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Sign gradient descent method based bat searching algorithm with
application to the economic load dispatch problem

Haopeng Zhang, Qing Hui, Emmanuel Moulay, Patrick Coirault

Abstract— Inspired by the echolocation behaviors of the
bats and the swarm intelligence optimization, bat searching
algorithm (BA) was developed to solve unconstrained opti-
mization problems efficiently. However, due to the lack of the
gradient term, the accuracy of the BA is not superior, and
the enhancement of the algorithm is still of vital importance.
The sign gradient descent method (SGD) is a first-order
optimization method involving only the sign of the gradient
of the function to minimize. Most importantly, the convergence
and optimality issues of the SGD have been rigorously studied,
which guarantees the competitive performance of SGD method.
Therefore, in this paper, a combination of the BA and SGD
method is proposed by integrating the SGD term into the
update equation of the bats during the searching process. With
the social behavior among the bats and the sign gradient
descent method, the proposed algorithm shows significant
improvement comparing with the original algorithm. Moreover,
the convergence issue of the proposed algorithm is studied from
system dynamics perspective. The numerical evaluations are
provided to demonstrate the improvement of the proposed sign
gradient descent method based bat searching algorithm. In the
end, the economic load dispatch problem for the power system
is studied as an application of the proposed BA algorithms.
Based on the numerical results, the proposed BA shows superior
performance.

I. INTRODUCTION

Inspired by the echolocation behavior of microbats, Bat
Algorithm (BA) is a metaheuristic for global optimization
which was first proposed in [1] and widely applied to solve
challenging optimization problems in various areas such as
robotics[2], modern communication in [3], or energy systems
[4], [5], [6]. Extensive work has been conducted to improve
the performance of the original BA. In [7], a novel Bat
searching algorithm (NBA) was proposed by mimicking bats
habitat selection and their self-adaptive compensation for
Doppler effect in echoes into the basic BA to improve the
accuracy of the original BA. A bat algorithm based on
iterative local search and stochastic inertial weight (ILSSI-
WBA) was proposed in [8] to improve the algorithm to jump
out of the local optima and to enhance the diversity and
flexibility of bat population. In order to balance exploration
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behavior which expands the search area and exploitation
behavior which favors a local minimum search, a new
algorithm, known as directional Bat Algorithm (dBA) [9]
or Enhanced Bat Algorithm (EBA) has been [10] proposed.
Cooperative bat searching algorithm was proposed in [11] by
combining the swarm intelligence and cooperative control to
improve the original BA while a couple spring forced BA[12]
was developed by guiding the bats with coupled springs’
oscillation behavior and echolocation. Another main research
direction is to extend the basic BA to address different types
of optimization problems, such as, discrete optimization in
[13], [14], multi-objective and many-objective optimization
in [15], [16].

However, due to the lack of the gradient term, the accuracy
of the BA is not superior, and the enhancement of the
algorithm is still of vital importance. A first attempt to couple
BA and SGD was proposed in [17] but both algorithms
are totally decoupled. The sign gradient descent method
(SGD) is a first-order optimization method involving only
the gradient of the function to minimize. It has been first
proposed in the Rprop algorithm for machine learning in
[18] and its mathematical properties have been studied in
[19]. One of the main interest of this method lies in the fact
that the step size can be tuned precisely independently of
the amplitude of the gradient avoiding the vanishing gradient
problem explained in [20].

Therefore, in this paper, a combination of the BA and SGD
methods is proposed by adding the SGD term into the update
equations of the bats during the searching process. With the
social behavior among the bats and the sign gradient descent
method, the proposed algorithm shows significant improve-
ment compared to the original algorithm when solving the
benchmark functions. Moreover, the convergence issue of
the proposed algorithm is studied from system dynamics
perspective. The convergence condition of the proposed
algorithm is provided. The Economic Load Dispatch (ELD)
problem for power system is considered and numerically
solved in this paper as an application. With the numerical
comparison with other BA variants, the proposed algorithm
shows superior performance.

The article is organized as follows. After some preliminar-
ies given in Section II, the SGD-BA algorithm is developed
in Section III. The convergence results are provided in
Section IV. Numerical evaluations are provided in Section V
to illustrate the efficiency of the proposed algorithms. An
application problem is studied in Section VI. Finally, a
conclusion is addressed in Section VII.



II. PRELIMINARIES

Denoting y = (y1, . . . , yn)
T ∈ Rn, the gradient of a

differentiable function F : Rn → R is the vector
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A point y∗ ∈ Rn is a critical point of F if ∇F (y∗) = 0.
Denote
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where sign refers to the sign function defined by

sign(y) :=

#
$%

$&

−1 if y < 0,

0 if y = 0,

1 if y > 0.

rand denotes a random number ranging from 0 to 1. Let
x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, we
denote x× y = (x1 y1, . . . , xn yn)

A. BA algorithm

The BA was based on the echolocation or bio-sonar
characteristics of microbats, see [1]. Let xi(k) ∈ Rn, vi(k) ∈
Rn, fi(k) ∈ R be the position, velocity and frequency
information of bat i at iteration k, respectively. We suppose
that fi belongs to set [fmin, fmax]. The update rules are

fi(k) = fmin + (fmax − fmin)β

vi(k) = vi(k − 1) + (p(k − 1)− xi(k − 1)) fi(k) (1)
xi(k) = xi(k − 1) + vi(k)

where k ∈ N, 1 ≤ i ≤ q where q ∈ N is the number of
bats, β ∈ [0, 1] is a random vector drawn from a uniform
distribution and p(k − 1) is the best global solution of all
bats at step k − 1.

The local search is also embedded in the BA algorithm
by using random walk around the current best solutions for
each bat as follows

xnew = xold + εA(k) (2)

where ε ∈ [−1, 1] and A(k) = 〈Ai(k)〉 ∈ Rn is the average
loudness of all the bats i at time step k. The loudness Ai

and pulse rate ri for bat i are governed by the following two
equations

Ai(k + 1) = αAi(k)

ri(k + 1) = ri(k)(1− exp (−γk)) (3)

where α and γ are constants.
Let us now recall in Algorithm 1 the BA algorithm for

a cost function f : Rn → R which must be minimized.
And x, x, v, v are the lower bounds and upper bounds for
positions and velocities, respectively.

Algorithm 1 Bat Searching Algorithm
Initialize the bat’s position and velocity with two uniformly
distributed random vectors xi ∼ U(x, x), vi ∼ U(v, v),
respectively.
Initialize the global best position p, loudness Ai(0), pulse
rate ri(0), and frequency fi(0).
while k < MaxIter; do

while i <= q do
Update the bat’s frequency:
fi(k) = fmin + (fmax − fmin)β;
Update the bat’s velocity:
vi ← vi + (xi − p)fi;
Update the bat’s position:
xi(k) = xi(k − 1) + vi(k);

if rand > ri then
Select a solution among the best solutions

else
Generate a local position around the best solution.

end
if rand < Ai and f(xi) < f(p) then

Accept the new solutions
Increase ri and reduce Ai

else
Keep the same p

end
end

end

III. SGD-BA ALGORITHM

In this section, the gradient descent method is added
into the update equation (1) of the original BA to obtain
SGD-BA to improve the performance of the original bat
searching algorithm. More precisely, the local search given
by Equations (2) and (3) is replaced by SGD local search
directly in Equation (1). Mathematically, it reads as

fi(k) = fmin + (fmax − fmin)β

vi(k) = ωvi(k − 1) + (p(k − 1)− xi(k − 1)) fi(k)

−SGD(k − 1)

xi(k) = xi(k − 1) + vi(k)

where ω is the weight inertia, SGD(k − 1) = d(k − 1) ×
sign(∇(F (xi(k−1)))) and d(k) ∈ Rn is the step size of the
searching. Overall, the SGD-BA is described in Algorithm 2.
With the combination of the BA and SGD method, the
proposed SGD-BA will search and find the optimal solution
with high efficiency.

In the following, we propose two approximations of the
partial derivative term.

Modification 1: for 1 ≤ i ≤ q and 1 ≤ j ≤ n:

∂F (xi(k))

∂xij(k)
≈ F (xi1(k),...,xij(k+1),...,xin(k))−F (xi(k))

xij(k+1)−xij(k)
(4)

Modification 2: for 1 ≤ i ≤ q and 1 ≤ j ≤ n:

∂F (xi(k))

∂xij(k)
≈ F (X(k + 1))− F (X(k))

xij(k + 1)− xij(k)
(5)



with xi(k) = (xi1(k), . . . , xin(k)) ∈ Rn. Moreover, for the
step size, we choose

d(k) =
p(k − 1)− xi(k − 1)

NofB
(6)

where NofB represents the number of bats used in the
algorithm. We have that lim

k→∞
d(k) = 0 which is a necessary

condition for the convergence of the algorithm as explained
in [19].

Remark 3.1: Overall, Modification 1 is a better approxi-
mation of the partial derivative than Modification 1. How-
ever, SGD-BA takes more computation time when using
Modification 2 than when using Modification 1 and it can
be useful in practice to use Modification 1.

Algorithm 2 Sign-gradient descent based bat searching
algorithm
Initialize the bat’s position and velocity with two uniformly
distributed random vectors xi ∼ (lbx, ubx), vi ∼ U(v, v),
respectively.
Initialize the global best position p, loudness Ai(0), pulse
rate ri(0), and frequency fi(0).
while k < MaxIter; do

while i <= q do
Update the bat’s frequency:
fi(k) = fmin + (fmax − fmin)β;
Update the bat’s velocity:
vi ← ωvi + (xi − p)fi − SGD;
Update the bat’s position:
xi(k) = xi(k − 1) + vi(k);

if rand > ri then
Select a solution among the best solutions

else
Generate a local position around the best solution.

end
if rand < Ai and f(xi) < f(p) then

Accept the new solutions
Increase ri and reduce Ai

else
Keep the same p

end
end

end

IV. CONVERGENCE STUDY

In this section, the convergence issue of the proposed
SGD-BA with deterministic parameters is studied.

Theorem 4.1: All the bats in the SGD-BA converge to the
global best solution if and only if −1 < ω < 1, f > 0 and
2ω + 2− f > 0.

Proof: For bat i, we have

fi(k) = fmin + (fmax − fmin)β

vi(k) = ωvi(k − 1) + (p(k − 1)− xi(k − 1)) fi(k − 1)

−SGD(k − 1)

xi(k) = xi(k − 1) + vi(k)

and then,

xi(k) = xi(k − 1) + ωvi(k − 1)

+ (p(k − 1)− xi(k − 1)) fi(k)

−SGD(k − 1)

by replacing vi(k − 1) = xi(k − 1)− xi(k − 2), we have:

xi(k) = (1 + ω − f)xi(k − 1)− ωxi(k − 2)

+p(k − 1)f − SGD(k − 1)

The Z-transformation is applied to the above equation:

µi(z) = (1 + ω − f)zµi(z)− ωz2µi(z) + Z{p(k − 1)f}
−Z{SGD(k − 1)}

where µi(z) is the Z-transform of xi(k). Therefore,

[1− (1 + ω − f)z−1 + ωz−2]µi(z)

= Z{p(k − 1)f}− Z{SGD(k − 1)}

and

µi(z) =
Z{p(k − 1)f}

[1− (1 + ω − f)z−1 + ωz−2]

− Z{SGD(k − 1)}
[1− (1 + ω − f)z−1 + ωz−2]

µi(z) =
1

z−1−1fP
∗

[1− (1 + ω − f)z−1 + ωz−2]

− Z{SGD(k − 1)}
[1− (1 + ω − f)z−1 + ωz−2]

Based on the final value theorem:

lim
k→∞

xi(k) = lim
z→1

µi(z)(z − 1)

= lim
z→1

zfP ∗

[1− (1 + ω − f)z−1 + ωz−2]

− lim
z→1

(z − 1)
Z{SGD(k − 1)}

[1− (1 + ω − f)z−1 + ωz−2]

To grantee the stability of the system, the roots of [1− (1+
ω− f)z−1 + ωz−2] should be inside the unit circle, and we
have

• −1 < ω < 1
• f > 0
• 2ω + 2− f > 0

and limk→∞ xi(k) = p.
A numerical example is provided here. Assume three

bats are considered in the SGD-BA algorithm to solve the
minimization problem of objective function f(x) = x2. Let
ω = 0.8, and fi = 2, then the positions and velocities of the
bats during the searching process are shown in Fig. 1 and Fig.
2, which show the convergence of the algorithm. Moreover,
the best solutions found in each iteration are shown in Fig.
3, and the fitness values during the searching process are
provided in Fig. 4.

V. NUMERICAL EVALUATIONS

In this section, the proposed SGD-BAs are numerically
evaluated.
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A. Benchmark functions

The standard benchmark functions are chosen from the
2018 IEEE Congress on Evolutionary Computation (CEC).
Due to the space limitation, all the functions are not fully
reviewed, for more information, one can check [21].

1) Fully-separable Functions
a) f1: Elliptic Function
b) f2: Rastrigin Function
c) f3: Ackley Function

2) Partially Additively Separable Functions
• Functions with a separable subcomponent:

a) f4: Elliptic Function
b) f5: Rastrigin Function
c) f6: Ackley Function
d) f7: Schwefels Problem 1.2

• Functions with no separable subcomponents:
a) f8: Elliptic Function
b) f9: Rastrigin Function
c) f10: Ackley Function
d) f11: Schwefels Problem 1.2

3) Overlapping Functions
a) f12: Rosenbrock’s Function
b) f13: Schwefels Function with Conforming Over-

lapping Subcomponents
c) f14: Schwefels Function with Conflicting Over-

lapping Subcomponents
4) . Non-separable Functions

a) f15: Schwefels Problem 1.2

B. Numerical results

All the algorithms run 20 times with random initial posi-
tions with 100 bats. The max, min, mean and the standard
deviation values are calculated and are compared, which are
given in Tables I–VI. In the last line of the tables, number
of the best solutions are listed. Overall, equation (4) being
a better approximation of the partial derivative than Equa-
tion (5), it explains why we obtain better results for SGD-
BA with Equation (4) than with Equation (5) in Table IV.
However, SGD-BA takes more computation time when using
Equation (4) than when using Equation (5) and it can be
useful in practice to use Equation (5).

VI. APPLICATION TO ECONOMIC LOAD DISPATCH
PROBLEM

To demonstrate the performance of the SGD method and
the proposed BA algorithms, the Economic Load Dispatch
(ELD) problem for power systems is considered and nu-
merically solved in this section as an application. The ELD
problem considers a series of power generation and power
transmission facilities, each with associated operating limits,
costs, and losses. Given a power demand for the entire
grid, the optimal outputs for each generating station must
be determined in order to minimize overall cost, see [22]
for details. Due to the nonlinear cost functions and the
presence of both inequality and equality constraints, the ELD



TABLE I
MAXIMUM COMPARISONS BETWEEN SGD-BA(4) USES EQUATION (4)

AND SGD-BA(5) USES EQUATION (5)

Functions BA SGD-BA(4) SGD-BA(5)
f1 2.2067e+11 2.2055e+11 2.2042e+11
f2 4.9380e+04 5.1108e+04 5.1018e+04
f3 2.1232e+01 2.1005e+01 2.1208e+01
f4 2.3045e+13 2.0412e+13 2.0674e+13
f5 4.6616e+07 4.0791e+07 5.0117e+07
f6 1.0490e+06 1.0421e+06 1.0437e+06
f7 4.4566e+14 2.5223e+14 2.7483e+14
f8 7.0595e+17 8.6122e+17 9.1962e+17
f9 3.9952e+09 3.6655e+09 3.8955e+09
f10 9.5325e+07 9.5430e+07 9.5730e+07
f11 1.8293e+16 1.7352e+16 1.6622e+16
f12 2.3174e+12 2.9851e+12 2.4451e+12
f13 6.5514e+12 5.2442e+12 5.7714e+12
f14 3.1320e+16 3.7821e+16 3.6381e+16
f15 3.8474e+14 1.0233e+14 1.1123e+14

# of the best 5 out of 15 8 out of 15 2 out of 15

TABLE II
MINIMUM COMPARISONS BETWEEN SGD-BA(4) USES EQUATION (4)

AND SGD-BA(5) USES EQUATION (5)

Functions BA SGD-BA(4) SGD-BA(5)
f1 1.8409e+11 1.8328e+11 1.8248e+11
f2 4.3991e+04 4.4003e+04 4.3773e+04
f3 2.1129e+01 2.1003e+01 2.1113e+01
f4 6.4297e+12 3.0125e+12 3.2055e+12
f5 3.4032e+07 3.9709e+07 3.7870e+07
f6 1.0211e+06 1.01071e+06 1.0203e+06
f7 3.6324e+13 3.8211e+13 4.1261e+13
f8 2.0124e+17 1.9841e+17 1.6494e+17
f9 2.6673e+09 2.6099e+09 2.6569e+09
f10 9.0103e+07 8.9881e+07 8.7831e+07
f11 2.6236e+15 2.5429e+15 2.7939e+15
f12 1.9961e+12 2.0186e+12 1.9886e+12
f13 3.1547e+11 3.0626e+11 3.2266e+11
f14 2.9560e+15 2.3127e+15 1.8397e+15
f15 2.6404e+11 2.9621e+11 3.2036e+11

# of the best 3 out of 15 7 out of 15 7 out of 15

problem is a rigorous test that offers insight into how dif-
ferent configurations affect the performance of an algorithm.
Mathematically, the ELD problem can be expressed as:

min :

n'

i=1

Fi(Pi) (7)

subject to : Pmin
i ≤ Pi ≤ Pmax

i , (8)
n'

i=1

Pi = D + Pl, (9)

Pl =

n'

i=1

n'

i=j

Bi,jPiPj , (10)

Fi,j (P (i)) = aiP
2
i + biPi + ci (11)

where the system consists of n generating stations each
with a load of Pi. The fuel cost for each plant is given by
the quadratic function Fi(Pi). The load for each generating
station is limited by the lower and upper bounds Pmin

i and
Pmax
i , respectively, while the total load is Pl. The transmis-

TABLE III
STANDARD DEVIATION COMPARISONS BETWEEN SGD-BA(4) USES

EQUATION (4) AND SGD-BA(5) USES EQUATION (5)

Functions BA SGD-BA(4) SGD-BA(5)
f1 9.1698e+09 1.2123e+10 1.0144e+10
f2 1.2191e+03 1.6361e+03 1.7831e+03
f3 2.7249e-02 2.9941e-02 2.7894e-02
f4 4.2594e+12 4.1901e+12 4.4449e+12
f5 2.7758e+06 2.6825e+06 2.7652e+06
f6 6.8454e+03 6.5851e+03 5.8550e+03
f7 1.0716e+14 6.7881e+13 6.1388e+13
f8 1.3153e+17 1.6193e+17 1.3103e+17
f9 3.1330e+08 2.8234e+08 2.7825e+08
f10 1.4175e+06 1.2972e+06 1.7479e+06
f11 3.9061e+15 3.5565e+15 3.5565e+15
f12 8.0107e+10 9.8551e+10 1.2875e+11
f13 1.6392e+12 1.1441e+12 1.3254e+12
f14 8.3149e+15 7.6873e+15 7.9783e+15
f15 8.5946e+13 1.9634e+13 2.4633e+13

# of the best 4 out of 15 6 out of 15 5 out of 15

TABLE IV
MEAN VALUE COMPARISONS BETWEEN SGD-BA(4) USES EQUATION (4)

AND SGD-BA(5) USES EQUATION (5)

Functions BA SGD-BA(4) SGD-BA(5)
f1 2.0517e+11 2.0321e+11 2.0084e+11
f2 4.6593e+04 4.6823e+04 4.6483e+04
f3 2.1177e+01 2.0614e+01 2.1164e+01
f4 1.0324e+13 9.2241e+12 9.4264e+12
f5 3.9574e+07 3.6561e+07 3.8886e+07
f6 1.0368e+06 1.0011e+06 1.0363e+06
f7 1.9538e+14 9.8141e+13 1.1431e+14
f8 4.3026e+17 4.2181e+17 4.1478e+17
f9 3.4215e+09 3.3323e+09 3.2352e+09
f10 9.2536e+07 9.2750e+07 9.3008e+07
f11 6.8157e+15 7.0711e+15 6.1711e+15
f12 2.1201e+12 2.0853e+12 2.1583e+12
f13 1.8864e+12 1.7783e+12 1.4487e+12
f14 1.2638e+16 1.0051e+16 1.1155e+16
f15 3.6229e+13 1.1414e+13 1.2447e+13

# of the best 1 out of 15 8 out of 15 6 out of 15

sion losses are described by the B matrix.
In this section, the BA, SGD-BA(4) and SGD-BA(5) are

applied to solve the ELD problem (7)-(11). 30 bats are
considered in all the BA algorithms with 500 iterations. 20
executions have been conducted, and the max, min, standard
derivation (SD), mean, and median values are compared and
provided in Table. V. Based on the simulation results, the
proposed two sign-gradient based BA significantly improve
the original BA. And the second modification showed the
best results.

VII. CONCLUSION

In this paper, two sign-gradient descent modifications are
applied to the bat searching algorithm in order to enhance the
accuracy of the BA. Due to the gradient term in the proposed
algorithms, the SGD-BAs show competitive improvement
compared with the original BA by solving the 2018 IEEE
Congress on Evolutionary Computation’s standard bench-
mark functions. Moreover, the convergence analysis of the
proposed algorithm has been conducted, and the require-



TABLE V
COMPARISON BETWEEN DIFFERENT BA ALGORITHMS FOR ELD USING 30 BATS

BA Max Min SD Mean Median
BA 5.9738e+05 5.9465e+05 8.3622e+01 5.9684e+05 5.9725e+05

SGD-BA(4) 5.2540e+05 4.7899e+05 1.5552e+04 4.9852e+05 4.9472e+05
SGD-BA(5) 4.5768e+05 4.5695e+05 2.1379e+02 4.5727e+05 4.5729e+05

TABLE VI
MEDIAN VALUE COMPARISONS BETWEEN SGD-BA(4) USES

EQUATION (4) AND SGD-BA(5) USES EQUATION (5)

Functions BA SGD-BA(4) SGD-BA(5)
f1 2.0723e+11 2.1201e+11 2.0070e+11
f2 4.6308e+04 4.6276e+04 4.6605e+04
f3 2.1180e+01 2.0987e+01 2.1165e+01
f4 8.4026e+12 8.9559e+12 8.9925e+12
f5 4.0037e+07 4.2661e+07 4.1156e+07
f6 1.1351e+06 1.0394e+06 1.0371e+06
f7 1.8825e+14 1.7797e+14 1.0791e+14
f8 4.1820e+17 3.7858e+17 3.9188e+17
f9 3.3901e+09 3.3451e+09 3.2382e+09
f10 9.2416e+07 9.1981e+07 9.2466e+07
f11 5.5110e+15 6.6475e+15 6.7615e+15
f12 2.1136e+12 2.4681e+12 2.1063e+12
f13 1.3413e+12 1.7013e+12 1.0074e+12
f14 9.8651e+15 9.9818e+16 1.0428e+16
f15 9.1951e+12 4.818569e+12 4.8185e+12

# of the best 4 out of 15 4 out of 15 6 out of 15

ments of the parameters are derived for convergence. In the
end, the ELD problem is considered and numerically solved
by the three bat algorithms. Based on the numerical results,
the proposed sign-gradient BAs show better performance
than the original BA and two other BA variations in the
literature.
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