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Let q be an odd prime power, and denote by F q the finite field with q elements. In this paper, we consider the ring R = F q + uF q + vF q , where u 2 = u, v 2 = v, uv = vu = 0 and study double circulant and double negacirculant codes over this ring. We first obtain the necessary and sufficient conditions for a double circulant code to be self-dual (resp. LCD). Then we enumerate self-dual and LCD double circulant and double negacirculant codes over R. Last but not the least, we show that the family of Gray images of self-dual and LCD double circulant codes over R are good. Several numerical examples of self-dual and LCD codes over F 5 as the Gray images of these codes over R are given in short lengths.

Introduction

Cyclic codes are one of the oldest family of block codes. They have received very intensive attention during the last six decades [START_REF] Blake | Codes over certain rings[END_REF]. In that period, several studies have shown their important uses in and out of mathematics. Many times, they have appeared through their generalized classes [START_REF] Aydin | On some constacyclic codes over Z 4 [u]/ u 2 -1 , their Z 4 images, and new codes[END_REF][START_REF] Islam | A class of constacyclic codes over Z 4 [u]/ u k[END_REF][START_REF] Islam | A class of constacyclic codes over the ring Z 4 [u, v]/ u 2 , u 2 , uv -vu and their Gray images[END_REF][START_REF] Shi | On constacyclic codes over Z 4 [u]/ u 2 -1[END_REF] and have produced lots of good codes. Along with some other classes, namely, constacyclic, skew cyclic etc., quasi-cyclic codes have led to record-breaking codes [START_REF] Gulliver | Some best rate 1 p and rate p-1 p systematic quasi-cyclic codes[END_REF][START_REF] Gulliver | Twelve good rate (m-r) pm binary quasi-cyclic codes[END_REF]. Recall that a linear code is said to be a quasi-cyclic code of index l, if it is invariant under T l , where T denotes the cyclic shift operator. In particular, a quasi-cyclic code of index 1 is indeed a cyclic code. In 2001, Ling and Solé [START_REF] Ling | On the algebraic structure of quasi-cyclic codes I: Finite fields[END_REF] presented a new approach to study quasi-cyclic codes over finite fields. They regarded quasi-cyclic codes over a finite field F as linear codes of length l over the polynomial ring R(F, m) = F [x]/(x m -1) where m = n l . Essential to that approach was the decomposition of R(F, m) into local rings via the Chinese Remainder Theorem for polynomials. Later, in 2003, they extended their study to the case when F is itself a chain ring [START_REF] Ling | On the algebraic structure of quasi-cyclic codes II: Chain rings[END_REF]. In 2016, Guneri et al. [START_REF] Guneri | Quasi-cyclic complementary dual codes[END_REF] have shown that quasi-cyclic codes include families of good LCD codes. Double circulant codes are particular types of quasi-cyclic codes having index 2. In 2018, Alahmadi et al. [START_REF] Alahmadi | On self-dual double circulant codes[END_REF] have shown the self-dual double circulant codes of odd dimension to be dihedral or constadihedral depending upon the characteristic of the field. Meanwhile, self-dual negacirculant codes over finite fields were studied in [START_REF] Alahmadi | On self-dual double negacirculant codes[END_REF]. To generalize the concept over finite rings, recently, Shi et al. [START_REF] Shi | On self-dual and LCD double circulant and double negacirculant codes over Fq + uFq[END_REF] considered the finite commutative semi-local non-chain ring F q + uF q , u 2 = u and studied double circulant self-dual or LCD codes. They first enumerated these codes for self-dual and LCD codes, respectively, and later obtained distance bounds on them. A similar work has been reported over a semi-local non-chain ring F q + uF q + u 2 F q , where u 3 = u in [START_REF] Yao | On self-dual and LCD double circulant codes over a non-chain ring[END_REF]. On the other side, double circulant LCD codes over Z 4 in [START_REF] Shi | Double circulant LCD codes over Z 4[END_REF], Z p 2 in [START_REF] Huang | Double Circulant Self-Dual and LCD Codes Over Z p 2[END_REF] and Galois ring in [START_REF] Shi | Double circulant self-dual and LCD codes over Galois ring[END_REF] were studied, respectively. Further, for some related studies on these topics, interested readers can see [START_REF] Qian | On self-dual and LCD quasi-twisted codes of index two over a special chain ring[END_REF][START_REF] Shi | On self-dual four circulant codes[END_REF][START_REF] Shi | Quasi-twisted codes with constacyclic constituent codes[END_REF][START_REF] Shi | On self-dual negacirculant codes of index two and four[END_REF][START_REF] Zhu | On linear complementary dual four circulant codes[END_REF]. Therefore, because of available works on non-chain rings [START_REF] Shi | On self-dual and LCD double circulant and double negacirculant codes over Fq + uFq[END_REF][START_REF] Yao | On self-dual and LCD double circulant codes over a non-chain ring[END_REF], it is logical to investigate these codes over other semi-local non-chain rings. Motivated by the above studies, here we consider the finite commutative semi-local non-chain ring R = F q + uF q + vF q , where u 2 = u, v 2 = v, uv = vu = 0. In fact, we first determine the necessary and sufficient conditions (Lemma 1) of double circulant codes to be self-dual and LCD. Then we enumerate self-dual and LCD double circulant codes of length 2n over R when n is odd and double negacirculant codes when n is even, respectively. Finally, by taking Gray images of such codes we show that both families are good in terms of distance bounds (Theorem 2). It is worth mentioning that the ring R has an important interest and several classes of codes were considered over it [START_REF] Ashraf | Skew cyclic codes over Fq + uFq + vFq[END_REF][START_REF] Islam | A note on skew constacyclic codes over Fq + uFq + vFq[END_REF][START_REF] Islam | New quantum codes from constacyclic and additive constacyclic codes[END_REF] in the literature.

The paper is organized as follows: Section 2 contains some basic definitions and Gray maps. In Section 3, we study the structure of double circulant and double negacirculant codes over R and enumerate self-dual and LCD double circulant and double negacirculant codes. Section 4 provides the distance bounds and establishes that the families of Gray images of self-dual double circulant codes, and LCD double circulant codes over R are good. In Section 5, we present several non-trivial examples of self-dual and LCD codes over F 5 from the Gray images of these codes over R. Section 6 concludes the paper.

Preliminary

Let q be an odd prime power such that there exists ω ∈ F q with ω 2 = -1 (for the existence of such element see [START_REF] Ling | On the algebraic structure of quasi-cyclic codes II: Chain rings[END_REF]) . Throughout, we fix R = F q +uF q +vF q , u 2 = u, v 2 = v, uv = vu = 0. Now, following [START_REF] Ashraf | Skew cyclic codes over Fq + uFq + vFq[END_REF][START_REF] Islam | A note on skew constacyclic codes over Fq + uFq + vFq[END_REF], we recall that R is a semi-local non-chain ring with three maximal ideals 1 -u , 1 -v and u + v . Again, by applying the Chinese Remainder Theorem (CRT) decomposition, we can write R ∼ = (1 -u -v)F q + uF q + vF q . Hence, an arbitrary element r ∈ R has a unique representation r = (1 -u -v)r 1 + ur 2 + vr 3 , where r 1 , r 2 , r 3 ∈ F q . Further, R has (q -1) 3 units and q 3 -(q -1) 3 nonunit elements where the set of units is calculated by the fact that r is a unit in R if and only if r 1 , r 2 , r 3 are non-zero in F q . Now, we define a Gray map φ 1 : R → F 3 q by φ 1 (a + ub + vc) = (-b, 2a + b, c), for all a, b, c ∈ F q . In addition, we consider another Gray map φ 2 : R → F 3 q defined in [START_REF] Islam | A note on skew constacyclic codes over Fq + uFq + vFq[END_REF] by φ 2 (a + ub + vc) = (a, a + b, a + c), for all a, b, c ∈ F q . It is evident to check that φ i is an F q -linear bijective map and can be naturally extended over R n . In later portion, we show that these Gray maps preserve the orthogonality of a linear code, and hence carry Euclidean LCD and self-dual codes from R to F q .

A linear code C of length n over R is an R-submodule of R n . The Hamming weight w H (c) of a vector c = (c 0 , c 1 , . . . , c n-1 ) ∈ R n is the number of non-zero coordinates while the minimum Hamming distance of the code C is

d H (C) = min{w H (c) : 0 = c ∈ C}.
Now, we define the Lee weight w L (c) of a vector c = (c 0 , c 1 , . . . , c n-1 ) ∈ R n as w L (c) = w H (φ i (c)) while the minimum Lee distance of C is given by

d L (C) = min{w L (c) : 0 = c ∈ C}. Therefore, it is checked that φ i is a linear isometric map from (R n , d L ) to (F 3n q , d H ) for i = 1, 2.
For any two elements s = (s 0 , s 1 , . . . , s n-1 ) and t = (t 0 , t 1 , . . . , t n-1 ) in R n , their Euclidean (resp. Hermitian) inner product is defined by

s • t = n-1 i=0 s i t i and s, t H = n-1 i=0 s i ti ,
respectively, where for x + uy + vz ∈ R its conjugate is defined by x + uy

+ vz = x √ q + uy √ q + vz √ q .
In this way, the Euclidean (resp. Hermitian) dual of a linear code C is denoted by C ⊥ (resp. C ⊥ H ) and defined by 

C ⊥ = {a ∈ R n : a • c = 0 for
F q for i = 1, 2.
Proof The proof depends on the main fact φ i (C ⊥ ) = (φ i (C)) ⊥ , which can be verified by using the similar procedure of [[21], Theorem 2.2].

For solving the nonlinear equations in Theorem 3, we use the concept of norm functions which is defined as Norm : F q n → F q given by

N orm(x) = x q n -1 q-1 , for x ∈ F q n .
Then N orm is a multiplicative surjective function and N orm(0) = 0. Further, each element in F * q is a norm of exactly q n -1 q-1 elements in F * q n (see [START_REF] Lidl | Finite Fields[END_REF], Theorem 2.28). Now, we recall that a linear code is said to be a double circulant (resp. negacirculant) code, if its generator matrix is of the form

G = (I, A)
where A is a circulant (resp. negacirculant) matrix, i.e., the matrix whose rows can be obtained by successive circular shifts (resp. negashifts) of the first row. Let C <n> be a family of codes having parameters [n, k n , d n ] over F q . Then the rate ρ and relative distance δ are defined as ρ = lim sup n . This family is said to be good , if ρδ = 0. To derive the main result which proposes that the Gray images of a subfamily of double circulant (LCD or self dual) codes over R are good (Theorem 2), we will use the entropy function [START_REF] Huffman | Fundamentals of Error Correcting Codes[END_REF] defined by

H q (x) = 0, if x = 0 x log q (q -1) -x log q (x) -(1 -x) log q (1 -x), if 0 < x ≤ 1 -1 q .
Now, we state one of the main result of this paper, and prove it at the end of Section 4.

Theorem 2 Let q be an odd prime power, and δ > 0 be given. Then there are families of double circulant self-dual (resp. LCD) codes of length 2n over R, with code rate 1 2 , and with Gray images of relative distance δ as long as H q (δ) < 1 12 (resp. H q (δ) < 1 6 ). Moreover, we conclude that both of these families of codes are good.

Remark: This result shows that for all > 0 arbitrarily small there are families of the said types of relative distance δ 0 -, with H q (δ 0 ) = 1 12 (resp. H q (δ 0 ) = 1 6 ). Unfortunately, the method does not allow us to make = 0.

Double circulant and double negacirculant codes

In this section, we enumerate self-dual and LCD double circulant codes over R. For this, we first obtain the necessary and sufficient conditions of double circulant codes to be self-dual or LCD. Further, the enumeration of self-dual and LCD double negacirculant codes is provided.

Enumeration of double circulant codes when n is odd

We assume that n is an odd positive integer and the factorization of x n -1 into distinct irreducible polynomials over R is as follows:

x n -1 = a(x -1) s i=2 g i (x) t j=1 h j (x)h * j (x),
where a ∈ R * where R * denotes the set of all units in R, g i (x) (2 ≤ i ≤ s) are self-reciprocal polynomials of even degree 2e i , respectively, h * j (x) (1 ≤ j ≤ t) are reciprocal polynomials of h j (x) with degree d j , respectively. By the Chinese Remainder Theorem (CRT), we have

R[x] x n -1 ∼ = R[x] x -1 ⊕ ⊕ s i=2 R[x] g i (x) ⊕ ⊕ t j=1 R[x] h j (x) ⊕ R[x] h * j (x) ∼ =R ⊕ (⊕ s i=2 R 2e i ) ⊕ ⊕ t j=1 R d j ⊕ R d j ,
where R r = F q r +uF q r +vF q r , u 2 = u, v 2 = v, uv = vu = 0 for r = 2e i or d j . The above decomposition can be naturally extended as

R[x] x n -1 2 ∼ = R 2 ⊕ ⊕ s i=2 (R 2e i ) 2 ⊕ ⊕ t j=1 (R d j ) 2 ⊕ (R d j ) 2 .
Now, using this decomposition, any linear code C of length 2 over R[x] x n -1 can be decomposed as

C ∼ = C 1 ⊕ (⊕ s i=2 C i ) ⊕ ⊕ t j=1 (C j ⊕ C j ) (1) 
where C 1 is a linear code over R, C i is a linear code over R 2e i , for 2 ≤ i ≤ s and C j , C j are linear codes over R d j , for 1 ≤ j ≤ t.

Lemma 1 Let C be a double circulant code over R given in the CRT decomposition (1) and

α 1 = (1, c e 1 ), α i = (1, c e i ), α j = (1, c d j ), α j = (1, c d j ) be generators of the constituent codes C 1 , C i , C j , C j over R, R 2e i , R d j and R d j , respectively, for 2 ≤ i ≤ s, 1 ≤ j ≤ t. Then (1) C is a self-dual code if and only if 1 + c 2 e 1 = 0, 1 + c 1+q e i e i = 0 and 1 + c d j c d j = 0. (2) C is a Euclidean LCD code if and only if 1 + c 2 e 1 ∈ R * , 1 + c 1+q e i e i ∈ R * 2e i and 1 + c d j c d j ∈ R * d j .
Proof Let C be a double circulant code over R given by the CRT decomposition [START_REF] Alahmadi | On self-dual double negacirculant codes[END_REF]. By following the same procedure of [ [START_REF] Ling | On the algebraic structure of quasi-cyclic codes II: Chain rings[END_REF], Theorem 4.2], we get that C is a self-dual code if and only if C 1 , C i are self-dual codes with respect to the Euclidean, Hermitian inner product, respectively for 2 ≤ i ≤ s and C j is the dual code of C j with respect to Euclidean inner product, for 1 ≤ j ≤ t. In our case, it further implies that C is a self-dual code if and only if 1 + c 2 e 1 = 0, 1 + c 1+q e i e i = 0 and 1 + c d j c d j = 0. Now, following the same method of [ [START_REF] Guneri | Quasi-cyclic complementary dual codes[END_REF], Theorem 3.1], we get C is an LCD code if and only if C 1 , C i are LCD codes with respect to the Euclidean, Hermitian inner product, respectively for

2 ≤ i ≤ s and (C j ) ⊥ ∩ C j = {0}, C j ∩ (C j ) ⊥ = {0}, for 1 ≤ j ≤ t. In our case, it further implies that C is a Euclidean LCD code if and only if 1 + c 2 e 1 ∈ R * , 1 + c 1+q e i e i ∈ R * 2e i and 1 + c d j c d j ∈ R * d j .
Using the necessary and sufficient conditions given in Lemma 1, we now find the total number of self-dual or LCD double circulant codes over R in the following results.

Theorem 3 Assume that for an odd integer n, the factorization of x n -1 over R is

x n -1 = a(x -1) s i=2 g i (x) t j=1 h j (x)h * j (x),
where a ∈ R * and n = 1 + Σ s i=2 2e i + 2Σ t j=1 d j . Then the total number of self-dual double circulant codes over R is

8 s i=2 (q e i + 1) 3 t j=1 (q d j -1) 3 .
Proof We can obtain the total number of self-dual double circulant codes by just counting the constituent codes. There are 8 choices for C 1 which have the generator polynomials as (1, ω),

(1, -ω), (1, ω(1- 2v)), (1, ω(2v-1)), (1, ω(1-2u)), (1, ω(2u-1)), (1, ω(1-2u-2v)) and (1, ω(-1+2u+2v)), respectively, where ω 2 = -1.
For the second constituent codes, to count self-dual codes with respect to the Hermitian inner product, we need to find the number of solutions of the equation 1 + c e i c q e i e i = 0. Let c e i = x(1 -uv) + yu + zv, for some x, y, z ∈ F q 2e i . Then

1 + (x(1 -u -v) + yu + zv)(x(1 -u -v) + yu + zv) q e i = 0

if and only if

xx q e i = -1, yy q e i = xx q e i = -1 and zz q e i = xx q e i = -1

i.e., N orm(x) = -1, N orm(y) = -1 and N orm(z) = -1. There are q e i + 1 solutions for each N orm(x) = -1, N orm(y) = -1 and N orm(z) = -1, respectively. Therefore, the total number of solutions for the above system is (q e i + 1) 3 . Now, we count the dual pairs (w.r.t. Euclidean inner product) of codes. For this, we need to find the number of solutions of the equation 1 + c d j c d j = 0. We have the following possibilities:

-If c d j ∈ R * d j , then c d j = -1 c d j
and we have |R * d j | = (q d j -1) 3 choices for the pair {c d j , c d j } .

-

If c d j ∈ R d j \ R * d j , then c d j = x(1 -u -v) + yu + zv,
for some x, y, z ∈ F q d j and at least one of x, y or z is 0. For c

d j = β 1 (1 -u -v) + β 2 u + β 3 v ∈ R d j , where β 1 , β 2 , β 3 ∈ F q d j , we have 1 + c d j c d j = (1 + xβ 1 ) + (yβ 2 -xβ 1 )u + (zβ 3 -xβ 1 )v = 0, which implies that xβ 1 = -1, yβ 2 = -1, zβ 3 = -1.
If any one of x, y or z is 0, then we get -1 = 0, a contradiction. Therefore, these cases doesn't occur.

Hence, we have (q d j -1) 3 choices for the dual pairs. Combining above all cases we get the desired result.

With the same notations used in the above theorem, we now count the total number of LCD double circulant codes over R.

Theorem 4

The total number of LCD double circulant codes over R is

(q -2) 3 s i=2 (q 2e i -q e i -1) 3 t j=1
(q 6d j -3q 5d j + 6q 4d j -7q 3d j + 6q 2d j -3q d j + 1).

Proof We can obtain the total number of LCD double circulant codes by just counting the constituent codes as done for the self-dual codes. If C 1 is an LCD code with respect to the Euclidean inner product, then 1 + c 2 e 1 ∈ R * and we have the following possibilities:

-If c 1 = 0, then 1 + c 2 1 = 1 ∈ R * . -If 0 = c 1 ∈ 1-u-v and c 1 = x(1-u-v), for some x ∈ F * q , then 1+c 2 1 = 1+x 2 (1-u-v) ∈ R * if and only if x = ±ω,
where ω 2 = -1. Therefore, we have q -3 choices. Similarly, when 0 = c 1 ∈ u or v , we have q -3 choices for each.

-If 0 = c 1 ∈ 1 -u -v, u and c 1 = x(1 -u -v) + yu, for some x, y ∈ F * q , then 1 + c 2 1 = 1 + x 2 (1 -u -v) + y 2 u ∈ R * if
and only if x = ±ω and y = ±ω , where ω 2 = -1. Therefore, we have (q -3) 2 choices. Similarly, when 0 = c 1 ∈ u, v or 1 -u -v, v , we have (q -3) 2 choices for each.

-

If 0 = c 1 ∈ 1 -u -v, u, v and c 1 = x(1 -u -v) + yu + zv, for some x, y, z ∈ F * q , then 1 + c 2 1 = 1 + x 2 (1 -u -v) + y 2 u + z 2 v ∈ R * if
and only if x, y, z = ±ω, where ω 2 = -1. Therefore, we have (q -3) 3 choices. So, we have 1 + 3(q -3) + 3(q -3) 2 + (q -3) 3 = (q -2) 3 choices for C 1 . Now, we find the choices for C e i such that it is an LCD code over R 2e i with respect to the Hermitian inner product. The linear code C e i is Hermitian LCD if 1 + c 1+q e i e i ∈ R * 2e i and we have the following possibilities:

-If c e i = 0, then 1 + c 1+q e i e i = 1 ∈ R * 2e i . -If 0 = c e i ∈ 1 -u -v and c e i = x(1 -u -v), for some x ∈ F * q 2e i , then 1 + c 1+q e i e i = 1 + x 1+q e i (1 - u -v) ∈ R *
2e i if and only if x 1+q e i = -1. Therefore, we have q 2e i -q e i -2 choices. Similarly, when 0 = c e i ∈ u or v , we have q 2e i -q e i -2 choices for each.

-If 0 = c e i ∈ 1 -u -v, u and c e i = x(1 -u -v) + yu, for some x, y ∈ F * q 2e i , then 1 + c 1+q e i e i = 1 + x 1+q e i (1 -u -v) + y 1+q e i u ∈ R *
2e i if and only if x 1+q e i = -1 and y 1+q e i = -1. Therefore, we have (q 2e i -q e i -2) 2 choices. Similarly, when 0 = c e i ∈ u, v or 1 -u -v, v , we have (q 2e i -q e i -2) 2 choices for each.

-If 0 = c e i ∈ 1 -u -v, u, v and c e i = x(1 -u -v) + yu + zv, for some x, y, z ∈ F * q 2e i , then 1+c 1+q e i e i = 1+x 1+q e i (1-u-v)+y 1+q e i u+z 1+q e i v ∈ R * 2e i if and only if x 1+q e i = -1, y 1+q e i = -1 and z 1+q e i = -1. Therefore, we have (q 2e i -q e i -2) 3 choices. So, in this case, we have 1 + 3(q 2e i -q e i -2) + 3(q 2e i -q e i -2) 2 + (q 2e i -q e i -2) 3 = (q 2e i -q e i -1) 3 choices for C i , where 2 ≤ i ≤ s. Now, for the last case we need to find choices for the pairs {c d j , c

d j } such that 1 + c d j c d j ∈ R * d j
and we have the following possibilities:

-

If c d j = 0, then 1 + c d j c d j ∈ R * d j for any c d j ∈ R * d j . So, we have q 3d j choices for c d j . -If c d j ∈ R * d j then c d j ∈ R * d j -1 c d j and |R * d j -1 c d j | = |R * d j |. We have |R * d j | 2 = (q d j -1) 6 choices
for the pairs {c d j , c d j }.

-

If 0 = c d j ∈ 1 -u -v and c d j = x(1 -u -v), for some x ∈ F * q d j . Assume that c d j = β 1 (1 -u -v) + β 2 u + β 3 v, for some β 1 , β 2 , β 3 ∈ F q d j . Then 1 + c d j c d j = 1 + xβ 1 (1 -u -v) ∈ R * d j
if and only if xβ 1 = -1. Therefore, we have (q d j -1) 2 q 2d j choices. Similarly, when 0 = c e i ∈ u or v , we have (q d j -1) 2 q 2d j choices for each.

-If 0 = c d j ∈ 1 -u -v, u and c d j = x(1 -u -v) + yu, for some x, y ∈ F * q d j . Assume that c d j = β 1 (1-u-v)+β 2 u+β 3 v, for some β 1 , β 2 , β 3 ∈ F q d j Then 1+c d j c d j = 1+xβ 1 (1-u-v)+yβ 2 u ∈ R * d j
if and only if xβ 1 = -1 and yβ 2 = -1. Therefore, we have (q d j -1) 4 q d j choices. Similarly, when 0 = c d j ∈ u, v or 1 -u -v, v , we have (q d j -1) 4 q d j choices for each.

In this case, we have q 3d j + (q d j -1) 6 + 3(q d j -1) 2 q 2d j + 3(q d j -1) 4 q d j = (q 6d j -3q 5d j + 6q 4d j -7q 3d j + 6q 2d j -3q d j + 1) choices for the pairs {C j , C j }, where 1 ≤ j ≤ t. Now, summing all these above choices we get the required result.

Enumeration of double negacirculant codes when n is even

The present subsection deals with the enumeration of self-dual or LCD double negacirculant codes over R. Here, we take n to be an even positive integer such that gcd(n, q) = 1. We assume that the factorization of x n + 1 into distinct irreducible polynomials over R is as follows:

x n + 1 = a s i=1 g i (x) t j=1 h j (x)h * j (x),
where a ∈ R * , g i (x) (1 ≤ i ≤ s) are self-reciprocal polynomials of even degree 2e i and h * j (x) (1 ≤ j ≤ t) are reciprocal polynomials of h j (x) with degree d j , respectively. Using the arguments similar to double circulant codes, we get

R[x] x n + 1 ∼ = (⊕ s i=1 R 2e i ) ⊕ ⊕ t j=1 R d j ⊕ R d j ,
where R r = F q r + uF q r + vF q r , u 2 = u, v 2 = v, uv = vu = 0 for r = 2e i or d j . Also, any linear code C of length 2 can be written as

C ∼ = (⊕ s i=1 C i ) ⊕ ⊕ t j=1 (C j ⊕ C j ) , (2) 
where C i is a linear code over R 2e i , for 1 ≤ i ≤ s and C j , C j are linear codes over R d j , for 1 ≤ j ≤ t.

To enumerate the self-dual and LCD double negacirculant codes, we need the following result which can be proved using the same procedure of Lemma 1.

Lemma 2 Let C be a double negacirculant code over R and

α i = (1, c e i ), α j = (1, c d j ), α j = (1, c d j )
be generators of the constituent codes C i , C j , C j over R 2e i , R d j and R d j , respectively, for 1 ≤ i ≤ s, 1 ≤ j ≤ t. Then (2) C is a Euclidean LCD code if and only if

1 + c 1+q e i e i ∈ R * 2e i and 1 + c d j c d j ∈ R * d j .
Using this lemma, we now enumerate self-dual and LCD double negacirculant codes over R.

Theorem 5 Assume that for an even integer n, the factorization of x n + 1 over R is (q e i + 1) 3 t j=1 (q d j -1) 3 .

x n + 1 = a s i=1 g i (x) t j=1 h j (x)h * j (x),
Proof We enumerate self-dual double negacirculant codes by counting the constituent codes. To count the choices for C i , we need to find the number of solutions of the equation 1 + c e i c q e i e i = 0. Let c e i = x(1 -u -v) + yu + zv, for some x, y, z ∈ F q 2e i . Then

1 + (x(1 -u -v) + yu + zv)(x(1 -u -v) + yu + zv) q e i = 0
if and only if

xx q e i = -1, yy q e i = xx q e i = -1 and zz q e i = xx q e i = -1

i.e., N orm(x) = -1, N orm(y) = -1 and N orm(z) = -1. There are q e i + 1 solutions for each N orm(x) = -1, N orm(y) = -1 and N orm(z) = -1, respectively. Therefore, the total number of solutions for the above system is (q e i + 1) 3 . Now, to count the choices for the dual pairs {C j , C j }, we need to find the number of solutions of the equation 1 + c d j c d j = 0. There are the following possibilities:

-If c d j ∈ R * d j , then c d j = -1 c d j
, i.e., a unique choice for c d j corresponding to each c d j . Therefore, there are |R * d j | = (q d j -1) 3 choices for c d j and hence for the pair {c d j , c

d j }. -If c d j ∈ R d j \ R * d j , then c d j = x(1 -u -v) + yu + zv, for some x, y, z ∈ F q d j ,
where not all x, y or z are non-zero. For c

d j = β 1 (1 -u -v) + β 2 u + β 3 v ∈ R d j , where β 1 , β 2 , β 3 ∈ F q d j , we have 1 + c d j c d j = (1 + xβ 1 ) + (yβ 2 -xβ 1 )u + (zβ 3 -xβ 1 )v = 0, which implies that xβ 1 = -1, yβ 2 = -1, zβ 3 = -1.
Any one of x, y or z equal to 0, yields -1 = 0, a contradiction. Therefore, these cases are not possible. From all the above cases, we conclude that there are s i=1 (q e i + 1) 3 t j=1 (q d j -1) 3 self-dual double negacirculant codes over R.

With the same assumptions and notations of Theorem 5, the following result provides the enumeration of LCD double negacirculant codes over R.

Theorem 6

The total number of LCD double negacirculant codes over R is s i=1 (q 2e i -q e i -1) 3 t j=1 (q 6d j -3q 5d j + 6q 4d j -7q 3d j + 6q 2d j -3q d j + 1).

Proof The total number of LCD double negacirculant codes over R can be obtained by counting the constituent codes. To count the choices for C i , we need to find the number of solutions for the equation 1 + c 1+q e i e i ∈ R * 2e i . The following cases arise:

-If c e i = 0, then clearly 1 + c 1+q e i e i ∈ R * 2e i . -Let c e i ∈ 1 -u -v and c e i = x(1 -u -v), for some x ∈ F * q 2e i . Then 1 + c 1+q e i e i = 1 + x 1+q e i (1 - u -v) ∈ R *
2e i if and only if x 1+q e i = -1. Therefore, we have q 2e i -q e i -2 choices for x and hence for c e i . Similarly, there are q 2e i -q e i -2 choices for each case 0 = c e i ∈ u or v .

-Let c e i ∈ 1 -u -v, u and c e i = x(1 -u -v) + yu, for some x, y ∈ F * q 2e i . Then 1 + c 1+q e i e i = 1 + x 1+q e i (1 -u -v) + y 1+q e i u ∈ R *
2e i if and only if x 1+q e i = -1 and y 1+q e i = -1. Therefore, we have q 2e i -q e i -2 choices for each x, y and hence (q 2e i -q e i -2) 2 choices for c e i . Similarly, there are (q 2e i -q e i -2) 2 choices for 0 = c e i ∈ u, v or 1 -u -v, v each.

-Let c e i ∈ 1 -u -v, u, v and c e i = x(1 -u -v) + yu + zv, for some x, y, z ∈ F * q 2e i . Then 1+c 1+q e i e i = 1+x 1+q e i (1-u-v)+y 1+q e i u+z 1+q e i v ∈ R * 2e i if and only if x 1+q e i = -1, y 1+q e i = -1 and z 1+q e i = -1. Therefore, we have q 2e i -q e i -2 choices for each x, y, z and hence (q 2e i -q e i -2) 3 choices for c e i .

Hence, there are 1 + 3(q 2e i -q e i -2) + 3(q 2e i -q e i -2) 2 + (q 2e i -q e i -2) 3 = (q 2e i -q e i -1) 3 choices for C i , where 1 ≤ i ≤ s. Now, to count the choices for the pairs {C j , C j }, we need to find the number of solution pairs

{c d j , c d j } for the equation 1 + c d j c d j ∈ R * d j .
Here the following cases arise:

-If c d j = 0, then clearly 1 + c d j c d j ∈ R * d j for all c " d j ∈ R * d j .
Thus, there are q 3d j choices for c "

d j . -If c d j ∈ R * d j , then c d j ∈ R * d j -1 c d j and we have |R * d j -1 c d j | = |R * d j | choices for c d j corresponding
to each c d j . Therefore, there are |R * d j | 2 = (q d j -1) 6 choices for the pair {c d j , c

d j }. -If c d j ∈ 1 -u -v \ {0}, then c d j = x(1 -u -v), for some x ∈ F * q d j . Assume that c d j = β 1 (1 -u -v) + β 2 u + β 3 v, for some β 1 , β 2 , β 3 ∈ F q d j . Then 1 + c d j c d j = 1 + xβ 1 (1 -u -v) ∈ R * d j if and only if xβ 1 = -1.
Once c d j is fixed, there are q d j -1 choices for β 1 and q d j choices for each β 2 , β 3 . Therefore, there are (q d j -1) 2 q 2d j choices for the pair {c d j , c d j }. Similarly, if 0 = c e i ∈ u or v , there are (q d j -1) 2 q 2d j choices for each case.

-If c d j ∈ 1 -u -v, u and c d j = x(1 -u -v) + yu, for some x, y ∈ F * q d j . Assume that c d j = β 1 (1-u-v)+β 2 u+β 3 v, for some β 1 , β 2 , β 3 ∈ F q d j Then 1+c d j c d j = 1+xβ 1 (1-u-v)+yβ 2 u ∈ R * d j
if and only if xβ 1 = -1 and yβ 2 = -1. Once c d j is fixed, there are q d j -1 choices for each β 1 , β 2 and q d j choices for β 3 . Therefore, there are (q d j -1) 4 q d j choices for the pair {c d j , c

d j }. Similarly, if 0 = c d j ∈ u, v or 1 -u -v, v , we have (q d j -1) 4 q d j choices for each pair {c d j , c d j }.
Summing all these cases, we get that there are q 3d j + (q d j -1) 6 + 3(q d j -1) 2 q 2d j + 3(q d j -1) 4 q d j = (q 6d j -3q 5d j + 6q 4d j -7q 3d j + 6q 2d j -3q d j + 1) choices for the pairs {C j , C " j }, where 1 ≤ j ≤ t. Now, combining all the above choices for C i and the pairs {C j , C j }, we get the desired result.

Distance bounds for double circulant codes

In this section, we provide distance bounds for self-dual or LCD double circulant codes and show that the families of Gray images of self-dual or LCD double circulant codes are good (which is one of the main results of this paper).

Let n be an odd prime and q be a primitive root modulo n. We assume that the factorization of x n -1 into distinct irreducible polynomials over R is

x n -1 = (x -1)(1 + x + • • • + x n-1 ) = (x -1)h(x), (3) 
where h(x) = 1 + x + • • • + x n-1 is an irreducible polynomial over R. By the Chinese Remainder Theorem (CRT), we have

R[x] x n -1 ∼ = R[x] x -1 ⊕ R[x] h(x) ∼ =R ⊕ R 1 , where R 1 = F q n-1 + uF q n-1 + vF q n-1 , u 2 = u, v 2 = v, uv = vu = 0. We denote R = R[x] h(x) .
Definition 1 Let C be a cyclic code over R of odd length n and h(x) be a polynomial given in the above discussion. Then a non-zero codeword in C is said to be a constant vector if it is generated by h(x). Now, we provide two lemmas which will be used to prove the main result.

Lemma 3 Let z = (e, f ) ∈ R 2n be a non-zero vector such that e is not a constant vector. Then there are at most q 2n+1 double circulant codes C a = (1, a) over R such that z ∈ C a , where a ∈ R.

Proof The vector z can be written as z = (e, f ) ∼ = (e 1 , f 1 ) ⊕ (e 2 , f 2 ) by the CRT decomposition.

As z ∈ C a , we have f = ea, f 1 = e 1 a 1 and f 2 = e 2 a 2 , where e 1 , f 1 , a 1 ∈ R and e 2 , f 2 , a 2 ∈ R. Let

a 1 = r 1 (1 -u -v) + us 1 + vt 1 and a 2 = r 2 (1 -u -v) + us 2 + vt 2
, for some r 1 , s 1 , t 1 ∈ F q and r 2 , s 2 , t 2 ∈ F q n-1 . Now, we discuss the first constituent of the code C a through e 1 .

-If e 1 = 0, then we have q 3 choices for a 1 .

-

If 0 = e 1 ∈ 1 -u -v , then e 1 = (1 -u -v)x 1 and f 1 = (1 -u -v)x 1 , for some x 1 ∈ F * q , x 1 ∈ F q . Now, f 1 = (1 -u -v)x 1 = (1 -u -v)x 1 a 1 = (1 -u -v)x 1 r 1 .
This implies that r 1 =

x 1

x 1 and we have q 2 choices for a 1 . Similarly, when 0 = e 1 ∈ u or v , we have q 2 choices for each case.

-If 0 = e 1 ∈ 1 -u -v, u and e 1 = x 1 (1 -u -v) + y 1 u, for some x 1 , y 1 ∈ F * q , then f 1 = x 1 (1 -u -v) + y 1 u, for some x 1 , y 1 ∈ F q . Now,

f 1 = (1 -u -v)x 1 + uy 1 = ((1 -u -v)x 1 + uy 1 )a 1 = (1 -u -v)x 1 r 1 + uy 1 s 1 .
This implies that r 1 = x 1 x 1 , s 1 = y 1 y 1 and we have q choices for a 1 . Similarly, when 0 = c 1 ∈ u, v or 1 -u -v, v , we have q choices for each case.

-If e 1 ∈ R * , then we have a unique choice for a 1 = f 1 e 1 . Therefore, for each case we have at most q 3 choices for a 1 .

For the second constituent code of C a , we discuss choices for a 2 through e 2 .

-If e 2 = 0, then e is a constant vector, i.e., e ≡ 0 (mod h(x)), which is a contradiction to the choice of e.

-If 0 = e 2 ∈ 1 -u -v , then e 2 = (1 -u -v)x 2 and f 2 = (1 -u -v)x 2 , for some x 2 ∈ F * q n-1 , x 2 ∈ F q n-1 . Now, f 2 = (1 -u -v)x 2 = (1 -u -v)x 2 a 2 = (1 -u -v)x 2 r 2 .
This implies that r 2 =

x 2

x 2 and we have q 2n-2 choices for a 2 . Similarly, when 0 = e 2 ∈ u or v , we have q 2n-2 choices for each case.

-

If 0 = e 2 ∈ 1 -u -v, u and e 2 = x 2 (1 -u -v) + y 2 u, for some x 2 , y 2 ∈ F * q n-1 , then f 2 = x 2 (1 -u -v) + y 2 u, for some x 2 , y 2 ∈ F q n-1 . Now, f 2 = (1 -u -v)x 2 + uy 2 = ((1 -u -v)x 2 + uy 2 )a 2 = (1 -u -v)x 2 r 2 + uy 2 s 2 .
This implies that r 2 = x 2 x 2 , s 2 = y 2 y 2 and we have q n-1 choices for a 2 . Similarly, when 0 = c 2 ∈ u, v or 1 -u -v, v , we have q n-1 choices for each case.

-If e 2 ∈ R * , then we have a unique choice for a 2 = f 2 e 2 . From the above cases, we conclude that the number of choices for a 2 is at most q 2n-2 . Therefore, there are at most q 2n+1 choices for a such that z ∈ C a .

Keeping the same notations, we have the following result.

Lemma 4 Let z = (e, f ) ∈ R 2n be a non-zero vector such that e is not a constant vector. Then there are at most 8(1 + q n-1

2 ) 2 self-dual codes C a = (1, a) such that z ∈ C a , where a ∈ R.

Proof Intially, we discuss the first constituent of the code C a . From Theorem 3, there are at most 8 choices for C 1 , a self-dual double circulant code over R.

For the second constituent code of C a , we discuss choices for a 2 through e 2 . Let a 2 = (1 -uv)r 2 + us 2 + vt 2 , for some r 2 , s 2 , t 2 ∈ F q n-1 .

-If e 2 = 0, then e is a constant vector, i.e., e ≡ 0 (mod h(x)), which is a contradiction to the choice of e.

-If 0 = e 2 ∈ 1 -u -v , then e 2 = (1 -u -v)x 2 and f 2 = (1 -u -v)x 2 , for some x 2 ∈ F * q n-1 , x 2 ∈ F q n-1 . Now, f 2 = (1 -u -v)x 2 = (1 -u -v)x 2 a 2 = (1 -u -v)x 2 r 2 .
This implies that

r 2 = x 2 x 2 . Further, as C a is self-dual, 1 + a 2 ā2 = 1 + a 2 a q n-1 2 2 = 0 which implies that r 2 r q n-1 2 2 = -1, s 2 s q n-1 2 2 = -1 and t 2 t q n-1 2 2 = -1, i.e., N orm(r 2 ) = -1, N orm(s 2 ) = -1 and N orm(t 2 ) = -1. Therefore, we have (1 + q n- 1 
2 ) 2 choices for a 2 . Similarly, when 0 = e 2 ∈ u or v , we have (1 + q n-1

2 ) 2 choices for each case.

-If 0 = e 2 ∈ 1 -u -v, u and e 2 = x 2 (1 -u -v) + y 2 u, for some x 2 , y 2 ∈ F * q n-1 , then f 2 = x 2 (1 -u -v) + y 2 u, for some x 2 , y 2 ∈ F q n-1 . Now, f 2 = (1 -u -v)x 2 + uy 2 = ((1 -u -v)x 2 + uy 2 )a 2 = (1 -u -v)x 2 r 2 + uy 2 s 2 . This implies that r 2 = x 2 x 2 , s 2 = y 2 y 2 . Further, as C a is self-dual, 1 + a 2 ā2 = 1 + a 2 a q n-1 2 2 = 0, which implies that r 2 r q n-1 2 2 = -1, s 2 s q n-1 2 

2

= -1 and t 2 t q n-1 2

2

= -1, i.e., N orm(r 2 ) = -1, N orm(s 2 ) = -1 and N orm(t 2 ) = -1. Therefore, we have at most (1 + q n-1

2 ) choices for a 2 . Similarly, when 0 = c 2 ∈ u, v or 1 -u -v, v , we have at most (1 + q n-1

2 ) choices for each case.

-If e 2 ∈ R * , then we have a unique choice for a 2 = f 2 e 2 .

From the above cases, we conclude that the number of choices for a 2 is at most (1+q n-1

2 ) 2 . Therefore, there are at most 8(1 + q n-1 2 ) 2 choices for a such that z ∈ C a .

Using the Artin's conjecture for primitive roots, we see that for a fixed q which is not a square, there are infinitely many primes n such that q is primitive root modulo n. In that situation, the factorization given in (3) of x n -1 into two irreducible factors holds. Thus, we get an infinite family of double circulant codes over R. (Note that Artin's conjecture is known to be true for all non-square q's except at most two unspecified exceptions [START_REF] Moree | Artin's primitive root conjecture a survey[END_REF]). Now, we are in a position to prove Theorem 2.

Proof We denote the size of the family by A n . Then using Theorem 3 and Theorem 4 for n tending to infinity, we can approximate A n to 8q 3n-1 2

, for self-dual and q 3n , for LCD double circulant codes. Let B(d n ) be the number of elements in R 2n , whose image under φ i have Hamming weight less than d n . Assume that we have

A n > a n B(d n ), (4) 
(see [START_REF] Shi | On self-dual and LCD double circulant and double negacirculant codes over Fq + uFq[END_REF][START_REF] Yao | On self-dual and LCD double circulant codes over a non-chain ring[END_REF]) where a n = 8(1 + q (n-1)/2 ) 2 for self-dual and q 2n+1 , for LCD codes. Therefore, by Lemma 3 and Lemma 4 we conclude that in the family, there exist codes of length 2n over R whose images under φ i have Hamming distance ≥ d n .

To enforce inequality (4) for large n, we make the following argument. We consider δ to be the relative distance of the above family and assume that d n is the largest such that A n > a n B(d n ). Also, we assume that the growth is of the form d n = 6δn. Then by [[11], Lemma 2.10.3], we get that B(d n ) is approximately equal to q 6nH q (δ) . From this, we can see that if H q (δ 0 ) < 1 6 , for LCD and < 1 12 , for self-dual codes, then inequality (4) holds for n large enough.

Numerics

Here, we present several examples of double circulant LCD and self-dual codes under the map φ i , for i = 1, 2. To determine their parameters we need a result as below.

Lemma 5 Assume that C has the generator matrix G = (I, A), where A = A 1 + uA 2 + vA 3 , A i is an n × n matrix over F q , for i = 1, 2, 3 and I is the identity matrix of order n. Then φ i (C) has a generator matrix

M 1 =   0 2I 0 -A 2 2A 1 + A 2 A 3 -I I 0 -A 1 -A 2 A 1 + A 2 0 0 0 I 0 0 A 1 + A 3   3n×6n .
and

M 2 =   I I I A 1 A 1 + A 2 A 1 + A 3 0 I 0 0 A 1 + A 2 0 0 0 I 0 0 A 1 + A 3   3n×6n
.

for i = 1, 2, respectively.

Proof The matrix M i is constructed by applying Gray map φ i on G = (I, A), uG and vG, for i = 1, 2, respectively. Now, by using the generator matrices given by Lemma 5 and the Magma computation system [START_REF] Bosma | Handbook of Magma Functions[END_REF], we calculate the minimum distances d in Table 1 for the double circulant codes of length 2n over R = F 5 + uF 5 + vF 5 . In this way, we obtain their F 5 parameters [6n, 3n, d] (sixth-column). Note that second to fourth columns include the generator polynomials a i (x), for i = 1, 2, 3, respectively. Also, we write the coefficients of these polynomials in decreasing powers of x, for instance, we write 3242 to represent the polynomial 3x 3 + 2x 2 + 4x + 2. In last column, we also mention their nature in terms of LCD or self-dual.

Conclusion

In this paper , we have calculated the total number of self-dual and LCD double circulant and double negacirculant codes over the semi-local ring R. Further, we study the distance bounds for the family of Gray images of self-dual and LCD double circulant codes over R and show that these families are good. It would be a worthy study to investigate these codes for other semi-local non-chain rings in the future. 

( 1 )

 1 C is a self-dual code if and only if 1 + c 1+q e i e i = 0 and 1 + c d j c d j = 0.

where a ∈ R * and n = s i=1 2e i + 2 t j=1 d

 2j=1 j . The total number of self-dual double negacirculant codes over R is s i=1

  all c in C} and C ⊥ H = {a ∈ R n : a, c H = 0 for all c in C}, respectively. A linear code C is said to be a Euclidean (resp. Hermitian) LCD code if and only ifC ∩ C ⊥ = {0} (resp. C ∩ C ⊥ H = {0}). Also, C is said to be a Euclidean (resp. Hermitian) self-dual code if C = C ⊥ (resp. C = C ⊥ H). Now, the next result shows that φ i preserve the orthogonality of a linear code.

	Theorem 1 Let C be a linear code over R. Then C is a Euclidean LCD (resp. self-dual) code if and
	only if φ i (C) is a Euclidean LCD (resp. self-dual) code over

Table 1 :

 1 F 5 -images of double circulant codes of length 2n over F 5 + uF 5 + vF 5

	n	a 1 (x)	a 2 (x)	a 3 (x)	Map	Parameters	Remark
	2	30	23	22	φ 2	[12, 6, 2] 5	Self-dual
	3	133	114	344	φ 2	[18, 9, 4] 5	Self-dual
	3	121	402	121	φ 1	[18, 9, 4] 5	LCD
	4	0334	3242	4234	φ 1	[24, 12, 4] 5	LCD
	4	1114	3332	3332	φ 2	[24, 12, 4] 5	Self-dual
	5	43030	04131	33303	φ 1	[30, 15, 5] 5	LCD
	6	010044	132202	142241	φ 1	[36, 18, 5] 5	LCD
	7	1402124	2113424	1402124	φ 1	[42, 21, 6] 5	LCD
	8	34430110	24023121	31231143	φ 1	[48, 24, 6] 5	LCD
	9	033302122	314321000	342123122	φ 1	[54, 27, 7] 5	LCD
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