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Note on a new combinatorial interpretation of Catalan numbers

We propose an interpretation of the n-th Catalan number C n in terms of the number of solutions in N n of a system (S) of linear inequalities with n indeterminates. We also provide an explicit bijection between Dyck paths of lenght n and solutions in N n of (S).

Introduction

Catalan numbers (C n ) n≥1 ,

C n = 1 n 2n n -1 ,
are famous for their plethora of combinatorial interpretations. We introduce two of them: 1) the number of vote counting sequences of a particular case of the ballot problem and 2) the number of Dyck paths in a square lattice.

For an overview of Catalan numbers, see e.g. [START_REF] Hilton | Catalan numbers, their generalization, and their uses[END_REF].

We present the above-mentioned special case of the ballot problem. Given two candidates A and B for a ballot, suppose that both get n votes 1 at the end of the ballots counting. The problem consists of enumerating all the possible vote counting sequences, where the number of votes for B remains greater or equal to thoses for A.

Let a k and b k be the numbers of votes in favor of A and B respectively, in the moment of the kth counting. Every vote counting sequence V n of length 2n can be enconded in an (2n + 1)-tuple containting the successive counted votes for A and B,

V n = ((a 0 , b 0 ), (a 1 , b 1 ), . . . , (a 2n , b 2n )) , (1) 
where (a 0 , b 0 ) = (0, 0), (a 1 , b 1 ) = (0, 1), (a 2n , b 2n ) = (n, n) and a k ≤ b k , with k = 0, 1, . . . , 2n.

It is well known that if V n is the set of all possible vote counting sequences of length n, then

C n = |V n |.
Secondly, let L n = {0, 1, . . . , n} 2 be a square lattice of size n. A Dyck path in L n is denoted by D n and defined by the following recursive procedure: using only north or east steps, the path D n starts from the coordinates (0, 0) of L n and stops at (n, n), under the rule that a ≤ b for any coordinates (a, b) of L n .

Every Dyck path D n can be encoded in the following (2n + 1)-tuple that contains its coordinates,

D n = ((a 0 , b 0 ), (a 1 , b 1 ), . . . , (a 2n , b 2n )) , (2) 
where

(a 0 , b 0 ) = (0, 0), (a 1 , b 1 ) = (0, 1), (a 2n , b 2n ) = (n, n) and a k ≤ b k , with k = 0, 1, . . . , 2n.
It is also known that if D n is the set of all possible Dyck paths in

L n then C n = |D n |.
Indeed, one can easily check the fact that any vote counting sequence can be illustrated by an equivalent Dyck path (e.g. see Figure 1) and vice versa. Tuples (1) and ( 2) also show that a vote counting sequence and a Dyck path that are equivalent share the same encoding.

Note that in the following, we use both interpretations depending on the convenience of one or the other. 

An interpretation of Catalan numbers

We assume the interpretation provided by Theorem 2.1 below is new (cf. entery A000108 in the OEIS [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF]). Given the system of linear inequalities (S) with indeterminates x ≡ (x 1 , . . . , x n ),

       1 ≤ x 1 ≤ n 2 ≤ x 1 + x 2 ≤ n • • • n ≤ x 1 + • • • + x n ≤ n, (S)
let X n be the set of the solutions of the system (S) that are in N n ,

X n = {(x 1 , . . . , x n ) : x k ∈ N, k ≤ k ∑ j=1 x j ≤ n, : 1 ≤ k ≤ n}. Theorem 2.1 The equality C n = |X n | (3)
is true. In addition, there exists a bijection between X n and D n , the set of Dyck paths of length n.

Lemma 2.3 Let c n and d n be the apex vector and ∇-apex vector of a Dyck path D n , then k

≤ d 0 + • • • + d k-1 ≤ n, with k = 1, 2, . . . , n.
Conversely, let d n be any n-tuple such that k

≤ d 0 + • • • + d k-1 ≤ n, with k = 1, 2, . . . , n, then d n is the ∇-apex vector of some Dyck path D n . Proof. Since d k = c k -c k-1 , with c -1 = 0, then d 0 + • • • + d k = c k . In addition, from the definition of Dyck paths we have k ≤ c k-1 ≤ n. The two deductions imply that k ≤ d 0 + • • • + d k-1 ≤ n. Conversely, let d n be any n-tuple such that k ≤ d 0 + • • • + d k-1 ≤ n.
Let c n be an n-tuple which entries are c k := d k + c k-1 , with c -1 = 0. At this point, we have to demonstrate that c n is an apex vector of some Dyck path. To this end, carry out the procedure below that generates a Dyck path D n from the n-tuple c n , using a step operator ⊎ defined such that

((r, s), (t, u)) ⊎ (v, w) := ((r, s), (t, u), (v, w)) and (v, w) ⊎ (∅) := (v, w),
where (∅) is the empty path: 0) Initiate of the empty Dyck path D n := (∅).

1) Compute c 0 := d 0 + 0 and D n := (∅) ⊎ ((0, 0), (0, 1), . . . , (0, c 0 )).

2) Compute c 1 := d 1 + d 0 and

D n := D n ⊎ ((1, c 0 ), (1, d 0 + 1), . . . , (1, c 1 )).
And so on until the n-th step.

n) Compute c n-1 := d n-1 + • • • + d 1 + d 0 and D n := D n ⊎ ((n -1, c n-2 ), (n -1, c n-2 + 1), . . . , (n -1, c n-1 )). (4) n + 1) Add the last step D n := D n ⊎ (n, n).
It turns out that c n is the apex vector of the generated Dyck path D n , since it is easy to see that every c k = max 0≤ j≤2n {b j , (k, b j ) ∈ D n } and c k ≥ k, with k = 0, 1, . . . , n -1. Consequently d n is the ∇-apex vector of some dyck path D n , which is unique according to Lemma 2.2.

Proof of Theorem 2.1. Let D n be the set of all paths of the lattice L n and D n be the set of all their relative ∇-apex vectors. Recall that X n is the set of all solutions of the system (S) that are in N n .

Lemma 2.3 states that if d n ∈ D n then d n ∈ X n and inversely if x ∈ X n then x ∈ D n , therefore |D n | = |X n |. Lemma 2.2 states that every D n ∈ D n is characaterized by its ∇-apex vector d n ∈ D n , hence |D n | = |D n |. In conclusion C n = |X n |.
Concerning the explicit bijection between D n and X n . In the first hand, generating a solution x ∈ X n from a dyck path D n is quite obvious, as seen in the first part of Lemma 2.3's proof. In the second hand, the procedure seen in the second part of Lemma 2.3's proof shows how to generate a unique Dyck path D n from a solution x ∈ X n ; we rewrite it in a more formal way throught Algorithm 1.

Data: (x 1 , x 2 , . . . , x n ), solution of (S). 

Figure 1 :

 1 Figure 1: Dyck path on a square lattice L 5 , representing a vote counting sequence of length 2n

1 :

 1 Result: Coordinates of the Dyck path D n in an (2n + 1)-tuple.D n ← (∅) ; c -1 ← 0 ; for i ← 0 to n -1 do c i ← c i-1 + x i+1 ; for j ← c i-1 to c i do D n ← D n ⊎ (i, j) ; end end D n ← D n ⊎ (n, n).Algorithm Generation of a Dyck path D n from a solution x.

Definition 2.1 Let D n be a Dyck path in the lattice L n . The apex vector of D n is the n-tuple c n = (c i , 0 ≤ i ≤ n -1) such that c i = max 0≤ j≤2n b j , (i, b j ) ∈ D n , i.e. c i is the maximum number of votes collected by B before A collects its (i + 1)th vote. The ∇-apex vector of D n is the n-tuple

The following lemma states that two different Dyck paths can't have identical ∇-apex vectors.. Lemma 2.2 Let D n be the set of Dyck paths in the lattice L n . Then there is no

where d n and d ′ n are the ∇-apex vectors of D n and D ′ n .

Proof. Suppose the contrary, i.e. there exists at least

Let D n and be D ′ n be such Dyck paths. Since D n = D ′ n , there exists a pair (a j , b j ) in L n such that D n = (0, 0), (0, 1), . . . , (a j , b j ), (a j+1 , b j+1 ), . . . , (a 2n , b 2n ) ,

, which means that c n can't be indentical to c ′ n . Subsequently, their respective ∇-apex vectors d n and d ′ n cannot be indentical, for

. By the absurd, Lemma 2.2 is true.

The lemma below shows that every ∇-apex vector d n is a solution in N n of the system of linear inequalities (S) and vice versa.