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ON THE ENERGY TRANSFER TO HIGH FREQUENCIES IN

THE DAMPED/DRIVEN NONLINEAR SCHRÖDINGER

EQUATION

GUAN HUANG AND SERGEI KUKSIN

Abstract. We consider a damped/driven nonlinear Schrödinger equation in
Rn, where n is arbitrary,

Eut − ν∆u + i∣u∣2u =
√
νη(t, x), ν > 0,

under odd periodic boundary conditions. Here η(t, x) is a random force which
is white in time and smooth in space. It is known that the Sobolev norms

of solutions satisfy ∥u(t)∥2m ≤ Cν−m, uniformly in t ≥ 0 and ν > 0. In this

work we prove that for small ν > 0 and any initial data, with large probability
the Sobolev norms ∥u(t, ⋅)∥m with m > 2 become large at least to the order of

ν−κn,m with κn,m > 0, on time intervals of orderO( 1
ν
). It proves that solutions

of the equation develop short space-scale of order ν to a positive degree, and
rigorously establishes the (direct) cascade of energy for the equation.

1. Introduction

In this work we study a damped/driven nonlinear Schrödinger equation

ut − ν∆u + i∣u∣2u =
√
νη(t, x), x ∈ Rn, (1.1)

i.e. a CGL equation without linear dispersion, with cubic Hamiltonian nonlinearity
and a random forcing. The dimension n is any, 0 < ν ≤ 1 is the viscosity constant and
the random force η is white in time t and regular in x. The equation is considered
under the odd periodic boundary conditions,

u(t, . . . , xj , . . . ) = u(t, . . . , xj + 2π, . . . ) = −u(t, . . . , xj + π, . . . ), j = 1, . . . , n.

The latter implies that u vanishes on the boundary of the cube of half-periods
Kn = [0, π]n,

u ∣∂Kn= 0.

We denote by {ϕd(⋅), d = (d1, . . . , dn) ∈ Nn} the trigonometric basis in the space of
odd periodic functions,

ϕd(x) = ( 2
π
)
n
2 sin(d1x1)⋯ sin(dnxn).

The basis is orthonormal with respect to the normalised scalar product ⟪⋅, ⋅⟫ in
L2(K

n, π−ndx),

⟪u, v⟫ = ∫
Kn

⟨u(x), v(x)⟩π−ndx, (1.2)

where ⟨⋅, ⋅⟩ is the real scalar product in C, ⟨u, v⟩ = Ruv̄. It is formed by eigenfunc-
tions of the Laplacian:

(−∆)ϕd = ∣d∣2ϕd.

The force η(t, x) is a random field of the form

η(t, x) =
∂

∂t
ξ(t, x), ξ(t, x) = ∑

d∈Nn
bdβd(t)ϕd(x). (1.3)

Here βd(t) = β
R
d (t) + iβId(t), where βRd (t), βId(t) are independent real-valued stan-

dard Brownian motions, defined on a complete probability space (Ω,F ,P) with a
1
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filtration {Ft; t ⩾ 0}. The set of real numbers {bd, d ∈ Nn} is assumed to form a
non-zero sequence, satisfying

0 < Bm∗ <∞, m∗ = min{m ∈ Z ∶m > n/2}, (1.4)

where for a real number k we set

Bk ∶= ∑
d∈Nn

∣d∣2k ∣bd∣
2
≤∞.

For m ≥ 0 we denote by Hm the Sobolev space of order m, formed by complex odd
periodic functions, equipped with the homogeneous norm,

∥u∥m = ∥(−∆)
m
2 u∥0,

where ∥ ⋅ ∥0 is the L2-norm on Kn, ∥u∥2
0 = ⟪u,u⟫ (see (1.2)). If we write u ∈Hm as

Fourier series, u(x) = ∑d∈Nn udϕd(x), then ∥u∥2
m = ∑d∈Nn ∣d∣2m∣ud∣

2.
Eq. (1.1) with small ν belongs to a group of equations, describing turbulence in

the CGL equations. These equations have got quite a lot of attention in physical
literature as models for turbulence in various media, e.g. see [3, Chapter 5]. In
particular – as a natural model for hydrodynamical turbulence since eq. (1.1) is
obtained from the Navier-Stokes system by replacing the Euler term (u ⋅∇)u, which
is a quadratic Hamiltonian nonlinearity, by i∣u∣2u, which is a cubic Hamiltonian
nonlinearity, see [13].

The global solvability of eq. (1.1) for any space dimension n is established in [8,
10]. It is proved there that if

u(0, x) = u0(x), (1.5)

where u0 ∈ H
m ∩C(Kn), m ∈ N, and if Bm <∞, then the problem (1.1), (1.5) has

a unique strong solution u(t, x) in Hm which we write as u(t, x;u0), or u(t;u0), or
uν(t;u0). Its norm satisfies

E∥u(t;u0)∥
2
m ≤ Cmν

−m, t ≥ 0,

where Cm depends on ∥u0∥m, ∣u0∣∞ andBm,Bm∗ . Furthermore, denoting by C0(K
n)

the space of continuous complex functions on Kn, vanishing at ∂Kn, we have that
the solutions u(t, x) define a Markov process in C0(K

n). Moreover, if the noise
η(t, ⋅) is non-degenerate in the sense that in (1.3) all coefficients bd are non-zero,
then this process is mixing.1

Our goal is to study the growth of higher Sobolev norms for solutions of eq. (1.1)
as ν → 0 on time intervals of order O( 1

ν
). The main result of this work is the

following.

Theorem 1. For any real number m > 2, in addition to (1.4), assume that Bm <∞.
Then there exists κn,m > 0 such that for every fixed quadruple (δ, κ,K , T0), where

κ ∈ (0, κn,m), δ ∈ (0, 1
8
), K , T0 > 0,

there exists a ν0 > 0 with the property that if 0 < ν ≤ ν0, then for every u0 ∈

Hm ∩C0(K
n), satisfying

∣u0∣∞ ⩽ K , ∥u0∥m ≤ ν−κm, (1.6)

the solution u(t, x;u0) is such that

(1)

P{ sup
t∈[t0,t0+T0ν−1]

∥uων (t)∥m > ν−mκ} ≥ 1 − δ, ∀ t0 ≥ 0.

1We note that solutions of equations (1.1) with complex ν behave differently, and solubility of
those equations with large n is unknown.
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(2) If m is an integer, m ≥ 3, then a possible choice of κn,m is κn,m = 1
35

, and

there exists C ≥ 1, depending on κ < 1
35

, K ,m,Bm∗ and Bm, such that

C−1ν−2mκ+1
⩽ E(ν ∫

t0+ν−1

t0
∥uν(s)∥

2
mds) ⩽ Cν

−m, ∀ t0 ≥ 0. (1.7)

A similar result holds for the classical Ck-norms of solutions:

Proposition 2. For any integer m ≥ 2 in addition to (1.4) assume that Bm <∞.
Then for every fixed triplet K,K, T0 > 0 and any 0 < κ < 1/16 we have

P{ sup
t∈[t0,t0+T0ν−1]

∣uων (t;u0)∣Cm >Kν−mκ}→ 1 as ν → 0, (1.8)

for each t0 ≥ 0, if u0 satisfies ∣u0∣∞ ≤ K, ∣u0∣Cm ≤ ν−κm. The rate of convergence
depends only on the triplet and κ.

For a proof of this result see the extended version of our work [6]. Due to (1.8),
for any m > 2 + n/2 we have

P{ sup
T0≤t≤t0+T0ν−1

∥u(t)∥m ≥Kν−⌊m−n2 ⌋κ
}→ 1 as ν → 0,

for every K > 0 and 0 < κ < 1/16, where for a ∈ R we denote ⌊a⌋ = max{n ∈ Z ∶ n < a}.
This improves the first assertion of Theorem 1 for large m.

We have the following two corollaries from Theorem 1, valid if the Markov process
defined by the equation (1.1) is mixing:

Corollary 3. Assume that Bm <∞ for all m and bd ≠ 0 for all d. Then eq. (1.1)
is mixing and for any κ < 1/35 and 0 < ν ≤ ν0 its unique stationary measure µν
satisfies

C−1ν−2mκ+1
≤ ∫ ∥u∥2

mµν(du) ≤ Cν
−m, 3 ≤m ∈ N. (1.9)

Here C and ν0 are as in Theorem 1.

Corollary 4. Under the assumptions of Corollary 3, for any u0 ∈ C
∞ we have

1
2
C−1ν−2mκ+1

≤ E∥u(s;u0)∥
2
m ≤ 2Cν−m, 3 ≤m ∈ N,

if s ≥ T (ν, u0, κ,Bm,Bm∗), where C is the same as in (1.9).

Theorem 1 rigorously establishes the energy cascade to high frequencies for so-
lutions of eq. (1.1) with small ν. Indeed, if u0(x) and η(t, x) are smooth functions
of x (or even trigonometric polynomials of x), then in view of (1.7) for 0 < ν ≪ 1
and t ≳ ν−1 a substantial part of the energy 1

2 ∑ ∣ud(t)∣
2 of a solution u(t, x;u0) is

carried by high modes ud with ∣d∣ ≫ 1. Relation (1.7) (valid for all integer m ≥ 3)
also means that the averaged in time space-scale lx of solutions for (1.1) satisfies

lx ∈ [ν1/2, ν1/35], and goes to zero with ν (see [1, 9]). We recall that the energy
cascade to high frequencies and formation of short space-scale is the driving force
of the Kolmogorov theory of turbulence, see [5].

We mention that in the work [12] the stochastic CGL equation

ut − (ν + i)∆u + i∣u∣2u =
√
νη(t, x), 0 < ν ≤ 1, (1.10)

with linear dispersion and white in time random force η as in (1.3) was considered
under the odd periodic boundary conditions, and the inviscid limiting dynamics as
ν → 0 was examined. However, since the limiting equation (1.10)ν=0 is a regular
PDE in difference with the equation (1.1)ν=0, the results on the inviscid limit in
[12] differ in spirit from those in our work, and we do not discuss them now.

Deterministic versions of the result of Theorem 1 for eq. (1.1) with η = 0, where
ν is a small non-zero complex number such that Rν ≥ 0 and Iν ≤ 0 are known,
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see [9]. In particular, if ν is a positive real number and u0 is a smooth function of
order one, then for any integer m ≥ 4 a solution uν(t, x;u0) satisfies estimates (1.7)

with the averaging νE ∫
t+ν−1

t . . . ds replaced by ν1/3
∫
ν−1/3

0 . . . ds, with the same upper
bound and with the lower bound Cmν

−κmm, where κm → 1/3 as m→∞. Moreover,
it was then shown in [2] that the lower bounds remain true with κ = 1/3, and that

the estimates supt∈[0,∣ν∣−1/3] ∥u(t)∥Cm ≥ Cm∣ν∣−m/3,m ≥ 2, hold for smooth solutions

of equation (1.1) with η = 0 and any non-zero complex “viscosity” ν.
The better quality of the lower bounds for solutions of the deterministic equations

is due to an extra difficulty which occurs in the stochastic case: when time grows,
simultaneously with increasing of high Sobolev norms of a solution, its L2-norm
may decrease, which accordingly would weaken the mechanism, responding for the
energy transfer to high modes. Significant part of the proof of Theorem 1 is devoted
to demonstration that the L2-norm of a solution cannot go down without sending
up the second Sobolev norm.

If η = 0 and ν = iδ ∈ iR, then (1.1) is a Hamiltonian PDE (the defocusing
Schrödinger equation), and the L2-norm is its integral of motion. If this integral
is of order one, then the results of [9] (see there Appendix 3) imply that at some

point of each time-interval of order δ−1/3 the Cm-norm of a corresponding solution
will become ≳ δ−mκ if m ≥ 2, for any κ < 1/3. Furthermore, if n = 2 and δ = 1, then
due to [4] for m > 1 and any M > 1 there exists a T = T (m,M) and a smooth u0(x)
such that ∥u0∥m <M−1 and ∥u(T ;u0)∥m >M .

The paper is organized as follows. In Section 2, we recall the results from [8, 10]
on solutions of the equation (1.1). Next we show in Section 3 that if the noise η
is non-degenerate, the L2-norm of a solution of eq. (1.1) cannot stay too small on
time intervals of order O( 1

ν
) with high probability, unless its H2-norm gets very

large (see Lemma 12). Then in Section 4 we derive from this fact the assertion (1)
of Theorem 1. We prove assertion (2) and both corollaries in Section 5.

Constants in estimates never depend on ν, unless otherwise stated. For a metric
space M we denote by B(M) the Borel σ-algebra on M , and by P(M) – the space
of probability Borel measures on M . By D(ξ) we denote the law of a r.v. ξ, and
by ∣ ⋅ ∣p – the norm in Lp(K

n).

2. Solutions and estimates

Strong solutions for the equation (1.1) are defined in the usual way:

Definition 5. Let (Ω,F ,{Ft}t⩾0,P) be the filtered probability space as in the
introduction. Let u0 in (1.5) be a r.v., measurable in F0 and independent from
the Wiener process ξ (e.g., u0(x) may be a non-random function). Then a random
process u(t) = u(t;u0) ∈ C0(K

n), t ∈ [0, T ], adapted to the filtration, is called a
strong solution of (1.1), (1.5), if

(1) a.s. its trajectories u(t) belong to the space

H([0, T ]) ∶= C([0, T ],C0(K
n
)) ∩L2

([0, T ],H1
);

(2) we have

u(t) = u0 + ∫

t

0
(ν∆u − i∣u∣2u)ds +

√
ν ξ(t), ∀t ∈ [0, T ], a.s.,

where both sides are regarded as elements of H−1.

If (1)-(2) hold for every T <∞, then u(t) is a strong solution for t ∈ [0,∞). In this
case a.s. u ∈ C([0,∞),C0(K

n)) ∩L2
loc([0,∞),H1).

Everywhere below when we talk about solutions for the problem (1.1), (1.5) we
assume that the r.v. u0 is as in the definition above.
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The global well-posedness of eq. (1.1) was established in [8, 10]:

Theorem 6. For any u0 ∈ C0(K
n) the problem (1.1), (1.5) has a unique strong

solution uω(t, x;u0), t ≥ 0. The family of solutions {uω(t;u0)} defines in the space
C0(K

n) a Fellerian Markov process.

In [8, 10] the theorem above is proved when (1.4) is replaced by the weaker

assumption B∗ <∞, where B∗ = ∑ ∣bd∣ (note that B∗ ≤ CnB
1/2
m∗ ).

The transition probability for the obtained Markov process in C0(K
n) is

Pt(u,Γ) = P{u(t;u) ∈ Γ}, u ∈ C0(K
n
), Γ ∈ B(C0(K

n
)),

and the corresponding Markov semigroup in the space P(C0(K
n)) of Borel mea-

sures on C0(K
n) is formed by the operators {B∗t , t ≥ 0},

B
∗
t µ(Γ) = ∫

C0(Kn)
Pt(u,Γ)µ(du), t ∈ R.

Then B∗t µ = Du(t;u0) if u0 is a r.v., independent from ξ and such that D(u0) = µ.

Introducing the slow time τ = νt and denoting v(τ, x) = u( τ
ν
, x), we rewrite

eq. (1.1) in the following form, more convenient for some calculations:

∂v

∂τ
−∆v + iν−1

∣v∣2v = η̃(τ, x), (2.1)

where

η̃(τ, x) =
∂

∂τ
ξ̃(τ, x), ξ̃(τ, x) = ∑

d∈Nn
bdβ̃d(τ)ϕd(x),

and β̃d(τ) ∶= ν
1/2βd(τν

−1), d ∈ Nd, is another set of independent standard complex
Brownian motions.

Let Υ ∈ C∞(R) be any smooth function such

Υ(r) =

⎧⎪⎪
⎨
⎪⎪⎩

0, for r ⩽ 1
4
;

r, for r ⩾ 1
2
.

Writing v ∈ C in the polar form v = reiΦ, where r = ∣v∣, and recalling that ⟨⋅, ⋅⟩
stands for the real scalar product in C, we apply Itô’s formula to Υ(∣v∣) and obtain
that the process Υ(τ) ∶= Υ(∣v(τ)∣) satisfies

Υ(τ) = Υ0 + ∫

τ

0
[Υ′

(r)(∇r − r∣∇Φ∣
2
)

+
1

2
∑
d∈Nn

b2d(Υ′′
(r)⟨eiΦ, ϕd⟩

2
+Υ′

(r)
1

r
(∣ϕd∣

2
− ⟨eiΦ, ϕd⟩

2
))]ds +W(τ),

(2.2)

where Υ0 = Υ(∣v(0)∣) and W(τ) is the stochastic integral

W(τ) = ∑
d∈Nn

∫

τ

0
Υ′

(r)bdϕd⟨e
iΦ, dβ̃d(s)⟩.

In [10] eq. (2.1) is considered with ν = 1 and, following [8], the norm ∣v(t)∣∞
of a solution v is estimated via Υ(t) (since ∣v∣ ≤ Υ + 1/2). But the nonlinear term
iν−1∣v∣2v does not contribute to eq. (2.2), which is the same as the Υ-equation (2.3)
in [10] (and as the corresponding equation in [8, Section 3.1]). So the estimates
on ∣Υ(t)∣∞ and the resulting estimates on ∣v(t)∣∞, obtained in [10], remain true for
solutions of (2.1) with any ν. Thus we get the following upper bound for quadratic
exponential moments of the L∞-norms of solutions:2

2In [8] polynomial moments of the random variables supτ⩽s⩽τ+T ∣v(s)∣2∞) are estimated, and

in [10] these results are strengthened to the exponential bounds (2.3).



6 GUAN HUANG AND SERGEI KUKSIN

Theorem 7. For any T > 0 there are constants c∗ > 0 and C > 0, depending only
on B∗ and T , such that for any r.v. vω0 ∈ C0(K

n) as in Definition 5, any τ ⩾ 0 and
any c ∈ (0, c∗], a solution v(τ ; v0) of eq. (2.1) satisfies

E exp(c sup
τ⩽s⩽τ+T

∣v(s)∣2∞) ⩽ C E exp(5c ∣v0∣
2
∞) ≤∞. (2.3)

In [10] the result above is proved for a deterministic initial data v0. The theorem’s
assertion follows by averaging the result of [10] in vω0 .

The estimate (2.3) is crucial for derivation of further properties of solutions,
including the given below upper bounds for their Sobolev norms, obtained in the
work [8]. Since the scaling of the equation in [8] differs from that in (2.1) and the
result there is a bit less general than in the theorem below, a sketch of the proof is
given in Appendix B.

Theorem 8. Assume that Bm < ∞ for some m ∈ N, and v0 = vν0 ∈ Hm ∩ C0(K
n)

satisfies

∣v0∣∞ ≤M, ∥v0∥m ≤Mmν
−m, 0 < ν ≤ 1.

Then

E∥v(τ ; v0)∥
2
m ⩽ Cmν

−m, ∀τ ∈ [0,∞), (2.4)

where CM,m also depends on M , Mm and Bm, Bm∗ .

Neglecting the dependence on ν, we have that if Bm < ∞, m ∈ N, and a r.v.
vω0 ∈ Hm ∩ C0(K

n) satisfies E∥v0∥
2
m < ∞ and E exp(c ∣v0∣

2
∞) < ∞ for some c > 0,

then eq. (2.1) has a solution, equal v0 at t = 0, such that

E∥v(τ ; v0)∥
2
m ≤ e−tE∥v0∥

2
m +C, τ ≥ 0, (2.5)

E sup
0≤τ≤T

∥v(τ ; v0)∥
2
m ≤ C ′, (2.6)

where C > 0 depend on c, ν,E exp(c ∣v0∣
2
∞),Bm∗ and Bm, while C ′ also depends on

E∥v0∥
2
m <∞ and T . See Appendix B.

As it is shown in [10], the estimate (2.3) jointly with an abstract theorem from
[11], imply that under a mild nondegeneracy assumption on the random force the
Markov process in the space C0(K

n), constructed in Theorem 6, is mixing:

Theorem 9. For each ν > 0, there is an integer N = N(B∗, ν) > 0 such that if
bd ≠ 0 for ∣d∣ ⩽ N , then the equation (1.1) is mixing. I.e. it has a unique stationary
measure µν ∈ P(C0(K

n)), and for any probability measure λ ∈ P(C0(K
n)) we

have B∗t λ⇀ µν as t→∞.

Under the assumption of Theorem 8, for any u0 ∈ Hm the law Du(t;u0) of a
solution u(t;u0) is a measure in Hm. The mixing property in Theorem 9 and (2.4)
easily imply

Corollary 10. If under the assumptions of Theorem 9 Bm < ∞ for some m ∈ N
and u0 ∈H

m, then D(u(t;u0))⇀ µν in P(Hm).

In view of Theorems 7, 8 with v0 = 0 and the established mixing, we have:

Corollary 11. Under the assumptions of Theorem 9, if vst(τ) is the stationary
solution of the equation, then

E exp(c∗ sup
τ⩽s⩽τ+T

∣vst(s)∣2∞) ⩽ C,

where the constant C > 0 depends only on T and B∗. If in addition Bm < ∞ for
some m ∈ N ∪ {0}, then E∥vst(τ)∥2

m ⩽ Cmν
−m, where Cm depends on B∗ and Bm.
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Finally we note that applying Itô’s formula to ∥vst(τ)∥2
0, where vst is a stationary

solution of (2.1), and taking the expectation we get the balance relation

E∥vst(τ)∥2
1 = B0. (2.7)

We cannot prove that E∥vst(τ)∥2
0 ≥ B

′ > 0 for some ν-independent constant B′, and
cannot bound from below the energy 1

2
E∥v(τ ; v0)∥

2
0 of a solution v by a positive

ν-independent quantity. Instead in next section we get a weaker conditional lower
bound on the energies of solutions.

3. Conditional lower bound for the L2-norm of solutions

In this section we prove the following result:

Lemma 12. Let B2 < ∞ and u(τ ;u0), where u0 ∈ H2 ∩ C0(K
n) is non-random,

be a solution of eq. (2.1). Take any constants χ > 0,Γ ≥ 1, τ0 ≥ 0, and define the
stopping time

τΓ ∶= inf{τ ≥ τ0 ∶ ∥u(τ)∥2 ⩾ Γ}

(as usual, τΓ =∞ if the set under the inf-sign is empty). Then

E∫
τ∧τΓ

τ0
I[0,χ](∥u(s)∥0)ds ⩽ 2(1 + τ − τ0)B

−1
0 χΓ, (3.1)

for any τ > τ0.

Proof. We establish the result by adapting the proof from [16] (also see [11, Theo-
rem 5.2.12]) to non-stationary solutions. The argument relies on the concept of local
time for semi-martingales (see e.g. [14, Chapter VI.1] for details of the concept).
By [⋅]b we denote the quasinorm [u]2b = ∑d ∣ud∣

2b2d.
Without loss of generality we assume τ0 = 0. Otherwise we just need to replace

u(τ, x) by the process ũ(τ, x) ∶= u(τ + τ0, x), apply the lemma with τ0 = 0 and with
u0 replaced by the initial data ũω0 = uω(τ0;u0), and then average the estimate in
the random ũω0 .

Let us write the solution u(τ ;u0) as u(τ) =∑d∈Nn ud(τ)ϕd. For any fixed function
g ∈ C2(R), consider the process

f(τ) = g(∥u(τ ∧ τΓ)∥
2
0).

Since

∂ug(∥u∥
2
0) = 2g′(∥u∥2

0)⟪u, ⋅⟫, ∂uug(∥u∥
2
0) = 4g′′(∥u∥2

0)⟪u, ⋅⟫⟪u, ⋅⟫ + 2g′(∥u∥2
0)⟪⋅, ⋅⟫,

then by Itô’s formula we have

f(τ) = f(0) + ∫
τ∧τΓ

0
A(s)ds + ∑

d∈Nn
bd ∫

τ∧τΓ

0
2g′(∥u(s)∥2

0)⟨ud(s), dβd(s)⟩, (3.2)

where

A(s) = 2g′(∥u∥2
0)⟪u,∆u −

1

ν
i∣u∣2u⟫ + 2∑

d

b2d(g
′′
(∥u∥2

0)∣ud∣
2
+ g′(∥u∥2

0))

= −2g′(∥u∥2
0)∥u∥

2
1 + 2g′′(∥u∥2

0)[u]
2
b + 2g′(∥u∥2

0)B0, u = u(s).

(3.3)

Step 1: We firstly show that for any bounded measurable set G ⊂ R, denoting by
IG its indicator function, we have the following equality

2E∫
τ∧τΓ

0
IG(f(s)) (g′(∥u(s)∥2

0))
2
[u(s)]2bds = ∫

∞

−∞
IG(a)

[E(f(τ) − a)+ −E(f(0) − a)+ −E∫
τ∧τΓ

0
I(a+∞)(f(s))A(s)ds]da.

(3.4)
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Let L(τ, a), (τ, a) ∈ [0,∞) × R, be the local time for the semi martingale f(τ)
(see e.g. [14, Chapter VI.1]). Since in view of (3.2) the quadratic variation of the
process f(τ) is

d⟨f, f⟩s =∑
d

(2g′(∥u∥2
0)∣ud∣bd)

2
= 4(g′(∥u∥2

0))
2
[u]2b ,

then for any bounded measurable set G ⊂ R, we have the following equality (known
as the occupation time formula, see [14, Corollary VI.1.6]),

∫

τ∧τΓ

0
IG(f(s))4(g′(∥u(s)∥2

0))
2
[u(s)]2bds = ∫

∞

−∞
IG(a)L(τ, a)da. (3.5)

For the local time L(τ, a), due to Tanaka’s formula (see [14, Theorem VI.1.2]) we
have

(f(τ) − a)+ =(f(0) − a)+

+ ∑
d∈Nn

bd ∫
τ∧τΓ

0
I(a,+∞)(f(s))2g′(∥u(s)∥2

0)⟨ud(s), dβd(s)⟩

+ ∫

τ∧τΓ

0
I(a,+∞)(f(s))A(s)ds +

1

2
L(τ, a).

(3.6)

Taking expectation of both sides of (3.5) and (3.6) we obtain the required equal-
ity (3.4).

Step 2: Let us choose G = [ρ0, ρ1] with ρ1 > ρ0 > 0, and g(x) = gρ0(x) ∈ C
2(R)

such that g′(x) ⩾ 0, g(x) =
√
x for x ⩾ ρ0 and g(x) = 0 for x ⩽ 0. Then due

to the factors IG(f) and IG(a) in (3.4), we may there replace g(x) by
√
x, and

accordingly replace g(∥u∥2
0), g

′(∥u∥2
0) and g′′(∥u∥2

0) by ∥u∥0, 1
2
∥u∥−1

0 and − 1
4
∥u∥−3

0 .
So the relation (3.4) takes the form

E∫
τ∧τΓ

0
IG(f(s))∥u(s)∥−2

0 [u(s)]2b = 2∫
ρ1

ρ0

[E(f(τ) − a)+ −E(f(0) − a)+]da

− 2∫
ρ1

ρ0

{E∫
τ∧τΓ

0
I(a,+∞)(f(s))[

2

2∥u(s)∥0
(B0 − ∥u(s)∥2

1) −
2

4∥u(s)∥3
0

[u(s)]2b]ds}da.

Since the l.h.s. of the above equality is non-negative, we have

∫

ρ1

ρ0

[E∫
τ∧τΓ

0
I(a,+∞)(f(s))

1

∥u(s)∥3
0

(B0∥u(s)∥
2
0 −

1
2
[u(s)]2b)ds]da

⩽ ∫

ρ1

ρ0

E[((f(τ) − a)+ − (f(0) − a)+) + ∫
τ∧τΓ

0
I(a,+∞)(f(s))

∥u(s)∥2
1

∥u(s)∥0
ds]da.

(3.7)

Noting that

B0∥u∥
2
0 −

1
2
[u(s)]2b = ∑

d∈Nn
(B0 −

1

2
b2d)∣ud∣

2
⩾
B0

2
∥u∥2

0,

that by the definition of the stopping time τΓ

(f(τ) − a)+ − (f(0) − a)+ ⩽ Γ,

and that by interpolation,

∫

τ∧τΓ

0

∥u(s)∥2
1

∥u(s)∥0
ds ⩽ ∫

τ∧τΓ

0
∥u(s)∥2ds ⩽ (τ ∧ τΓ)Γ,

we derive from (3.7) the relation

B0

2
∫

ρ1

ρ0

(E∫
τ∧τΓ

0
I(a,+∞)(f(s))∥u(s)∥

−1
0 ds)da ≤ (ρ1 − ρ0)Γ(1 + τ).
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When ρ0 → 0, we have g(x)→
√
x and f(τ)→ ∥u(τ ∧ τΓ)∥0. So sending ρ0 to 0 and

using Fatou’s lemma we get from the last estimate that

∫

ρ1

0
E∫

τ∧τΓ

0
I(a,∞)(∥u(s)∥0)∥u(s)∥

−1
0 dsda ⩽ 2ρ1(1 + τ)B

−1
0 Γ.

As the l.h.s. above is not smaller than
1

χ
∫

ρ1

0
E∫

τ∧τΓ

0
I(a,χ](∥u(s)∥0)dsda,

then
1

ρ1
∫

ρ1

0
E∫

τ∧τΓ

0
I(a,χ](∥u(s)∥0)dsda ⩽ 2(1 + τ)B−1

0 Γχ. (3.8)

By the monotone convergence theorem

lim
a→0

E∫
τ∧τΓ

0
I(a,χ](∥u(s)∥0)ds = E∫

τ∧τΓ

0
I(0,χ](∥u(s)∥0)ds,

so we get from (3.8) that

E∫
τ∧τΓ

0
I(0,χ](∥u(s)∥0)ds ⩽ 2(1 + τ)B−1

0 Γχ. (3.9)

Step 3: We continue to verify that

E∫
τ∧τΓ

0
I{0}(∥u(s)∥0)ds = 0. (3.10)

To do this let us fix any index d ∈ Nn such that bd ≠ 0. The process ud(τ) is a
semimartingale, dud = vdds + bddβd, where vd(s) is the d-th Fourier coefficient of
∆u + 1

ν
i∣u∣2u for the solution u(τ) = ∑d ud(τ)ϕd which we discuss. Consider the

stopping time
τR = inf{s ≤ τ ∧ τΓ ∶ ∣u(s)∣∞ ≥ R}.

Due to (2.3) and (2.6), P(τR = τ ∧ τΓ) → 1 as R → ∞. Let us denote uRd (τ) =

ud(τ ∧ τR). To prove (3.10) it suffices to verify that

π(δ) ∶= E∫
τ∧τΓ

0
I{∣ud(s)∣<δ}ds→ 0 as δ → 0.

If we replace above ud by uRd , then the obtained new quantity πR(δ) differs from
π(δ) at most by P(τR < τ ∧ τΓ). The process uRd is an Ito process with a bounded
drift. So by [7, Theorem 2.2.2, p. 52], πR(δ) goes to zero with δ. Thus, given any
ε > 0, we firstly choose R sufficiently big and then δ sufficiently small to achieve
π(δ) < ε, for a suitable δ(ε) > 0. So (3.10) is verified. Jointly with (3.9) this
proves (3.1). �

4. Lower bounds for Sobolev norms of solutions

In this section we work with eq. (1.1) in the original time scale t and provide
lower bounds for the Hm-norms of its solutions with m > 2. This will prove the
assertion (1) of Theorem 1. As always, the constants do not depend on ν, unless
otherwise stated.

Theorem 13. For any integer m ⩾ 3, if Bm <∞ and

0 < κ < 1
35
, T0 ≥ 0, T1 > 0,

then for any r.v. u0(x) ∈H
m ∩C0(K

n), satisfying

E∥u0∥
2
m <∞, E exp(c ∣u0∣

2
∞) ≤ C <∞ (4.1)

for some c,C > 0, we have

P{ sup
T0≤t≤T0+T1ν−1

∥u(t;u0)∥m ≥Kν−mκ}→ 1 as ν → 0, (4.2)
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for every K > 0.

Proof. Consider the complement to the event in (4.2):

Qν = { sup
T0⩽t⩽T0+T1

ν

∥u(t)∥m <Kν−mκ}.

We will prove the assertion (4.2) by contradiction. Namely, we assume that there
exists a γ > 0 and a sequence νj → 0 such that

P(Qνj) ⩾ 5γ for j = 1,2, . . . , (4.3)

and will derive a contradiction. Below we write Qνj as Q and always suppose that

ν ∈ {ν1, ν2, . . .}.

The constants in the proof may depend on K,K, γ, Bm∨m∗ , but not on ν.
Without lost of generality we assume that T1 = 1. For any T0 > 0, due to (2.5)

and (2.3) the r.v. ũ0 ∶= u(T1) satisfies (4.1) with c replaced by c/5. So considering
ũ(t, x) = u(t + T0, x) we may assume that T0 = 0.

Let us denote J1 = [0, 1
ν
]. Due to Theorem 7,

P(Q1) ⩾ 1 − γ, Q1 = {sup
t∈J1

∣u(t)∣∞ ⩽ C1(γ)},

uniformly in ν, for a suitable C1(γ). Then, by the definition of Q and Sobolev’s
interpolation,

∥uω(t)∥l ⩽ Cl,γν
−lκ, ω ∈ Q ∩Q1, t ∈ J1, (4.4)

for l ∈ [0,m] (and any ν ∈ {ν1, ν2, . . .}).
Denote J2 = [0, 1

2ν
] and consider the stopping time

τ1 = inf{t ∈ J2 ∶ ∥u(t)∥2 ⩾ C2,γν
−2κ

} ≤ 1
2ν
.

Then τ1 =
1
2ν

for ω ∈ Q ∩Q1. So due to (3.1) with Γ = C2,γν
−2κ, for any χ > 0, we

have

E(ν ∫
J2

I[0,χ](∥u(s)∥0)dsIQ∩Q1(ω)) = E(ν ∫

1
2ν ∧τ1

0
I[0,χ](∥u(s)∥0)dsIQ∩Q1(ω))

⩽ E(ν ∫

1
2ν ∧τ1

0
I[0,χ](∥u(s)∥0)ds) ⩽ Cν

−2κχ.

Consider the event

Λ = {ω ∈ Q ∩Q1 ∶ ∥u(s)∥0 ⩽ χ, ∀s ∈ J2}.

Due to the above, we have,

P(Λ) ⩽ 2E(ν ∫
J2

I[0,χ](∥u(s)∥0)dsIQ∩Q1(ω)) ⩽ 2Cν−2κχ.

So P(Λ) ⩽ γ if we choose

χ = c3(γ)ν
2κ, c3(γ) = γ(2C)

−1. (4.5)

Let us set
Q2 = (Q ∩Q1) ∖Λ, P(Q2) ⩾ 3γ, (4.6)

and for χ as in (4.5), consider the stopping time

τ̃1 = inf{t ∈ J2 ∶ ∥u(t)∥0 ⩾ χ}.

Then τ̃1 ⩽
1
2ν

for all ω ∈ Q2. Consider the function

v(t, x) ∶= u(τ̃1 + t, x), t ∈ [0, 1
2ν

].

It solves eq. (1.1) with modified Wiener processes and with initial data v0(x) =

uω(τ̃1, x), satisfying

∥vω0 ∥0 ≥ χ = cν2κ if ω ∈ Q2. (4.7)
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Now we introduce another stopping time, in terms of v(t, x):

τ2 = inf{t ∈ [0, 1
2ν

] ∶ ∥v(t)∥m ⩾Kν−mκ} ≤ 1
2ν
.

For ω ∈ Q2, τ2 =
1
2ν

and in view of (4.4)

∥vω(t)∥l ⩽ C3(γ)ν
−lκ, t ∈ [0, 1

2ν
], l ∈ [0,m], ∀ω ∈ Q2. (4.8)

Step 1: Let us estimate from above the increment E (t, x) = ∣v(t∧τ2, x)∣
2− ∣v0(x)∣

2.
Due to Itô’s formula, we have that

E (t, x) = 2ν ∫
t∧τ2

0
(⟨v(s, x),∆v(s, x)⟩ + ∑

d∈Nn
b2dϕ

2
d(x))ds +

√
νM(t, x),

M(t, x) = ∫
t∧τ2

0
∑
d∈Nn

bdϕd(x)⟨v(s, x), dβd(s)⟩.

We treat M as a martingale M(t) in the space H1. Since in view of (A.3) for
0 ≤ s < τ2 we have

∥v(s)ϕd∥1 ≤ C(∣v(s)∣∞∥ϕd∥1 + ∣v(s)∥1∣ϕd∣∞) ≤ C(ζd + ζ(m−1)/mν−κ),

where ζ = sup0⩽s⩽ 1
ν
∣u(s)∣∞ (the assertion is empty if τ2 = 0), then for any 0 < T∗ ≤

1
2ν

E∥M(T∗)∥
2
1 ≤ ∫

T∗

0
E∑

d

b2d∥ϕdv(s)∥
2
1ds ≤ CT∗ν

−2κ, (4.9)

where we used that B1 <∞. So by Doob’s inequality

P( sup
0⩽s⩽T∗

∥M(s)∥2
1 ⩾ r

2
) ⩽ CT∗r

−2ν−2κ, ∀r > 0. (4.10)

Let us choose
T∗ = ν

−b, b ∈ (0,1),

where b will be specified later. Then 1 ≤ T∗ ≤
1
2ν

if ν is sufficiently small, so due to
(4.10)

P(Q3) ⩾ 1 − γ, Q3 = { sup
0⩽τ⩽T∗

∥M(τ)∥1 ⩽ C4(γ)ν
−κ√T∗},

for a suitable C4(γ) (and for ν ≪ 1); thus P(Q2 ∩ Q3) ≥ 2γ. Since ∥⟨v,∆v⟩∥1 ≤

C ∣v∣∞∥v∥3 by (A.2) and ∥∑d bdϕd∥1 ≤ C, then in view of (4.8) and the definition of
Q3,

∥E ω
(τ)∥1 ⩽ C(γ)(ν1−3κT∗ + ν

1
2−κT

1/2
∗ ), ∀ τ ∈ [0, T∗], ∀ω ∈ Q2 ∩Q3. (4.11)

Step 2: For any x ∈ Kn, denoting R(t) = ∣v(t, x)∣2, a(t) = ∆v(t, x) and ξ(t) =

ξ(t, x), we write the equation for v(t) ∶= v(t, x) as an Itô process:

dv(t) = (−iRv + νa)dt +
√
ν dξ(t). (4.12)

Setting w(t) = ei ∫
t
0 R(s)dsv(t), we observe that w also is an Itô process, w(0) = v0

and dv = e−i ∫
t
0 R(s)dsdw − iRv dt. From here and (4.12),

w(t) = v0 + ν ∫
t

0
ei ∫

s
0 R(s′)ds′a(s)ds +

√
ν ∫

t

0
ei ∫

s
0 R(s′)ds′dξ(s).

So v(t ∧ τ2) = v(t ∧ τ2, x) can be written as

v(t ∧ τ2, x) = I1(t ∧ τ2, x) + I2(t ∧ τ2, x) + I3(t ∧ τ2, x), (4.13)

where

I1(t, x) = e
−i ∫ t0 ∣v(s,x)∣2dsv0, I2(t, x) = ν ∫

t

0
e−i ∫

t
s ∣v(s′,x)∣2ds′∆v(s, x)ds,

I3(t, x) =
√
νe−i ∫

t
0 ∣v(s′,x)∣2ds′

∫

t

0
ei ∫

s
0 ∣v(s′,x)∣2ds′dξ(s, x).
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Our next goal is to obtain a lower bound for ∥v(T∗)∥1 when ω ∈ Q2 ∩Q3, using
the above decomposition (4.13).

Step 3: We first deal with the stochastic term I3(t). For 0 ⩽ s ⩽ s1 ⩽ T∗ ∧ τ2 we set

W (s, s1, x) ∶= exp(i∫
s1

s
∣v(s′, x)∣2ds′), F (s, s1, x) ∶= ∫

s1

s
∣v(s′, x)∣2ds′; (4.14)

then W (s, s1, x) = exp (iF (s, s1, x)). The functions F and W are periodic in x,
but not odd. Speaking about them we understand ∥ ⋅ ∥m as the non-homogeneous

Sobolev norm, so ∥F ∥2
m = ∥F ∥2

0 + ∥(−∆)m/2F ∥2
0, etc. We write I3 as

I3(t) =
√
ν W (0, t ∧ τ2, x)∫

t∧τ2

0
W (0, s, x)dξ(s, x). (4.15)

In view of (A.1),

∥ exp(iF (s, s1⋅))∥k ≤ Ck(1 + ∣F (s, s1, ⋅)∣∞)
k−1

∥F (s, s1, ⋅)∥k, k ∈ N. (4.16)

For any s ∈ J = [0, T∗ ∧ τ2), by (A.3) and the definition of τ2, we have that
v ∶= v(s) satisfies

∥∣v∣2∥1 ≤ C ∣v∣∞∥v∥1 ≤ C ∣v∣∞∥v∥
1−1/m
0 ∥v∥1/m

m ≤ C ′
∣v∣2−1/m

∞ ν−κ (4.17)

(this assertion is empty if τ2 = 0 since then J = ∅). So for s, s1 ∈ J ,

∣F (s, s1, ⋅)∣∞ ⩽ ∣s1−s∣ sup
s′∈J

∣v(s′)∣2∞, ∥F (s, s1, ⋅)∥k ≤ Cν
−κk

∣s1−s∣( sup
s′∈J

∣v(s′)∣∞)
2−k/m

for k ≤m. Then, due to (4.16),

∥W (0, s ∧ τ2, ⋅)∥1 ⩽ C
′T∗ν

−κ
(1 + sup

s∈J
∣v(s)∣2∞). (4.18)

Consider the stochastic integral in (4.15),

N(t, x) = ∫
t

0
W (0, s, x)dξ(s, x).

The process t↦W (0, t, x) is adapted to the filtration {Ft}, and

dW (0, t, x) = i∣v(t, x)∣2W (0, t, x)dt.

So integrating by parts (see, e.g., [14, Proposition IV.3.1]) we re-write N as

N(t, x) =W (0, t, x)ξ(t, x) − i∫
t

0
ξ(s, x)∣v(s, x)∣2W (0, s, x)ds,

and we see from (4.15) that

I3(t) =
√
νξ(t ∧ τ2, x) + i

√
ν ∫

t∧τ2

0
ξ(s, x)∣v(s, x)∣2W (s, t ∧ τ2, x)ds. (4.19)

Due to (1.4) and since Bm <∞, the Wiener process ξ(t, x) satisfies

E∥ξ(T∗, x)∥
2
1 ⩽ CB1T∗,

and

E sup
0⩽t⩽T∗

∣ξ(t, ⋅)∣∞ ⩽ ∑
d∈Nn

bd(E sup
0⩽t⩽T∗

∣βd(t)ϕd∣∞) ⩽ CB∗
√
T∗,

(we recall that B∗ = ∑d∈Nn ∣bd∣ <∞). Therefore,

P(Q4) ⩾ 1 − γ, Q4 = { sup
0⩽t⩽T∗

(∥ξ(t)∥1 ∨ ∣ξ(t)∣∞) ⩽ CT
1/2
∗ },

with a suitable C = C(γ). Let

Q̃ =
4

⋂
i=1

Qi,
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then P(Q̃) ⩾ γ. As τ2 = T∗ for ω ∈ Q̃, then due to (4.17), (4.18), (4.19) and (A.3),

for ω ∈ Q̃ we have

sup
0⩽t⩽T∗

∥Iω3 (t)∥1 ≤
√
ν sup

0⩽t⩽T∗
(∥ξω(t)∥1 + ∫

t

0
∥ξω(s)∣vω(s)∣2Wω

(s, t)∥1ds)

⩽ CT
5/2
∗ ν

1
2−κ.

(4.20)

Setp 4: We then consider the term I2 = ν ∫
t∧τ2

0 W̄ (s, t∧τ2, x)∆v(s, x)ds. To bound

its H1-norm we need to estimate ∥W∆v∥1. Since

∥∂axW∂bxv∥0 ⩽ C∥W ∥
1/3
3 ∥v∥

2/3
3 ∣v∣1/3∞ if ∣a∣ = 1, ∣b∣ = 2,

(see [17, Proposition 3.6]), we have

∥W∆v∥1 ⩽ C(∥v∥3 + ∥W ∥
1/3
3 ∥v∥

2/3
3 ∣v∣1/3∞ ).

Then in view of (4.16) and (4.8), for ω ∈ Q̃

∥W∆v∥1 ≤ C(ν−3κ
+ (T 3

∗ ν
−3κ

)
1/3ν−2κ) ≤ Cν−3κT∗,

and accordingly

sup
0⩽t⩽T∗

∥Iω2 (t)∥1 ⩽ ν sup
0⩽t⩽T∗

∫

t

0
∥Wω

(s, T∗)∆v
ω
(s)∥1ds ⩽ Cν

1−3κT 2
∗ , ∀ω ∈ Q̃. (4.21)

Step 5: Now we estimate from below the H1-norm of the term Iω1 (T∗, x), ω ∈ Q̃.

Writing it as Iω1 (T∗, x) = e
−iT∗∣v0(x)∣2e−i ∫

T∗
0 E (s,x)dsv0(x) wee see that

∥Iω1 (T∗)∥1 ⩾ ∥∇(exp(−iT∗∣v0∣
2
)v0∥0 − ∥∇(exp(−i∫

T∗

0
E (s)ds))v0∥0 − ∥v0∥1.

This first term on the r.h.s is

T∗∥v0∇(∣v0∣
2
)∥0 = T∗

2
3
∥∇∣v0∣

3
∥0 ⩾ CT∗∥∣v0∣

3
∥0 ⩾ CT∗∥v0∥

3
0 ≥ CT∗ν

6κ, C > 0,

where we have used the fact that u∣∂Kn = 0, Poincaré’s inequality and (4.7).

For ω ∈ Q̃ and 0 ≤ s ≤ T∗, in view of (4.11), the second term is bounded by

∥(∫

T∗

0
∇E (s)ds)v0∥0 ⩽ CT∗∣v0∣∞ sup

0⩽s⩽T∗
∥E (s)∥1 ≤ CT∗(ν

1−3κT∗ + ν
1
2−κT

1/2
∗ ).

Therefore, using (4.11), we get for the term Iω1 (T∗) the following lower bound:

∥Iω1 (T∗)∥1 ⩾ C(ν6κT∗ − T∗(ν
1−3κT∗ + ν

1
2−κT

1/2
∗ ) − ν−κ).

Recalling T∗ = ν
−b we see that if we assume that

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

6κ − b < −κ,

6κ − b < 1 − 3κ − 2b,

6κ − b < 1/2 − κ − 3
2
b,

(4.22)

then for ω ∈ Q̃,
∥Iω1 (T∗)∥1 ⩾ Cν

6κT∗, C > 0, (4.23)

provided that ν is sufficiently small.

Step 6: Finally, remembering that τ2 = T∗ for ω ∈ Q̃ and combining the relations
(4.20), (4.21) and (4.23) to estimate the terms of (4.13), we see that for ω ∈ Q̃ we
have

∥vω(T∗)∥1 ⩾ ∥Iω1 (T∗)∥1 − ∥Iω2 (T∗)∥1 − ∥Iω3 (τ∗)∥1 ⩾
1
2
C1ν

6κ−b, C1 > 0, (4.24)

if we assume in addition to (4.22) that

6κ − b <
1

2
− κ −

5

2
b, (4.25)
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and ν is small. Note that this relation implies the last two in (4.22).
Combining (4.8) and (4.24) we get that

ν−b+7κ
⩽ C−1

2 , (4.26)

for all sufficiently small ν. Thus we have obtained a contradiction with the existence
of the sets Qνj as at the beginning of the proof if (for a chosen κ) we can find a
b ∈ (0,1) which meets (4.22), (4.25) and

−b + 7κ < 0.

Noting that this is nothing but the first relation in (4.22), we see that we have
obtained a contradiction if

κ < 1
7
b, κ < 1

14
− 3

14
b,

for some b ∈ (0,1). We see immediately that such a b exists if and only if κ < 1
35

.
�

Amplification. If we replace the condition m ⩾ 3 with the weaker assumption

R ∋m > 2,

then the statement (4.2) remains true for 0 < κ < κ(n,m) with a suitable (less
explicit) constant κ(n,m) > 0. In this case we obtain a contradiction with the
assumption (4.3) by deriving a lower bound for ∥v(T∗)∥α, where α = min{1,m−2} ∈
(0,1], using the decomposition (4.13). The proof remains almost identical except
that now, firstly, we bound ∥I2∥α (α < 1) from above using the following estimate
from [15, Theorem 5, p. 206] (also see there p. 14):

∥W∆u∥α ⩽ C∥u∥2+α(∣W ∣∞ + ∣W ∣
1− 2α

n∞ ∥W ∥
2α
n

2 );

and, secondly, estimate ∥Iω1 (T∗)∥α (α < 1) from below as

∥Iω1 (T∗)∥α ⩾ ∥Iω1 (T∗)∥
2−α
1 ∥Iω2 (T∗)∥

−1+α
2 ,

which directly follows from Sobolev’s interpolation. See [6] for more details.

5. Lower bounds for time-averaged Sobolev norms

In this section we prove the assertion (2) of Theorem 1. We provide each space
Hr, r ≥ 0, with the scalar product

⟪u, v⟫r ∶= ⟪(−∆)
r
2 u, (−∆)

r
2 v⟫,

corresponding to the norm ∥u∥r. Let u(t) = ∑ud(t)ϕd be a solution of eq. (1.1).
Applying Itô’s formula to the functional ∥u∥2

m, we have for any 0 ⩽ t < t′ < ∞ the
relation

∥u(t′)∥2
m =∥u(t)∥2

m + 2∫
t′

t
⟪u(s), ν∆u(s) − i∣u(s)∣2u(s)⟫mds

+ 2νBm(t′ − t) + 2
√
νM(t, t′),

(5.1)

where M is the stochastic integral

M(t, t′) ∶= ∫
t′

t
∑
d∈Nn

bd∣d∣
2m

⟨ud(s), dβd(s)⟩.

Let us fix a γ ∈ (0, 1
8
). Due to Theorems 7 and 13, for small enough ν there exists

an event Ω1 ⊂ Ω, P(Ω1) ⩾ 1 − γ/2, such that for all ω ∈ Ω1 we have:
a) sup0⩽t⩽ 1

ν
∣uω(t)∣∞ ⩽ C(γ), for a suitable C(γ) > 0;

b) there exist tω ∈ [0, 1
3ν

] and t′ω ∈ [ 2
3ν
, 1
ν
] satisfying

∥uω(tω)∥m, ∥u
ω
(t′ω)∥m ⩾ ν−mκ. (5.2)
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Since for the martingale M(0, t) we have that

E∣M(0, 1
ν
)∣

2
⩽ BmE∫

1
ν

0
∥u(s)∥2

mds =∶Xm,

then by Doob’s inequality

P(Ω2) ⩾ 1 −
γ

2
, Ω2 = { sup

0⩽t⩽ 1
ν

∣M(0, t)∣ ⩽ c(γ)X1/2
m }.

Now let us set Ω̂ = Ω1 ∩ Ω2. Then P(Ω̂) ⩾ 1 − γ for small enough ν, and for any

ω ∈ Ω̂ there are two alternatives:
i) there exists a t0ω ∈ [0, 1

3ν
] such that ∥uω(t0ω)∥m = 1

3
ν−κm. Then from (5.1) and

(5.2) in view of (A.4) we get

8

9
ν−2mκ

+ 2ν ∫
t′ω

t0ω

∥uω(s)∥2
m+1ds ⩽ C(m,γ)∫

1
ν

0
∥uω(s)∥2

mds + 2Bm + 2
√
νc(γ)X1/2

m .

ii) There exists no t ∈ [0, 1
3ν

] with ∥uω(t)∥m = 1
3
ν−κm. In this case, since ∥uω(t)∥m

is continuous with respect to t, then due to (5.2) ∥uω(t)∥m > 1
3
ν−mκ for all t ∈ [0, 1

3ν
].

This leads to the relation

1
27
ν−2mκ−1

⩽ ∫

1
ν

0
∥uω(s)∥2

mds.

In both cases for ω ∈ Ω̂ we have:

1

27
ν−2mκ

⩽ C ′
(m,γ)∫

1
ν

0
∥u(s)∥2

mds + 2Bm + νc(γ)2
+Xm.

It implies that

Eν ∫
1
ν

0
∥u(τ)∥2

mdτ ⩾ Cν
−2mκ+1

(for small enough ν), and gives the lower bound in (1.7).
The upper bound follows directly from Theorem 8.

Proof of Corollaries 3 and 4: Since Bk < ∞ for each k and all coefficients bd are
non-zero, then eq. (1.1) is mixing in the spaces Hm, m ∈ N, see Corollary 10. As
the stationary solution vst satisfies Corollary 11 with any m, then for each µ ∈ N
and M > 0, interpolating the norm ∥u∥µ via ∥u∥0 and ∥u∥m with m sufficiently large
we get that the stationary measure µν satisfies

∫ ∥u∥Mµ µν(du) <∞ ∀µ ∈ N, ∀M > 0. (5.3)

Similar, in view of (2.5) and Theorem 7,

E∥u(t;u0)∥
M
µ ≤ Cν(u0) ∀t ≥ 0, (5.4)

for each u0 ∈ C
∞ and every µ and M as in (5.3). Now let us consider the integral

in (1.7) and write it as

Jt ∶= ν ∫
t+ν−1

t
E∥u(s)∥2

mds.

Replacing the integrand in Jt with E(∥uν(s)∥m∧N)2, N ≥ 1, using the convergence

E(∥u(s; v0)∥m ∧N)
2
→ ∫ (∥u∥m ∧N)

2
µν(du) as s→∞ ∀N, (5.5)

which follows from Corollary 10, and the estimates (5.3), (5.4) we get that

Jt → ∫ ∥u∥2
m µν(du) as t→∞. (5.6)

This convergence and (1.7) imply the assertion of Corollary 3.

Now the convergence (5.5) jointly with estimates (5.3), (5.4) and (1.8) imply
Corollary 4.
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Appendix A. Some estimates

For any integer l ∈ N and F ∈H l we have that

∥ exp(iF (x))∥l ≤ Cl(1 + ∣F ∣∞)
l−1

∥F ∥l. (A.1)

Indeed, to verify (A.1) it suffices to check that for any non-zero multi-indices
β1, . . . , βl′ , where 1 ≤ l′ ⩽ l and ∣β1∣ +⋯ + ∣βl′ ∣ = l, we have

∥∂β1
x F⋯∂βl′x F ∥0 ≤ C ∣F ∣

l′−1
∞ ∥F ∥l. (A.2)

But this is the assertion of Lemma 3.10 in [17]. Similarly,

∥FG∥r ⩽ Cr(∣F ∣∞∥G∥r + ∣G∣∞∥F ∥r), F,G ∈Hr, r ∈ N, (A.3)

see [17, Proposition 3.7] (this relation is known as Moser’s estimate). Finally, since

for ∣β∣ ≤m we have ∣∂βxv∣2m/β∣ ≤ C ∣v∣
1−∣β∣/m
∞ ∥v∥

∣β∣/m
m (see relation (3.17) in [17]), then

∣⟪∣v∣2v, v⟫m∣ ≤ Cm∥v∥2
m∣v∣2∞, ∣⟪∣v∣2v, v⟫m∣ ≤ C ′

m∥v∥
2m
m+1

m+1∣v∣
2m+4
m+1∞ . (A.4)

Appendix B. Proof of Theorem 8

Applying Ito’s formula to a solution v(τ) of eq. (2.1) we get a slow time version
of the relation (5.1):

∥v(τ)∥2
m = ∥v0∥

2
m + 2∫

τ

0
( − ∥v∥2

m+1 − ν
−1

⟪i∣v∣2v, v⟫m)ds + 2Bmτ + 2M(τ), (B.1)

where M(τ) = ∫
τ

0 ∑d bd∣d∣
2m⟨vd(s), dβd(s)⟩. Since in view of (A.4)

E∣⟪∣v∣2v, v⟫m∣ ≤ Cm(E∥v∥2
m+1)

m
m+1E(∣v∣2m+4

∞ )
1

m+1 ,

then denoting E∥v(τ)∥2
r =∶ gr(τ), r ∈ N ∪ {0}, taking the expectation of (B.1),

differentiating the result and using (2.3), we get that

d

dτ
gm ≤ −2gm+1 +Cmν

−1g
m
m+1

m+1 + 2Bm ≤ −2gm+1(1 −C ′
mν

−1g
− 1
m

m + 2Bm), (B.2)

since gm ≤ g
1/(m+1)
0 g

m/(m+1)
m+1 ≤ Cmg

m/(m+1)
m+1 . We see that if gm ≥ (2ν−1C ′

m)m, then
the r.h.s. of (B.2) is

≤ −gm+1 + 2Bm ≤ −C−1
m g(m+1)/m

m + 2Bm ≤ −C̄mν
−m−1

+ 2Bm, (B.3)

which is negative if ν ≪ 1. So if

gm(τ) < (2ν−1C ′
m)

m (B.4)

at τ = 0, then (B.4) holds for all τ ≥ 0 and (2.4) follows. If gm(0) violates (B.4),
then in view of (B.2) and (B.3), for τ ≥ 0, while (B.4) is false, we have that

d

dτ
gm ≤ −Cmg

(m+1)/m
m + 2Bm,

which again implies (2.4).Besides, in view of (B.2),

d

dτ
gm ≤ −gm +Cm(ν, ∣v0∣∞,Bm∗ ,Bm).

This relation immediately implies (2.5).

Now let us return to eq. (B.1). Using Doob’s inequality and (2.4) we find that

E( sup
0≤τ≤T

∣M(τ)∣2) ≤ C <∞.

Next, applying (A.4) and Young’s inequality we get

∫

τ

0
( − ∥v∥2

m+1 − ν
−1

⟪i∣v∣2v, v⟫m)ds ≤ Cm ∫
τ

0
∣v(s)∣2m+3

∞ ds, ∀ 0 ≤ τ ≤ T.
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Finally, using in (B.1) the last two displayed formulas jointly with (2.3) we obtain
(2.6).

Acknowledgment

GH is supported by NSFC (Significant project No.11790273) in China and SK
thanks the Russian Science Foundation for support through the grant 18-11-00032.

References

[1] M. Bartuccelli, J. Gibbon, and M. Oliver. Length scales in solutions of the complex Ginzburg-

Landau equation. Physica D, 89:267–286, 1996.
[2] A. Biryuk. Lower bounds for derivatives of solutions for nonlinear Schrödinger equations.

Proceedings A of the Royal Society of Edinburgh, 139:237–251, 2009.

[3] T. Bohr, M. Jensen, G. Paladin, and A. Vulpiani. Dynamical Systems Approach to Turbu-
lence. Cambridge University Press, 1998.

[4] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Transfer of energy to high

frequencies in the cubic defocusing nonlinear Schrödinger equation. Inv. Math., 181:39–113,
2010.

[5] U. Frisch. Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press, Cam-

bridge, 1995.
[6] G. Huang and S. Kuksin. On the energy transfer to high frequencies in damped/driven non-

linear Schrödinger equation (extended version). arXiv 2006.11518,, 2020.
[7] N. V. Krylov. Controlled Diffusion Processes. Springer, 1980.

[8] S. Kuksin. A stochastic nonlinear Schrödinger equation. I. A priori estimates. Tr. Mat. Inst.

Steklov, 225:232–256, 1999.
[9] S. Kuksin. Spectral properties of solutions for nonlinear PDEs in the turbulent regime. GAFA,

9:141–184, 1999.

[10] S. Kuksin and V. Nersesyan. Stochastic CGL equations without linear dispersion in any space
dimension. Stoch PDE: Anal. Comp., 1(3):389–423, 2013.

[11] S. Kuksin and A. Shirikyan. Mathematics of Two-Dimensional Turbulence. Cambridge Uni-

versity Press, 2012.
[12] S. B. Kuksin and A. Shirikyan. Randomly forced CGL equation: stationary measures and

the inviscid limit. J. Phys. A: Math. Gen., 37:1–18, 2004.

[13] C.D. Levermore and M. Oliver. The complex Ginzburg-Landau equation as a model problem.
Lectures in Applied Math., 31:141–189, 1996.

[14] D. Revuz and M. Yor. Continuous martingales and Brownian Motion. Springer, 2005.
[15] T. Runst and W. Sickel. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Non-

linear Partial Differential Equations. Walter de Gruyter, Berlin and New York, 2011.
[16] A. Shirikyan. Local times for solutions of the complex Ginzburg–Landau equation and the

inviscid limit. J. Math. Anal. Appl., 384:130–137, 2011.

[17] M. E. Taylor. Partial Differential Equations III. Applied Mathematical Sciences. Springer,

2011.

Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
E-mail address: huangguan@tsinghua.edu.cn
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