test at =32 kg/mm?)

Observed
N — Expected values——— values
102 i ne T+ s e
i 17.5 4.4 - 4.6 4.6
2 22.5 47 .4 47 .4 474
3 27.5 125. 1 125.1 125.1
4 32.5 161.2 8.1 169.3 169.2
3 37.5 164 .9 28.0 192.9 1927
6 42.5 165.0 i1.9 206.9 267.3
7 47.5 165.0 51.0 216.0 215.9
8 52.5 165.0 57.0 222.2 222.2
9 57.5 165.0 61.0 226.0 225.9
10 62.5 165.0 63.7 228.7 228.7
11 67.5 165.0 65.6 230.6 230.5
12 72.5 165.0 66.9 231.9 231.9
13 77.5 165.0 67.9 232.9 232.9
14 82.5 165.0 68.6 233.6 233.5
15 87.5 165.0 69.1 234.1 233.9
16 92.35 165.0 70.0 235.0 235.
100 = ¥ '|
80 1

ol
40 !

20

A\
L

0 6010 G020 G030 0040 Q050 GUB® 0070 Q080 0050 0100 x:S

Fic. 5 Frequency Curve eF Fatigue Lire orF S137 StesL
{Number of specimens versus number of stress cycles.)



using the plottings in Fig. 6. The parameters are: Component
No. 1: z, = 4.032, m = 5.956; Component No. 2: z, = 4.484,
m = 1.215. Table 5 shows the close agreement between the
observed and the calculated values.

l | y,}*‘/ e .
y

_o.0 Fatigue Life of St.37

N= 23§ 1
L 5-1 _)‘ 4k 3 |
5 10 % -
L1 | Lomponent |
5 |
| 24.032, Ny=10800
| . 2.1 Xy + Nu
o -1‘.' m = 5956
[~ &
| z @ ¥ Component 2
5 - -
2 g 2 x xy= 4,484, N, =30500
5 & 1
% o m =121
4 1%
b.g-2 /ré.\ /
(x-x, 1
-t 3 e et ) o

o 2-1 &1
ri 1

F1c. 6 FaTIGUE Live eF ST-37 STEEL

It may be pointed out that the frequency curve in Fig. 5 seems
to be the result of a smoothing operation on the cumulative
frequency curve. Accordingly, the sampling errors of the ob-
served values in Table 5 have been eliminated almost entirely
(without affecting the function), which explains the really too
good representation of the observed values.

The real causes of this splitting up in two components may be
found by examining the frequency curve of the yield strength of
the same material, Fig. 7. Itiseasy to see that the matemal,
probably not being killed,, is composed of two different kinds.
If we suppose that all the specimens with a yield strength of less
than 25 kg/mun? belong to Component No. 1, we obtain 14 speci-
mens out of 20, making 70 per cent. Exactly the same propor-
tion has been found by the statistical analysis, as 165/235 = 70
per cent.

The reason why this partition is so easily seen in Fig. 7 and
not at all in Fig. 5, depends, of course, upon the much larger
scatter in fatigue life than in yield strength.

Appendix

The foregoing statistical methods have been applied to many
problems outside the field of applied mechanics. It may perhaps
be of interest to have examples of this kind, and for this reason,
the following two are given with the tables only:

StaTURES FOR ADULT MALES BoRN IN THE BRITisH IsLES

The olserved values are taken from Yule and Kendall.$
This distribution is classified by the authors as being approxi-
mately of the symmetrical type, and there is no mention of its
being composed of two parts.

By trial it was found that the population had to be split up
into two parts: &, = 6200and V; = 2385. The parametersare
as follows:

Component No. 1: z, = 50. in., 29 = 16.2 in., m = 9.6865.
If the classes 1-2 and 14-15 are pooled, we get x* = 11.80.
As we have 7 parameters altogether, (one of them is the partition
of the population), we take 3'/ te each of the components. The
d of f are then 12 — 3/, = 8!/,, which gives a P = 0.20.

Component. No. 2: z, = 67.41in,, 7o = 2.3 1in,, m = 1.4662.

8 An Intreduction te the Theery of Statistics,” by G. U. Yule
and M. G. Kendall, eleventh edition. J. B. Lippincott Company,
Philadelphia. Pa., 1937, pp. 94 and 111.

TABLE6 STATURESFOR AD{JSLL'II“]gdALES BORN IN THE BRITISH

(z = height in inches)

Obwserved

Expected values———— values
z n s s s
57 2 2 2
58 6 6
59 28 20 20
60 56 56 61
61 143 143 144
62 333 333 313
63 702 702 707
64 1350 1350 1376
65 2351 2351 2366
66 3641 3641 3589
67 4917 4917 4918
68 5787 339 6126 6148
69 6134 1079 7213 7211
70 6197 1671 7868 7857
71 6200 2039 8239 8249
72 6200 2233 8433 8451
73 6200 2324 8524 8530
74 62! 2363 8563 8562
75 6200 2378 8578 8578
76 6200 2383 8583 8583
77 6200 2385 8585 8585

TABLE 7 PHASEOLUS VULGARIS
(Breadth ef beans = 0.25 x -+ 6.70 mm)
Owserved
Expected values values

z LY ne N2 Freeer

1 32 32 32

2 130 130 135

3 400 374

4 10¢1 1011 998

5 2145 2145 2185

6 3832 3832 3835

7 5718 5718 5718

8 7140 486 7626 7648

9 7761 1525 9286 9286

10 7890 2510 10400 10416

11 7900 3229 11129 11153

12 7900 3671 11571 11580

13 7900 3908 11808 11801

14 7900 4022 11922 11911

15 7900 4071 11971 11968

16 7900 4091 11991 11992

17 7900 4098 11998 11998

18 7960 4100 12000 12000

- n

D
7

=

// \ \\

g.? 23 24 25 26 27 28 29

N W

Fic. 7 FrequUeNcy Curve oF YIELD STHENGTHE ef ST-37 STEEL
(Number of specimens versus yield steength in kg/tnm".)

[f the c¢lasses 20-21 are pooled, X® = 5.11. Thed of f are 8 —

31/ = 41/, which gives a P = 0.35.
BrEADTH OF BEANS OF PHASEOLUS VULGARIS

This is a clussical example, quoted from Charlier’ to exemplify
the expansion in Edgeworth’s series.

If the population is divided into two parts, Ny = 7900 and V.
= £100, each of them may be very well fitted to a simple dis-
tribution function with the following parameters:

Component No. 1: z, = —3.0 (= 5.95 mm), m = 6.2805.
Without pooling we have the X* = 7.70, and thed of f 10 — 3!/
= 61/, givinga P = 0.29.

Component No. 2: z, = +7.2 (= 850 mm), m = 1.6098.

7 *Die Grundiagen der Mathematischen Statistik,” by C. V. L.
Charlier, second editien, 1920, p. 73, quoted by Marald Cramér in
his book:"“*Mathematical Methods of Statistics.” Princeton Univer:
sity Press, Princeton, N. J.. 1945, p. 440.



If the classes 17—18 are pooled, the value of Xt = 4.50, and the
doff 9— 3!/ = 51/;givea P = 0.56.

It may be of intereat to compare this result with those of
Charlier and Cramér.

Chatlier says that, at the first laok, the agreement with the
norma) distribution eseems very satisfaetory, but that a closer
emmination shows a gmall negative skewnees and a small podi-
tive kurtosis.

Cramér has calculated the values of x* on the hypotheees of

normal distribution and asymptotic expansicne from it. The

reault was as follows:

Normal digtribution x? = 196.5d of { 18 P < 0.001
First approzimation x? = 343doff{ 12 P < 0.001
8econd approximation x? = 149dof {I1 P = 0.19

The agreement ie aatisfactory in the third cese only, requiring
four terms of the series. This operation is certainly of a purely
formal character,



