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Abstract Let q be an odd prime power, and denote by Fq the finite field with q elements. In this
paper, we consider the ring R = Fq+uFq+vFq, where u2 = u, v2 = v, uv = vu = 0 and study double
circulant and double negacirculant codes over this ring. We first obtain the necessary and sufficient
conditions for a double circulant code to be self-dual (resp. LCD). Then we enumerate self-dual and
LCD double circulant and double negacirculant codes over R. Last but not the least, we show that
the family of Gray images of self-dual and LCD double circulant codes over R are good. Several
numerical examples of self-dual and LCD codes over F5 as the Gray images of these codes over R are
given in short lengths.
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1 Introduction

Cyclic codes are one of the oldest family of block codes. They have received very intensive attention
during the last six decades [6]. In that period, several studies have shown their important uses in
and out of mathematics. Many times, they have appeared through their generalized classes [4,14,
15,25] and have produced lots of good codes. Along with some other classes, namely, constacyclic,
skew cyclic etc., quasi-cyclic codes have led to record-breaking codes [8,9]. Recall that a linear code
is said to be a quasi-cyclic code of index l, if it is invariant under T l, where T denotes the cyclic shift
operator. In particular, a quasi-cyclic code of index 1 is indeed a cyclic code. In 2001, Ling and Solé
[17] presented a new approach to study quasi-cyclic codes over finite fields. They regarded quasi-cyclic
codes over a finite field F as linear codes of length l over the polynomial ring R(F,m) = F [x]/(xm−1)
where m = n

l . Essential to that approach was the decomposition of R(F,m) into local rings via the
Chinese Remainder Theorem for polynomials. Later, in 2003, they extended their study to the case
when F is itself a chain ring [18]. In 2016, Guneri et al. [7] have shown that quasi-cyclic codes include
families of good LCD codes. Double circulant codes are particular types of quasi-cyclic codes having
index 2. In 2018, Alahmadi et al. [2] have shown the self-dual double circulant codes of odd dimension
to be dihedral or constadihedral depending upon the characteristic of the field. Meanwhile, self-dual
negacirculant codes over finite fields were studied in [1]. To generalize the concept over finite rings,
recently, Shi et al. [21] considered the finite commutative semi-local non-chain ring Fq + uFq, u2 = u
and studied double circulant self-dual or LCD codes. They first enumerated these codes for self-dual
and LCD codes, respectively, and later obtained distance bounds on them. A similar work has been
reported over a semi-local non-chain ring Fq + uFq + u2Fq, where u3 = u in [28]. On the other
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side, double circulant LCD codes over Z4 in [22], Zp2 in [10] and Galois ring in [23] were studied,
respectively. Further, for some related studies on these topics, interested readers can see [20,24,26,27,
29]. Therefore, because of available works on non-chain rings [21,28], it is logical to investigate these
codes over other semi-local non-chain rings. Motivated by the above studies, here we consider the
finite commutative semi-local non-chain ring R = Fq+uFq+vFq, where u2 = u, v2 = v, uv = vu = 0.
In fact, we first determine the necessary and sufficient conditions (Lemma 1) of double circulant codes
to be self-dual and LCD. Then we enumerate self-dual and LCD double circulant codes of length
2n over R when n is odd and double negacirculant codes when n is even, respectively. Finally, by
taking Gray images of such codes we show that both families are good in terms of distance bounds
(Theorem 2). It is worth mentioning that the ring R has an important interest and several classes of
codes were considered over it [3,12,13] in the literature.

The paper is organized as follows: Section 2 contains some basic definitions and Gray maps. In
Section 3, we study the structure of double circulant and double negacirculant codes over R and
enumerate self-dual and LCD double circulant and double negacirculant codes. Section 4 provides
the distance bounds and establishes that the families of Gray images of self-dual double circulant
codes, and LCD double circulant codes over R are good. In Section 5, we present several non-trivial
examples of self-dual and LCD codes over F5 from the Gray images of these codes over R. Section 6
concludes the paper.

2 Preliminary

Let q be an odd prime power such that there exists ω ∈ Fq with ω2 = −1 (for the existence of such
element see [18]) . Throughout, we fix R = Fq+uFq+vFq, u2 = u, v2 = v, uv = vu = 0. Now, following
[3,12], we recall that R is a semi-local non-chain ring with three maximal ideals 〈1− u〉, 〈1− v〉 and
〈u + v〉. Again, by applying the Chinese Remainder Theorem (CRT) decomposition, we can write
R ∼= (1 − u − v)Fq + uFq + vFq. Hence, an arbitrary element r ∈ R has a unique representation
r = (1−u−v)r1 +ur2 +vr3, where r1, r2, r3 ∈ Fq. Further, R has (q−1)3 units and q3−(q−1)3 non-
unit elements where the set of units is calculated by the fact that r is a unit in R if and only if r1, r2, r3
are non-zero in Fq. Now, we define a Gray map φ1 : R → F3

q by φ1(a + ub + vc) = (−b, 2a + b, c),
for all a, b, c ∈ Fq. In addition, we consider another Gray map φ2 : R → F3

q defined in [12] by
φ2(a + ub + vc) = (a, a + b, a + c), for all a, b, c ∈ Fq. It is evident to check that φi is an Fq-linear
bijective map and can be naturally extended over Rn. In later portion, we show that these Gray
maps preserve the orthogonality of a linear code, and hence carry Euclidean LCD and self-dual codes
from R to Fq.

A linear code C of length n over R is an R-submodule of Rn. The Hamming weight wH(c) of
a vector c = (c0, c1, . . . , cn−1) ∈ Rn is the number of non-zero coordinates while the minimum
Hamming distance of the code C is

dH(C) = min{wH(c) : 0 6= c ∈ C}.

Now, we define the Lee weight wL(c) of a vector c = (c0, c1, . . . , cn−1) ∈ Rn as wL(c) = wH(φi(c))
while the minimum Lee distance of C is given by

dL(C) = min{wL(c) : 0 6= c ∈ C}.

Therefore, it is checked that φi is a linear isometric map from (Rn, dL) to (F3n
q , dH) for i = 1, 2.

For any two elements s = (s0, s1, . . . , sn−1) and t = (t0, t1, . . . , tn−1) in Rn, their Euclidean (resp.
Hermitian) inner product is defined by

s · t =

n−1∑
i=0

siti

and

〈s, t〉H =

n−1∑
i=0

sit̄i,

respectively, where for x+uy+ vz ∈ R its conjugate is defined by x+ uy + vz = x
√
q +uy

√
q + vz

√
q.

In this way, the Euclidean (resp. Hermitian) dual of a linear code C is denoted by C⊥ (resp. C⊥H )
and defined by

C⊥ = {a ∈ Rn : a · c = 0 for all c in C}
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and
C⊥H = {a ∈ Rn : 〈a, c〉H = 0 for all c in C},

respectively. A linear code C is said to be a Euclidean (resp. Hermitian) LCD code if and only if
C ∩ C⊥ = {0} (resp. C ∩ C⊥H = {0}). Also, C is said to be a Euclidean (resp. Hermitian) self-dual
code if C = C⊥ (resp. C = C⊥H ). Now, the next result shows that φi preserve the orthogonality of
a linear code.

Theorem 1 Let C be a linear code over R. Then C is a Euclidean LCD (resp. self-dual) code if and
only if φi(C) is a Euclidean LCD (resp. self-dual) code over Fq for i = 1, 2.

Proof The proof depends on the main fact φi(C
⊥) = (φi(C))⊥, which can be verified by using the

similar procedure of [[21], Theorem 2.2].

For solving the nonlinear equations in Theorem 3, we use the concept of norm functions which is
defined as Norm : Fqn → Fq given by

Norm(x) = x
qn−1
q−1 , for x ∈ Fqn .

Then Norm is a multiplicative surjective function and Norm(0) = 0. Further, each element in F∗q is

a norm of exactly qn−1
q−1 elements in F∗qn (see [16], Theorem 2.28). Now, we recall that a linear code

is said to be a double circulant (resp. negacirculant) code, if its generator matrix is of the form

G = (I, A)

where A is a circulant (resp. negacirculant) matrix, i.e., the matrix whose rows can be obtained by
successive circular shifts (resp. negashifts) of the first row. Let C<n> be a family of codes having
parameters [n, kn, dn] over Fq. Then the rate ρ and relative distance δ are defined as ρ = lim sup

n→∞

kn

n

and δ = lim sup
n→∞

dn
n . This family is said to be good , if ρδ 6= 0. To derive the main result which

proposes that the Gray images of a subfamily of double circulant (LCD or self dual) codes over R
are good (Theorem 2), we will use the entropy function [11] defined by

Hq(x) =

{
0, if x = 0

x logq(q − 1)− x logq(x)− (1− x) logq(1− x), if 0 < x ≤ 1− 1
q

.

Now, we state one of the main result of this paper, and prove it at the end of Section 4.

Theorem 2 Let q be an odd prime power, and δ > 0 be given. Then there are families of double
circulant self-dual (resp. LCD) codes of length 2n over R, with code rate 1

2 , and with Gray images
of relative distance δ as long as Hq(δ) <

1
12 (resp. Hq(δ) <

1
6 ). Moreover, we conclude that both of

these families of codes are good.

Remark: This result shows that for all ε > 0 arbitrarily small there are families of the said types of
relative distance δ0 − ε, with Hq(δ0) = 1

12 (resp. Hq(δ0) = 1
6 ). Unfortunately, the method does not

allow us to make ε = 0.

3 Double circulant and double negacirculant codes

In this section, we enumerate self-dual and LCD double circulant codes over R. For this, we first obtain
the necessary and sufficient conditions of double circulant codes to be self-dual or LCD. Further, the
enumeration of self-dual and LCD double negacirculant codes is provided.

3.1 Enumeration of double circulant codes when n is odd

We assume that n is an odd positive integer and the factorization of xn − 1 into distinct irreducible
polynomials over R is as follows:

xn − 1 = a(x− 1)
s∏
i=2

gi(x)
t∏

j=1

hj(x)h∗j (x),

where
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– a ∈ R∗ where R∗ denotes the set of all units in R,
– gi(x) (2 ≤ i ≤ s) are self-reciprocal polynomials of even degree 2ei, respectively,
– h∗j (x) (1 ≤ j ≤ t) are reciprocal polynomials of hj(x) with degree dj , respectively.

By the Chinese Remainder Theorem (CRT), we have

R[x]

〈xn − 1〉
∼=

R[x]

〈x− 1〉 ⊕
(
⊕si=2

R[x]

〈gi(x)〉

)
⊕

(
⊕tj=1

(
R[x]

〈hj(x)〉

)
⊕
(

R[x]

〈h∗j (x)〉

))
∼=R⊕ (⊕si=2R2ei)⊕

(
⊕tj=1Rdj ⊕Rdj

)
,

where Rr = Fqr +uFqr +vFqr , u2 = u, v2 = v, uv = vu = 0 for r = 2ei or dj . The above decomposition
can be naturally extended as(

R[x]

〈xn − 1〉

)2

∼= R2 ⊕
(
⊕si=2(R2ei)

2
)
⊕
(
⊕tj=1(Rdj )2 ⊕ (Rdj )2

)
.

Now, using this decomposition, any linear code C of length 2 over R[x]
〈xn−1〉 can be decomposed as

C ∼= C1 ⊕ (⊕si=2Ci)⊕
(
⊕tj=1(C

′

j ⊕ C
′′

j )
)

(1)

where C1 is a linear code over R, Ci is a linear code over R2ei , for 2 ≤ i ≤ s and C
′

j , C
′′

j are linear
codes over Rdj , for 1 ≤ j ≤ t.

Lemma 1 Let C be a double circulant code over R given in the CRT decomposition (1) and α1 =

(1, ce1), αi = (1, cei), α
′

j = (1, c
′

dj ), α
′′

j = (1, c
′′

dj ) be generators of the constituent codes C1, Ci, C
′

j , C
′′
j

over R,R2ei , Rdj and Rdj , respectively, for 2 ≤ i ≤ s, 1 ≤ j ≤ t. Then

(1) C is a self-dual code if and only if 1 + c2e1 = 0, 1 + c1+q
ei

ei = 0 and 1 + c
′

dj c
′′

dj = 0.

(2) C is a Euclidean LCD code if and only if 1 + c2e1 ∈ R
∗, 1 + c1+q

ei

ei ∈ R∗2ei and 1 + c
′

dj c
′′

dj ∈ R
∗
dj .

Proof Let C be a double circulant code over R given by the CRT decomposition (1). By following
the same procedure of [[18], Theorem 4.2], we get that C is a self-dual code if and only if C1, Ci are
self-dual codes with respect to the Euclidean, Hermitian inner product, respectively for 2 ≤ i ≤ s
and C

′′

j is the dual code of C
′

j with respect to Euclidean inner product, for 1 ≤ j ≤ t. In our case, it

further implies that C is a self-dual code if and only if 1 + c2e1 = 0, 1 + c1+q
ei

ei = 0 and 1 + c
′

dj c
′′

dj = 0.
Now, following the same method of [[7], Theorem 3.1], we get C is an LCD code if and only

if C1, Ci are LCD codes with respect to the Euclidean, Hermitian inner product, respectively for
2 ≤ i ≤ s and (C

′′

j )⊥ ∩ C
′

j = {0}, C
′′

j ∩ (C
′

j)
⊥ = {0}, for 1 ≤ j ≤ t. In our case, it further implies

that C is a Euclidean LCD code if and only if 1 + c2e1 ∈ R
∗, 1 + c1+q

ei

ei ∈ R∗2ei and 1 + c
′

dj c
′′

dj ∈ R
∗
dj .

Using the necessary and sufficient conditions given in Lemma 1, we now find the total number of
self-dual or LCD double circulant codes over R in the following results.

Theorem 3 Assume that for an odd integer n, the factorization of xn − 1 over R is

xn − 1 = a(x− 1)
s∏
i=2

gi(x)
t∏

j=1

hj(x)h∗j (x),

where a ∈ R∗ and n = 1 + Σsi=22ei + 2Σtj=1dj. Then the total number of self-dual double circulant
codes over R is

8
s∏
i=2

(qei + 1)3
t∏

j=1

(qdj − 1)3.

Proof We can obtain the total number of self-dual double circulant codes by just counting the con-
stituent codes. There are 8 choices for C1 which have the generator polynomials as (1, ω), (1,−ω), (1, ω(1−
2v)), (1, ω(2v−1)), (1, ω(1−2u)), (1, ω(2u−1)), (1, ω(1−2u−2v)) and (1, ω(−1+2u+2v)), respectively,
where ω2 = −1.

For the second constituent codes, to count self-dual codes with respect to the Hermitian inner
product, we need to find the number of solutions of the equation 1 + ceic

qei
ei = 0. Let cei = x(1− u−

v) + yu+ zv, for some x, y, z ∈ Fq2ei . Then

1 + (x(1− u− v) + yu+ zv)(x(1− u− v) + yu+ zv)q
ei

= 0
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if and only if

xxq
ei

= −1, yyq
ei

= xxq
ei

= −1 and zzq
ei

= xxq
ei

= −1

i.e., Norm(x) = −1, Norm(y) = −1 and Norm(z) = −1. There are qei + 1 solutions for each
Norm(x) = −1, Norm(y) = −1 and Norm(z) = −1, respectively. Therefore, the total number of
solutions for the above system is (qei + 1)3.

Now, we count the dual pairs (w.r.t. Euclidean inner product) of codes. For this, we need to find

the number of solutions of the equation 1 + c
′

dj c
′′

dj = 0. We have the following possibilities:

– If c
′

dj ∈ R
∗
dj , then c

′′

dj = − 1

c
′
dj

and we have |R∗dj | = (qdj − 1)3 choices for the pair {c
′

dj , c
′′

dj} .

– If c
′

dj ∈ Rdj \ R
∗
dj , then c

′

dj = x(1− u− v) + yu+ zv, for some x, y, z ∈ Fqdj and at least one of

x, y or z is 0. For c
′′

dj = β1(1− u− v) + β2u+ β3v ∈ Rdj , where β1, β2, β3 ∈ Fqdj , we have

1 + c
′

dj c
′′

dj = (1 + xβ1) + (yβ2 − xβ1)u+ (zβ3 − xβ1)v = 0,

which implies that xβ1 = −1, yβ2 = −1, zβ3 = −1. If any one of x, y or z is 0, then we get −1 = 0,
a contradiction. Therefore, these cases doesn’t occur.

Hence, we have (qdj − 1)3 choices for the dual pairs. Combining above all cases we get the desired
result.

With the same notations used in the above theorem, we now count the total number of LCD
double circulant codes over R.

Theorem 4 The total number of LCD double circulant codes over R is

(q − 2)3
s∏
i=2

(q2ei − qei − 1)3
t∏

j=1

(q6dj − 3q5dj + 6q4dj − 7q3dj + 6q2dj − 3qdj + 1).

Proof We can obtain the total number of LCD double circulant codes by just counting the constituent
codes as done for the self-dual codes. If C1 is an LCD code with respect to the Euclidean inner product,
then 1 + c2e1 ∈ R

∗ and we have the following possibilities:

– If c1 = 0, then 1 + c21 = 1 ∈ R∗.
– If 0 6= c1 ∈ 〈1−u−v〉 and c1 = x(1−u−v), for some x ∈ F∗q , then 1+c21 = 1+x2(1−u−v) ∈ R∗ if

and only if x 6= ±ω, where ω2 = −1. Therefore, we have q−3 choices. Similarly, when 0 6= c1 ∈ 〈u〉
or 〈v〉, we have q − 3 choices for each.

– If 0 6= c1 ∈ 〈1 − u − v, u〉 and c1 = x(1 − u − v) + yu, for some x, y ∈ F∗q , then 1 + c21 =
1 + x2(1− u− v) + y2u ∈ R∗ if and only if x 6= ±ω and y 6= ±ω , where ω2 = −1. Therefore, we
have (q− 3)2 choices. Similarly, when 0 6= c1 ∈ 〈u, v〉 or〈1− u− v, v〉, we have (q− 3)2 choices for
each.

– If 0 6= c1 ∈ 〈1 − u − v, u, v〉 and c1 = x(1 − u − v) + yu + zv, for some x, y, z ∈ F∗q , then
1 + c21 = 1 +x2(1−u−v) +y2u+ z2v ∈ R∗ if and only if x, y, z 6= ±ω, where ω2 = −1. Therefore,
we have (q − 3)3 choices.

So, we have 1 + 3(q − 3) + 3(q − 3)2 + (q − 3)3 = (q − 2)3 choices for C1.
Now, we find the choices for Cei such that it is an LCD code over R2ei with respect to the

Hermitian inner product. The linear code Cei is Hermitian LCD if 1 + c1+q
ei

ei ∈ R∗2ei and we have the
following possibilities:

– If cei = 0, then 1 + c1+q
ei

ei = 1 ∈ R∗2ei .
– If 0 6= cei ∈ 〈1−u−v〉 and cei = x(1−u−v), for some x ∈ F∗q2ei , then 1+c1+q

ei

ei = 1+x1+q
ei

(1−
u − v) ∈ R∗2ei if and only if x1+q

ei 6= −1. Therefore, we have q2ei − qei − 2 choices. Similarly,
when 0 6= cei ∈ 〈u〉 or 〈v〉, we have q2ei − qei − 2 choices for each.

– If 0 6= cei ∈ 〈1 − u − v, u〉 and cei = x(1 − u − v) + yu, for some x, y ∈ F∗q2ei , then 1 + c1+q
ei

ei =

1 + x1+q
ei

(1 − u − v) + y1+q
ei
u ∈ R∗2ei if and only if x1+q

ei 6= −1 and y1+q
ei 6= −1. Therefore,

we have (q2ei − qei − 2)2 choices. Similarly, when 0 6= cei ∈ 〈u, v〉 or 〈1 − u − v, v〉, we have
(q2ei − qei − 2)2 choices for each.

– If 0 6= cei ∈ 〈1 − u − v, u, v〉 and cei = x(1 − u − v) + yu + zv, for some x, y, z ∈ F∗q2ei , then

1+c1+q
ei

ei = 1+x1+q
ei

(1−u−v)+y1+q
ei
u+z1+q

ei
v ∈ R∗2ei if and only if x1+q

ei 6= −1, y1+q
ei 6= −1

and z1+q
ei 6= −1. Therefore, we have (q2ei − qei − 2)3 choices.
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So, in this case, we have 1 + 3(q2ei − qei − 2) + 3(q2ei − qei − 2)2 + (q2ei − qei − 2)3 = (q2ei − qei − 1)3

choices for Ci, where 2 ≤ i ≤ s.
Now, for the last case we need to find choices for the pairs {c

′

dj , c
′′

dj} such that 1 + c
′

dj c
′′

dj ∈ R
∗
dj

and we have the following possibilities:

– If c′dj = 0, then 1 + c
′

dj c
′′

dj ∈ R
∗
dj for any c

′′

dj ∈ R
∗
dj . So, we have q3dj choices for c

′′

dj .

– If c
′

dj ∈ R
∗
dj then c

′′

dj ∈ R
∗
dj −

1

c
′
dj

and |R∗dj −
1

c
′
dj

| = |R∗dj |. We have |R∗dj |
2 = (qdj − 1)6 choices

for the pairs {c
′

dj , c
′′

dj}.
– If 0 6= c

′

dj ∈ 〈1 − u − v〉 and c
′

dj = x(1 − u − v), for some x ∈ F∗
qdj

. Assume that c
′′

dj =

β1(1− u− v) + β2u+ β3v, for some β1, β2, β3 ∈ Fqdj . Then 1 + c
′

dj c
′′

dj = 1 + xβ1(1− u− v) ∈ R∗dj
if and only if xβ1 6= −1. Therefore, we have (qdj − 1)2q2dj choices. Similarly, when 0 6= cei ∈ 〈u〉
or 〈v〉, we have (qdj − 1)2q2dj choices for each.

– If 0 6= c
′

dj ∈ 〈1− u− v, u〉 and c
′

dj = x(1− u− v) + yu, for some x, y ∈ F∗
qdj

. Assume that c
′′

dj =

β1(1−u−v)+β2u+β3v, for some β1, β2, β3 ∈ Fqdj Then 1+c
′

dj c
′′

dj = 1+xβ1(1−u−v)+yβ2u ∈ R∗dj
if and only if xβ1 6= −1 and yβ2 6= −1. Therefore, we have (qdj − 1)4qdj choices. Similarly, when

0 6= c
′

dj ∈ 〈u, v〉 or 〈1− u− v, v〉, we have (qdj − 1)4qdj choices for each.

In this case, we have q3dj + (qdj − 1)6 + 3(qdj − 1)2q2dj + 3(qdj − 1)4qdj = (q6dj − 3q5dj + 6q4dj −
7q3dj + 6q2dj − 3qdj + 1) choices for the pairs {C

′

j , C
′′

j }, where 1 ≤ j ≤ t. Now, summing all these
above choices we get the required result.

3.2 Enumeration of double negacirculant codes when n is even

The present subsection deals with the enumeration of self-dual or LCD double negacirculant codes
over R. Here, we take n to be an even positive integer such that gcd(n, q) = 1. We assume that the
factorization of xn + 1 into distinct irreducible polynomials over R is as follows:

xn + 1 = a
s∏
i=1

gi(x)
t∏

j=1

hj(x)h∗j (x),

where a ∈ R∗, gi(x) (1 ≤ i ≤ s) are self-reciprocal polynomials of even degree 2ei and h∗j (x) (1 ≤
j ≤ t) are reciprocal polynomials of hj(x) with degree dj , respectively. Using the arguments similar
to double circulant codes, we get

R[x]

〈xn + 1〉
∼= (⊕si=1R2ei)⊕

(
⊕tj=1Rdj ⊕Rdj

)
,

where Rr = Fqr + uFqr + vFqr , u2 = u, v2 = v, uv = vu = 0 for r = 2ei or dj . Also, any linear code
C of length 2 can be written as

C ∼= (⊕si=1Ci)⊕
(
⊕tj=1(C

′

j ⊕ C
′′

j )
)
, (2)

where Ci is a linear code over R2ei , for 1 ≤ i ≤ s and C
′

j , C
′′

j are linear codes over Rdj , for 1 ≤ j ≤ t.
To enumerate the self-dual and LCD double negacirculant codes, we need the following result which
can be proved using the same procedure of Lemma 1.

Lemma 2 Let C be a double negacirculant code over R and αi = (1, cei), α
′

j = (1, c
′

dj ), α
′′

j = (1, c
′′

dj )

be generators of the constituent codes Ci, C
′

j , C
′′

j over R2ei , Rdj and Rdj , respectively, for 1 ≤ i ≤ s,
1 ≤ j ≤ t. Then

(1) C is a self-dual code if and only if 1 + c1+q
ei

ei = 0 and 1 + c
′

dj c
′′

dj = 0.

(2) C is a Euclidean LCD code if and only if 1 + c1+q
ei

ei ∈ R∗2ei and 1 + c
′

dj c
′′

dj ∈ R
∗
dj .

Using this lemma, we now enumerate self-dual and LCD double negacirculant codes over R.

Theorem 5 Assume that for an even integer n, the factorization of xn + 1 over R is

xn + 1 = a
s∏
i=1

gi(x)
t∏

j=1

hj(x)h∗j (x),
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where a ∈ R∗ and n =
s∑
i=1

2ei + 2
t∑

j=1

dj. The total number of self-dual double negacirculant codes

over R is
s∏
i=1

(qei + 1)3
t∏

j=1

(qdj − 1)3.

Proof We enumerate self-dual double negacirculant codes by counting the constituent codes. To
count the choices for Ci, we need to find the number of solutions of the equation 1 + ceic

qei
ei = 0. Let

cei = x(1− u− v) + yu+ zv, for some x, y, z ∈ Fq2ei . Then

1 + (x(1− u− v) + yu+ zv)(x(1− u− v) + yu+ zv)q
ei

= 0

if and only if
xxq

ei
= −1, yyq

ei
= xxq

ei
= −1 and zzq

ei
= xxq

ei
= −1

i.e., Norm(x) = −1, Norm(y) = −1 and Norm(z) = −1. There are qei + 1 solutions for each
Norm(x) = −1, Norm(y) = −1 and Norm(z) = −1, respectively. Therefore, the total number of
solutions for the above system is (qei + 1)3.

Now, to count the choices for the dual pairs {C
′

j , C
′′

j }, we need to find the number of solutions of

the equation 1 + c
′

dj c
′′

dj = 0. There are the following possibilities:

– If c
′

dj ∈ R
∗
dj , then c

′′

dj = − 1

c
′
dj

, i.e., a unique choice for c
′′

dj corresponding to each c
′

dj . Therefore,

there are |R∗dj | = (qdj − 1)3 choices for c
′

dj and hence for the pair {c
′

dj , c
′′

dj}.
– If c

′

dj ∈ Rdj \ R
∗
dj , then c

′

dj = x(1 − u − v) + yu + zv, for some x, y, z ∈ Fqdj , where not all x, y

or z are non-zero. For c
′′

dj = β1(1− u− v) + β2u+ β3v ∈ Rdj , where β1, β2, β3 ∈ Fqdj , we have

1 + c
′

dj c
′′

dj = (1 + xβ1) + (yβ2 − xβ1)u+ (zβ3 − xβ1)v = 0,

which implies that xβ1 = −1, yβ2 = −1, zβ3 = −1. Any one of x, y or z equal to 0, yields −1 = 0,
a contradiction. Therefore, these cases are not possible.

From all the above cases, we conclude that there are
∏s
i=1(qei + 1)3

∏t
j=1(qdj − 1)3 self-dual double

negacirculant codes over R.

With the same assumptions and notations of Theorem 5, the following result provides the enu-
meration of LCD double negacirculant codes over R.

Theorem 6 The total number of LCD double negacirculant codes over R is

s∏
i=1

(q2ei − qei − 1)3
t∏

j=1

(q6dj − 3q5dj + 6q4dj − 7q3dj + 6q2dj − 3qdj + 1).

Proof The total number of LCD double negacirculant codes over R can be obtained by counting
the constituent codes. To count the choices for Ci, we need to find the number of solutions for the
equation 1 + c1+q

ei

ei ∈ R∗2ei . The following cases arise:

– If cei = 0, then clearly 1 + c1+q
ei

ei ∈ R∗2ei .
– Let cei ∈ 〈1−u− v〉 and cei = x(1−u− v), for some x ∈ F∗q2ei . Then 1 + c1+q

ei

ei = 1 + x1+q
ei

(1−
u− v) ∈ R∗2ei if and only if x1+q

ei 6= −1. Therefore, we have q2ei − qei −2 choices for x and hence
for cei . Similarly, there are q2ei − qei − 2 choices for each case 0 6= cei ∈ 〈u〉 or 〈v〉.

– Let cei ∈ 〈1 − u − v, u〉 and cei = x(1 − u − v) + yu, for some x, y ∈ F∗q2ei . Then 1 + c1+q
ei

ei =

1 + x1+q
ei

(1 − u − v) + y1+q
ei
u ∈ R∗2ei if and only if x1+q

ei 6= −1 and y1+q
ei 6= −1. Therefore,

we have q2ei − qei − 2 choices for each x, y and hence (q2ei − qei − 2)2 choices for cei . Similarly,
there are (q2ei − qei − 2)2 choices for 0 6= cei ∈ 〈u, v〉 or 〈1− u− v, v〉 each.

– Let cei ∈ 〈1 − u − v, u, v〉 and cei = x(1 − u − v) + yu + zv, for some x, y, z ∈ F∗q2ei . Then

1+c1+q
ei

ei = 1+x1+q
ei

(1−u−v)+y1+q
ei
u+z1+q

ei
v ∈ R∗2ei if and only if x1+q

ei 6= −1, y1+q
ei 6= −1

and z1+q
ei 6= −1. Therefore, we have q2ei−qei−2 choices for each x, y, z and hence (q2ei−qei−2)3

choices for cei .

Hence, there are 1 + 3(q2ei − qei − 2) + 3(q2ei − qei − 2)2 + (q2ei − qei − 2)3 = (q2ei − qei − 1)3 choices
for Ci, where 1 ≤ i ≤ s.

Now, to count the choices for the pairs {C
′

j , C
′′

j }, we need to find the number of solution pairs

{c
′

dj , c
′′

dj} for the equation 1 + c
′

dj c
′′

dj ∈ R
∗
dj . Here the following cases arise:
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– If cdj = 0, then clearly 1 + c
′

dj c
′′

dj ∈ R
∗
dj for all c”dj ∈ R

∗
dj . Thus, there are q3dj choices for c”dj .

– If c
′

dj ∈ R
∗
dj , then c

′′

dj ∈ R
∗
dj −

1

c
′
dj

and we have |R∗dj −
1

c
′
dj

| = |R∗dj | choices for c
′′

dj corresponding

to each c
′

dj . Therefore, there are |R∗dj |
2 = (qdj − 1)6 choices for the pair {c

′

dj , c
′′

dj}.
– If c

′

dj ∈ 〈1 − u − v〉 \ {0}, then c
′

dj = x(1 − u − v), for some x ∈ F∗
qdj

. Assume that c
′′

dj =

β1(1− u− v) + β2u+ β3v, for some β1, β2, β3 ∈ Fqdj . Then 1 + c
′

dj c
′′

dj = 1 + xβ1(1− u− v) ∈ R∗dj
if and only if xβ1 6= −1. Once c

′

dj is fixed, there are qdj − 1 choices for β1 and qdj choices for each

β2, β3. Therefore, there are (qdj −1)2q2dj choices for the pair {c
′

dj , c
′′

dj}. Similarly, if 0 6= cei ∈ 〈u〉
or 〈v〉, there are (qdj − 1)2q2dj choices for each case.

– If c
′

dj ∈ 〈1 − u − v, u〉 and c
′

dj = x(1 − u − v) + yu, for some x, y ∈ F∗
qdj

. Assume that c
′′

dj =

β1(1−u−v)+β2u+β3v, for some β1, β2, β3 ∈ Fqdj Then 1+c
′

dj c
′′

dj = 1+xβ1(1−u−v)+yβ2u ∈ R∗dj
if and only if xβ1 6= −1 and yβ2 6= −1. Once c

′

dj is fixed, there are qdj − 1 choices for each β1, β2

and qdj choices for β3. Therefore, there are (qdj − 1)4qdj choices for the pair {c
′

dj , c
′′

dj}. Similarly,

if 0 6= c
′

dj ∈ 〈u, v〉 or 〈1− u− v, v〉, we have (qdj − 1)4qdj choices for each pair {c
′

dj , c
′′

dj}.

Summing all these cases, we get that there are q3dj + (qdj − 1)6 + 3(qdj − 1)2q2dj + 3(qdj − 1)4qdj =

(q6dj − 3q5dj + 6q4dj − 7q3dj + 6q2dj − 3qdj + 1) choices for the pairs {C
′

j , C
”
j }, where 1 ≤ j ≤ t. Now,

combining all the above choices for Ci and the pairs {C
′

j , C
′′

j }, we get the desired result.

4 Distance bounds for double circulant codes

In this section, we provide distance bounds for self-dual or LCD double circulant codes and show
that the families of Gray images of self-dual or LCD double circulant codes are good (which is one
of the main results of this paper).

Let n be an odd prime and q be a primitive root modulo n. We assume that the factorization of
xn − 1 into distinct irreducible polynomials over R is

xn − 1 = (x− 1)(1 + x+ · · ·+ xn−1) = (x− 1)h(x), (3)

where h(x) = 1 + x + · · · + xn−1 is an irreducible polynomial over R. By the Chinese Remainder
Theorem (CRT), we have

R[x]

〈xn − 1〉
∼=

R[x]

〈x− 1〉 ⊕
R[x]

〈h(x)〉
∼=R⊕R1,

where R1 = Fqn−1 + uFqn−1 + vFqn−1 , u2 = u, v2 = v, uv = vu = 0. We denote R = R[x]
〈h(x)〉 .

Definition 1 Let C be a cyclic code over R of odd length n and h(x) be a polynomial given in the
above discussion. Then a non-zero codeword in C is said to be a constant vector if it is generated by
h(x).

Now, we provide two lemmas which will be used to prove the main result.

Lemma 3 Let z = (e, f) ∈ R2n be a non-zero vector such that e is not a constant vector. Then there
are at most q2n+1 double circulant codes Ca = (1, a) over R such that z ∈ Ca, where a ∈ R.

Proof The vector z can be written as z = (e, f) ∼= (e1, f1) ⊕ (e2, f2) by the CRT decomposition.
As z ∈ Ca, we have f = ea, f1 = e1a1 and f2 = e2a2, where e1, f1, a1 ∈ R and e2, f2, a2 ∈ R. Let
a1 = r1(1 − u − v) + us1 + vt1 and a2 = r2(1 − u − v) + us2 + vt2, for some r1, s1, t1 ∈ Fq and
r2, s2, t2 ∈ Fqn−1 . Now, we discuss the first constituent of the code Ca through e1.

– If e1 = 0, then we have q3 choices for a1.
– If 0 6= e1 ∈ 〈1−u− v〉, then e1 = (1−u− v)x1 and f1 = (1−u− v)x

′

1, for some x1 ∈ F∗q , x
′

1 ∈ Fq.
Now,

f1 = (1− u− v)x
′

1 = (1− u− v)x1a1 = (1− u− v)x1r1.

This implies that r1 =
x
′
1

x1
and we have q2 choices for a1. Similarly, when 0 6= e1 ∈ 〈u〉 or 〈v〉, we

have q2 choices for each case.
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– If 0 6= e1 ∈ 〈1 − u − v, u〉 and e1 = x1(1 − u − v) + y1u, for some x1, y1 ∈ F∗q , then f1 =

x
′

1(1− u− v) + y
′

1u, for some x
′

1, y
′

1 ∈ Fq. Now,

f1 = (1− u− v)x
′

1 + uy
′

1 = ((1− u− v)x1 + uy1)a1 = (1− u− v)x1r1 + uy1s1.

This implies that r1 =
x
′
1

x1
, s1 =

y
′
1

y1
and we have q choices for a1. Similarly, when 0 6= c1 ∈ 〈u, v〉

or 〈1− u− v, v〉, we have q choices for each case.
– If e1 ∈ R∗, then we have a unique choice for a1 = f1

e1
.

Therefore, for each case we have at most q3 choices for a1.
For the second constituent code of Ca, we discuss choices for a2 through e2.

– If e2 = 0, then e is a constant vector, i.e., e ≡ 0 (mod h(x)), which is a contradiction to the
choice of e.

– If 0 6= e2 ∈ 〈1− u− v〉, then e2 = (1− u− v)x2 and f2 = (1− u− v)x
′

2, for some x2 ∈ F∗qn−1 , x
′

2 ∈
Fqn−1 . Now,

f2 = (1− u− v)x
′

2 = (1− u− v)x2a2 = (1− u− v)x2r2.

This implies that r2 =
x
′
2

x2
and we have q2n−2 choices for a2. Similarly, when 0 6= e2 ∈ 〈u〉 or 〈v〉,

we have q2n−2 choices for each case.
– If 0 6= e2 ∈ 〈1 − u − v, u〉 and e2 = x2(1 − u − v) + y2u, for some x2, y2 ∈ F∗qn−1 , then f2 =

x
′

2(1− u− v) + y
′

2u, for some x
′

2, y
′

2 ∈ Fqn−1 . Now,

f2 = (1− u− v)x
′

2 + uy
′

2 = ((1− u− v)x2 + uy2)a2 = (1− u− v)x2r2 + uy2s2.

This implies that r2 =
x
′
2

x2
, s2 =

y
′
2

y2
and we have qn−1 choices for a2. Similarly, when 0 6= c2 ∈ 〈u, v〉

or 〈1− u− v, v〉, we have qn−1 choices for each case.
– If e2 ∈ R∗, then we have a unique choice for a2 = f2

e2
.

From the above cases, we conclude that the number of choices for a2 is at most q2n−2. Therefore,
there are at most q2n+1 choices for a such that z ∈ Ca.

Keeping the same notations, we have the following result.

Lemma 4 Let z = (e, f) ∈ R2n be a non-zero vector such that e is not a constant vector. Then there

are at most 8(1 + q
n−1
2 )2 self-dual codes Ca = (1, a) such that z ∈ Ca, where a ∈ R.

Proof Intially, we discuss the first constituent of the code Ca. From Theorem 3, there are at most 8
choices for C1, a self-dual double circulant code over R.

For the second constituent code of Ca, we discuss choices for a2 through e2. Let a2 = (1 − u −
v)r2 + us2 + vt2, for some r2, s2, t2 ∈ Fqn−1 .

– If e2 = 0, then e is a constant vector, i.e., e ≡ 0 (mod h(x)), which is a contradiction to the
choice of e.

– If 0 6= e2 ∈ 〈1− u− v〉, then e2 = (1− u− v)x2 and f2 = (1− u− v)x
′

2, for some x2 ∈ F∗qn−1 , x
′

2 ∈
Fqn−1 . Now,

f2 = (1− u− v)x
′

2 = (1− u− v)x2a2 = (1− u− v)x2r2.

This implies that r2 =
x
′
2

x2
. Further, as Ca is self-dual, 1 + a2ā2 = 1 + a2a

q
n−1
2

2 = 0 which implies

that r2r
q

n−1
2

2 = −1, s2s
q

n−1
2

2 = −1 and t2t
q

n−1
2

2 = −1, i.e., Norm(r2) = −1, Norm(s2) = −1 and

Norm(t2) = −1. Therefore, we have (1 + q
n−1
2 )2 choices for a2. Similarly, when 0 6= e2 ∈ 〈u〉 or

〈v〉, we have (1 + q
n−1
2 )2 choices for each case.

– If 0 6= e2 ∈ 〈1 − u − v, u〉 and e2 = x2(1 − u − v) + y2u, for some x2, y2 ∈ F∗qn−1 , then f2 =

x
′

2(1− u− v) + y
′

2u, for some x
′

2, y
′

2 ∈ Fqn−1 . Now,

f2 = (1− u− v)x
′

2 + uy
′

2 = ((1− u− v)x2 + uy2)a2 = (1− u− v)x2r2 + uy2s2.

This implies that r2 =
x
′
2

x2
, s2 =

y
′
2

y2
. Further, as Ca is self-dual, 1 +a2ā2 = 1 +a2a

q
n−1
2

2 = 0, which

implies that r2r
q

n−1
2

2 = −1, s2s
q

n−1
2

2 = −1 and t2t
q

n−1
2

2 = −1, i.e., Norm(r2) = −1, Norm(s2) =

−1 and Norm(t2) = −1. Therefore, we have at most (1 + q
n−1
2 ) choices for a2. Similarly, when

0 6= c2 ∈ 〈u, v〉 or 〈1− u− v, v〉, we have at most (1 + q
n−1
2 ) choices for each case.
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– If e2 ∈ R∗, then we have a unique choice for a2 = f2
e2

.

From the above cases, we conclude that the number of choices for a2 is at most (1+q
n−1
2 )2. Therefore,

there are at most 8(1 + q
n−1
2 )2 choices for a such that z ∈ Ca.

Using the Artin’s conjecture for primitive roots, we see that for a fixed q which is not a square,
there are infinitely many primes n such that q is primitive root modulo n. In that situation, the
factorization given in (3) of xn − 1 into two irreducible factors holds. Thus, we get an infinite family
of double circulant codes over R. (Note that Artin’s conjecture is known to be true for all non-square
q’s except at most two unspecified exceptions [19]). Now, we are in a position to prove Theorem 2.

Proof We denote the size of the family by An. Then using Theorem 3 and Theorem 4 for n tending

to infinity, we can approximate An to 8q
3n−1

2 , for self-dual and q3n, for LCD double circulant codes.
Let B(dn) be the number of elements in R2n, whose image under φi have Hamming weight less than
dn. Assume that we have

An > anB(dn), (4)

(see [21,28]) where an = 8(1 + q(n−1)/2)2 for self-dual and q2n+1, for LCD codes. Therefore, by
Lemma 3 and Lemma 4 we conclude that in the family, there exist codes of length 2n over R whose
images under φi have Hamming distance ≥ dn.

To enforce inequality (4) for large n, we make the following argument. We consider δ to be the
relative distance of the above family and assume that dn is the largest such that An > anB(dn).
Also, we assume that the growth is of the form dn = 6δn. Then by [[11], Lemma 2.10.3], we get that
B(dn) is approximately equal to q6nHq(δ). From this, we can see that if Hq(δ0) < 1

6 , for LCD and
< 1

12 , for self-dual codes, then inequality (4) holds for n large enough.

5 Numerics

Here, we present several examples of double circulant LCD and self-dual codes under the map φi, for
i = 1, 2. To determine their parameters we need a result as below.

Lemma 5 Assume that C has the generator matrix G = (I, A), where A = A1 + uA2 + vA3, Ai is
an n × n matrix over Fq, for i = 1, 2, 3 and I is the identity matrix of order n. Then φi(C) has a
generator matrix

M1 =

 0 2I 0 −A2 2A1 +A2 A3

−I I 0 −A1 −A2 A1 +A2 0
0 0 I 0 0 A1 +A3


3n×6n

.

and

M2 =

 I I I A1 A1 +A2 A1 +A3

0 I 0 0 A1 +A2 0
0 0 I 0 0 A1 +A3


3n×6n

.

for i = 1, 2, respectively.

Proof The matrix Mi is constructed by applying Gray map φi on G = (I, A), uG and vG, for i = 1, 2,
respectively.

Now, by using the generator matrices given by Lemma 5 and the Magma computation system
[5], we calculate the minimum distances d in Table 1 for the double circulant codes of length 2n over
R = F5 + uF5 + vF5. In this way, we obtain their F5 parameters [6n, 3n, d] (sixth-column). Note that
second to fourth columns include the generator polynomials ai(x), for i = 1, 2, 3, respectively. Also,
we write the coefficients of these polynomials in decreasing powers of x, for instance, we write 3242
to represent the polynomial 3x3 + 2x2 + 4x+ 2. In last column, we also mention their nature in terms
of LCD or self-dual.

6 Conclusion

In this paper , we have calculated the total number of self-dual and LCD double circulant and double
negacirculant codes over the semi-local ring R. Further, we study the distance bounds for the family
of Gray images of self-dual and LCD double circulant codes over R and show that these families are
good. It would be a worthy study to investigate these codes for other semi-local non-chain rings in
the future.
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Table 1: F5-images of double circulant codes of length 2n over F5 + uF5 + vF5

n a1(x) a2(x) a3(x) Map Parameters Remark

2 30 23 22 φ2 [12, 6, 2]5 Self-dual

3 133 114 344 φ2 [18, 9, 4]5 Self-dual

3 121 402 121 φ1 [18, 9, 4]5 LCD

4 0334 3242 4234 φ1 [24, 12, 4]5 LCD

4 1114 3332 3332 φ2 [24, 12, 4]5 Self-dual

5 43030 04131 33303 φ1 [30, 15, 5]5 LCD

6 010044 132202 142241 φ1 [36, 18, 5]5 LCD

7 1402124 2113424 1402124 φ1 [42, 21, 6]5 LCD

8 34430110 24023121 31231143 φ1 [48, 24, 6]5 LCD

9 033302122 314321000 342123122 φ1 [54, 27, 7]5 LCD
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17. Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes I: Finite fields. IEEE Trans. Inf. Theory 47(7),

2751-2760 (2001).
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