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Abstract

Nowadays, the proton exchange membrane electrolyzer (PEMEL) is a promising and attractive
technology when coupling with renewable energy sources (RES). Indeed, PEMEL can respond quickly
to the dynamic operations of RES. Given that PEMEL must be supplied with a low DC voltage, DC-
DC converters are mandatory. In this work, a stacked interleaved buck DC-DC converter is used. In
this paper, the tuning of proportional, integral and derivative (PID) controllers, which are often used
to enhance electrolyzer performances (efficient and reliable operation), is based on the dynamic behav-
ior of the PEMEL. Before designing the PID controller, a model of the PEMEL is proposed based on
input-output measured data, and this model is combined with the converter state-space description.
Then, the obtained global model is used to tune two PID controller configurations: the first one to
control the current and the second one to control the voltage of the PEMEL. Experimental tests are
carried out to validate the effectiveness of the designed control laws.

Keywords PEM water electrolysis; stacked interleaved buck DC-DC converter; modeling; PID con-
troller.

1 Introduction

Increasing requirements to reduce pollutant emissions and excessive natural energy sources consumption
have inspired innovation in the field of clean energy sources. Among clean energy sources, fuel cells are
regarded as one of the most promising technologies, due to their reliability, compactness, and efficiency [1].
A fuel cell is an electrochemical device that generates electricity from hydrogen and oxygen. Hydrogen
can be provided from water electrolysis, which is considered the cleanest production system especially
when the electrolysis units are supplied by renewable energy sources (RES) [2]. The produced hydrogen
can be combined with power generation equipment including fuel cells and can also be used for a variety
of applications, including industrial processes, vehicle fueling, and injection into natural gas pipelines
[3, 4].

Different electrolysis technologies are used to produce hydrogen and are distinguished by their elec-
trolytes and the charge carrier: alkaline electrolyzer, proton exchange membrane electrolyzer (PEMEL),
and solid oxide electrolyzer [5, 6, 7]. Among these technologies, alkaline electrolysis is at its mature stage,
however, several enhancements such as working pressure and current density still should be made [8].
The PEMEL is in the pre-commercial stage for laboratory research purposes and small-scale applications
[9]. For this technology, researches are mainly focused on reducing the cost of catalysts and stack com-
ponents, and on its integration with RES [9, 10]. Solid oxide electrolysis technology attracted a great
deal of interest in the 1980s, but it is still under development and not yet commercialized [11]. Current
research activities are focused on the development of new materials with good high-temperature stability.
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Comparative studies presenting the main features and the advantages and disadvantages of each
technology have been realized in [6, 7, 12]. These studies show that PEMELs present numerous advantages
over alkaline electrolysis technology, such as compactness, relatively simple system design, fast system
response and ability to operate in safety at higher current densities. Therefore, PEMEL technology offers
an interesting option to be safely integrated into a hydrogen-based production energy network and is
considered in this work.

When considering an electrolyzer integrated with a hydrogen production system based on RES, it
must be connected with a power conditioning system. Usually, a DC-DC converter is required to couple
the PEMEL to the RES. Given that the PEMEL requires a low rated voltage (roughly equal to 8 V [13])
to maximize the production of hydrogen from water electrolysis, DC-DC buck converters are commonly
used for this purpose [14, 15, 16]. However, depending on the electrical grid and the feature of the
PEMEL, different DC-DC converter topologies can be employed [13, 17].

Recently, several DC-DC converter topologies have been proposed for PEMEL applications and re-
cent research works have been reported in the literature regarding the analysis of their advantages and
drawbacks [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. In these applications, DC-DC converters must
respond to several challenging issues other than output current ripples, especially in terms of voltage
ratio, cost, energy efficiency and reliability in case of power switch failures. A detailed literature review
that has been carried out in [17] shows that the classic buck converter topology does not meet several
requirements, especially in terms of reliability (one single switch fault), efficiency and voltage ratio. Most
articles dealing with DC-DC converters and their controls for electrolyzer applications include only sim-
ulation results [14, 15, 16, 29]. Therefore, new contributions including experiments with electrolyzers are
required to assess the performance of developed DC-DC converters and their control.

Starting from this comparison study, interleaved DC-DC converter topologies have gained growing
interest from researchers and industrials due to their benefits, particularly in terms of energy efficiency
optimization, current ripple reduction, and availability in case of failures [30, 31]. In [29], a sliding mode
controller has been developed for an interleaved buck converter supplying a PEMEL, but only simulation
results are presented. By comparison, in [32], the authors have developed a proportional and integral
(PI) controller to regulate the stack voltage of a PEMEL coupled with a three-level interleaved buck
converter. Experimental results are presented to validate the proposed control strategy.

Since the current ripple reduction is one of the most important features requested for PEMEL, a
stacked interleaved DC-DC buck converter (SIBC) has been considered for this work. Previous works
employing the SIBC converter for PEMEL applications have been developed in the literature. In [33], the
authors have developed a gain scheduling PI controller combined with a feedforward action to regulate
the current of the PEMEL. The current to regulate has been chosen to optimize the efficiency of the
whole SIBC-PEMEL. By comparison, in [34], the authors have developed a PI controller combined with
a feedforward action to control the stack voltage of the PEMEL. The stack voltage to regulate has been
chosen to maximize the hydrogen flow rate. In both works, experiments have been performed to confirm
the effectiveness of the control.

The main objective of this work is to design industrial control laws for PEMEL. Since proportional,
integral and derivative (PID) controllers are the most used in industrial applications, this type of com-
pensator has been considered. For control purposes, modeling of the PEMEL is needed. So a dynamic
model of the PEMEL is determined by using a least-square approach with input-output measured data
(current-voltage). This modeling approach differs from that introduced in [35] where the parameters of
the dynamic model are determined by a static and dynamic characterization. The obtained discrete-time
model is transformed into a continuous one. By employing the state-space averaging approach given
in [36, 37], a state-space model of the overall PEMEL-SIBC is determined and used to design the PID
control laws. Two cases have been considered: the controlled output is either the current or the voltage
of the PEMEL.

The outline of this paper is the following. After presenting motivations to carry out this work,
Section 2 deeply investigates the PEMEL modeling and particular attention is given to PEMEL dynamic
behavior. Section 3 is dedicated to the determination of the state-space average model of the overall
PEMEL-SIBC. The design of the PID controllers is described in Section 4. Finally, the effectiveness of
the designed control laws is validated on an experimental test bench in Section 5.
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2 PEM electrolyzer modeling

PEMEL is considered as a load and an accurate model must be taken into consideration to develop
efficient controllers. Indeed, the modeling of the load may have an impact on the design and tuning of the
controller. Besides, modeling is mandatory to test the effectiveness and performance of the controller in
simulations including the DC-DC converter connected to a PEMEL model. As a result, simulations results
allow providing crucial information about the dynamic performance of the electrolyzer experimentally,
since an accurate model has been taken into consideration to replicate its operation.

In the literature, different models of PEMEL have been developed. In [14, 15, 16, 18, 19, 20, 32, 38, 39],
the electrolyzer can be modeled as a simple resistor; whereas in [40, 41, 42, 43], it is modeled by an
equivalent circuit composed of a resistance series connected to a voltage generator representing the
reversible voltage. In the major part of these papers and articles, too few information is provided
regarding the determination of the parameters of the model. Static models are useful when the PEMEL
operates in static conditions, but they are not suitable when the PEMEL has to operate under dynamic
operations (i.e. when the PEMEL is coupled with RES).

Besides, dynamic modeling has been introduced in other related works [44, 45, 46], In [44], the authors
have introduced a dynamic model inspired by previous works developed for fuel cells. Experiments have
been performed to show the dynamics of a single-cell PEMEL but the authors have not assessed the
parameters of the equivalent circuit from experimental data. In comparison, in [45], the same model is
reported based on [44]. However, a static model is employed to be connected with an interleaved DC-DC
buck converter for control purposes. Then, in [46], this model is used for an alkaline electrolyzer to
analyze the consequences of rectifiers on the specific energy consumption and gas quality during dynamic
operation. Finally, in [35], a dynamic model has been introduced from experimental tests and knowledge
on fuel cell modeling. The parameters of the model have been evaluated based on a static and dynamic
characterization by using a sample of data for a specific current range.

The dynamic operations of the electrolyzer have an impact on the dynamic behavior of the whole
converter-electrolyzer. For this reason, it has been decided to investigate the dynamic operation of the
electrolyzer. The objective is therefore to develop a dynamic model of the electrolyzer and to determine
the parameters of the model. The retained model is a transfer function with the measured current (called
ie`) as input and the measured stack voltage (called ve`) as output. In addition, it is useful to have a
dynamic model of the electrolyzer during the synthesis of a control law because it is necessary not only
to control the converter but also the whole converter-electrolyzer. Then, the design a PID controller for
the electrolyzer is based on three steps as follows:

1) The PEMEL without the SIBC is modeled by a transfer function by using a black box approach
based on current and voltage measurements, without using physical laws. In Section 2.1, the
measured data of the PEMEL are given. To obtain a continuous-time model from the sampled
measurements, a procedure into three steps is detailed in Section 2.2.

a) A least-square method is used to estimate the parameters of a discrete-time model using the
sampled measured data.

b) The bilinear transform is applied on the discrete-time model to obtain a continuous-time one.
c) Since the order of the continuous-time transfer function can be unnecessarily high, a balanced

truncation is then applied to the obtained transfer function with a low order.

2) Using the well-known state-space averaging techniques given in [36, 37], the state-space realization
of the whole SIBC-PEMEL is provided in Section 3.

3) By using the SIBC-PEMEL model obtained in the previous step, two PID controllers are designed
in Section 4 and tested on the experimental bench in closed loop in Section 5.

2.1 Investigations of the dynamic operations

To analyze the dynamic operation of the studied PEMEL NMH2 1000 from Heliocentris Company in
which the features are provided in Table 1, a fit experimental test rig has been realized at the GREEN
laboratory as shown in Figure 1. The realized experimental test rig is described in the caption of Figure
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1. The current ie` and voltage ve` of the PEMEL are acquired respectively by a current clamp PAC 12
from Chauvin Arnoux Company and by a voltage differential probe from Chauvin Arnoux Company.
Since it is a commercial electrolyzer including power electronics for education purposes, only the stack
of the electrolyzer is employed in our work.

¬


®

¯

°

±

²

Figure 1: Experimental test bench of the PEM electrolyzer: ¬ → controlled DC power supply,  →
virtual control panel with a laptop, ® → pressurized pure water tank, ¯ → 4-channel oscilloscope, ° →
PEMEL, ± → a current clamp, ² → voltage probe.

Table 1: Features of the PEM electrolyzer.
Parameters Values Units

Rated electrical power 400 W

Stack operating voltage 8 V

Stack current range 0-50 A

H2 output pressure 10.5 bar

Cells number, N 3 −
Active area section 50 cm2

Rated hydrogen flow rate at slpm (standard liter per minute)
STP (Standard Temperature 1 P = 1 bar

and Pressure, 20◦C and 1 bar) T = 15◦C

A continuous-time transfer function Fh(s) is considered as model in the following general form for the
PEMEL

Fh(s) =
Ve`(s)

Ie`(s)
=
bnrs

nr + bnr−1s
nr−1 + . . .+ b1s+ b0

snr + anr−1snr−1 + . . .+ a1s+ a0
(1)

where Ve`(s) and Ie`(s) are the Laplace transforms of ve`(t) and ie`(t), respectively.
The block diagram in Figure 2 allows to show the relationship between the experimental test bench

of the PEM electrolyzer in Figure 1 and Fh(s).
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controlled DC
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PEMEL
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ve`

water in

hydrogen out

Fh(s)
ie` ve`

Block diagram of Figure 1 Transfer function of the PEMEL

Figure 2: Relationship between the experimental test bench of the PEM electrolyzer in Figure 1 and the
transfer function Fh(s) in (1).

To determine the coefficients of the continuous-time model Fh(s) given in (1), a step current ie`
is applied to the PEMEL shown in Figure 1 and a voltage response ve` is obtained. The sampled
measurements of the current ie` and the voltage ve` are given in Figure 3.
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Figure 3: PEM electrolyzer: input current ie` and output voltage ve`.

The sample time interval using to obtain Figure 3 is Ts = 0.01 s and the number of available samplings
is N = 651.

The step current is applied at t = 0 s. Before applying the step current, the value of the stack voltage
ve` is equal to the sum of the reversible voltage (i.e. open-circuit voltage), and activation and ohmic
overvoltage as well. As a result of the step current, an instantaneous increase of the stack voltage, and
then a slow increase can be noticed before reaching a steady-state operation at t = 3 s. The instantaneous
increase in stack voltage corresponds to the ohmic overvoltage since the electrolyte of the electrolyzer
can be modeled as a simple resistor and does not include any dynamics [35]. In comparison, the slow
increase in stack voltage represents the chemical reactions both at the anode and the cathode [35].

In this experiment, this final rise lasts 3 s and its length can vary (shorter or longer) according to the
operating conditions (initial stack voltage, step current). Indeed, as highlighted in [35], the duration of
the final rise before reaching the steady-state operation due to the reaction kinetics into the anode and
cathode lengthens especially as the input energy increases. However, when the stack voltage gets closer
to the limit operating voltage (for this PEMEL, the limit voltage is equal to 8 V, corresponding to the
rated stack voltage), the dynamics are faster (as reported in Figure 3). In this work, this set of data is
used to accurately determine the model and its parameters. Since the parameters may change according
to the operating conditions, the same operating conditions (as reported in Figure 3) are kept to validate
the effectiveness of the proposed controller by simulations and experiments. To summarize, this slow rise
represents the activation overvoltage both at the anode and cathode.
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The next subsection is focused on the determination of the parameters of this model. Then, this
model is validated by comparing it with the experiments shown in Figure 3. Finally, the obtained results
are discussed based on previous research works on PEMEL modeling in Subsection 2.3.

2.2 Determination of a transfer function to model the dynamic behavior of the PEM
electrolyzer

To obtain the coefficients of the transfer function given in (1) using the experimental response of the
PEMEL given in Figure 3, we proceed in three steps.

1) A least-square approach is used to find a discrete-time transfer function F h(z) of order n given by

F h(z) =
bnz

n + bn−1z
n−1 + . . .+ b1z + b0

zn + an−1zn−1 + . . .+ a1z + a0
(2)

such that the output obtained by injecting the measured current ie`k in the filter F h(z) approximates
the measured voltage ve`k at best, where k is the number of the sample at sample time kTs.

2) A continuous-time model F̃h(s) is computed by using the bilinear transform as follows

F̃h(s) = F h(z)
∣∣
s= 2

Ts

z−1
z+1

. (3)

3) The transfer function Fh(s) of order nr < n, defined in (1), is obtained by means of a balanced
truncation proposed by Moore in [47] on the system F̃h(s).

1st step: obtention of a discrete-time model F h(z).

Let Nh(z) and Dh(z) be the numerator and the denominator of F h(z) in (2). Let εk be the modeling
error made when the model F h(z), defined in (2), is used. Then, the relationship between the measured
values of ie` and ve` shown in Figure 3 can be written as follows

Ve`(z) =
Nh(z)

Dh(z)
Ie`(z) +

1

Dh(z)
E(z) (4)

where Ve`(z), Ie`(z) and E(z) are the Z transforms of discrete-time signals ve`k , ie`k and εk, respectively
(k is the sample number at the time sample kTs).

Rewriting relation (4) in the time domain gives the following recurrence equation

ve`k =
n∑

j=0

bjie`k−n+j
−

n−1∑
j=0

ajve`k−n+j
+ εk. (5)

With k = n, . . . ,N , equation (5) can be written in the following matrix form

YN = ΦN θ + EN , (6)

where

YN =



ve`n
ve`n+1

ve`n+2

...
ve`N−1

ve`N


, θ =



bn
bn−1

...

b1
b0
an−1

an−2
...
a1

a0


, EN =



εn
εn+1

εn+2
...

εN−1

εN


,
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ΦN =


ie`n ie`n−1

... ie`1 ie`0 −ve`n−1
−ve`n−2

... −ve`1 −ve`0
ie`n+1

ie`n ... ie`2 ie`1 −ve`n −ve`n−1
... −ve`2 −ve`1

ie`n+2
ie`n+1

... ie`3 ie`2 −ve`n+1
−ve`n ... −ve`3 −ve`2

...
...

...
...

...
...

...
...

...
...

ie`N−1
ie`N−2

... ie`N−n
ie`N−n−1

−ve`N−2
−ve`N−1

... −ve`N−n
−ve`N−n−1

ie`N ie`N−1
... ie`N−n+1

ie`N−n
−ve`N−1

−ve`N−2
... −ve`N−n+1

−ve`N−n

 .

The least-squares method consists of estimating θ by minimizing the square of the norm of EN given
by

‖EN ‖2 = ETNEN = (YN − ΦN θ)
T (YN − ΦN θ)

= Y T
N YN − Y T

NΦN θ − θTΦT
NYN + θTΦT

NΦN θ. (7)

‖EN ‖2 is minimal if

0 =
d‖EN ‖2

dθ
= 2ΦT

NΦN θ − 2ΦT
NYN , (8)

and the optimal value of θ is θ̂ given by

θ̂ =
(
ΦT
NΦN

)−1
ΦT
NYN . (9)

The above procedure is applied to estimate the coefficient of the discrete-time transfer function F h(z)
in (2) with orders n = 1, n = 2, n = 5 and n = 8. The obtained results are given in Table 2.

Table 2: Estimation of the coefficients of F h(z).
n 1 2 5 8

b8 × × × 0.056665

b7 × × × −0.0070842

b6 × × × 0.00076362

b5 × × 0.056568 −0.013993

b4 × × −0.010708 −0.0021986

b3 × × −0.0022945 −0.0092568

b2 × 0.055779 −0.018961 −0.0078828

b1 0.055152 −0.026472 −0.0055832 −0.0055324

b0 −0.050386 −0.025226 −0.014342 −0.0053431

a7 × × × −0.17929

a6 × × × −0.068993

a5 × × × −0.20917

a4 × × −0.24362 −0.046007

a3 × × −0.11944 −0.13145

a2 × × −0.28459 −0.14177

a1 × −0.5222 −0.099561 −0.076204

a0 −0.95481 −0.4396 −0.20984 −0.090977

‖EN ‖ 1.5608 1.3966 1.2316 1.2012

The measured voltage ve` and the responses of discrete-time system F h(z) to the measured current
ie` with orders n = 1, n = 2, n = 5 and n = 8 are plotted in Figure 4. Unlike Figure 3, a negative offset
has been introduced in the measured voltage ve` in Figure 4 so that ve` is initialized to zero. In the same
way, a negative offset has been introduced in the measured current ie` in Figure 4 so that the responses
of discrete-time system F h(z) are initialized to zero.
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Figure 4: PEM electrolyzer models responses to the measured current ie`.

It can be seen in Table 2 that ‖EN ‖ decreases when the order n increases. This is confirmed in Figure
4, the responses are all the closer to the curve of ve` as the order n increases. The steady-state behavior
of ve` is well captured by all orders although it is improved when the order n increases. The orders n = 1
and n = 2 fail to correctly reproduce the transient behavior of ve`. This is not the case for orders n = 5
and n = 8. However, the improvement obtained with order n = 8 compared to n = 5 is very small,
almost negligible. Therefore, it can be concluded that it is useless to test orders n > 8 and the order
n = 8 is chosen for the sequel of the paper, i.e. the discrete-time transfer function F h(z) defined in (2)
is given by (see column where n = 8 in Table 2)

F h(z) =
b8z

n + b7z
7 + b6z

6 + b5z
5 + b4z

4 + b3z
3 + b2z

2 + b1z + b0
z8 + a7z7 + a6z6 + a5z5 + a4z4 + a3z3 + a2z2 + a1z + a0

. (10)

2nd step: obtention of a continuous-time model F̃h(s) from F h(z).

A continuous-time transfer function F̃h(s) can be obtained from the discrete-time transfer function
F h(z) given in (10) by using the bilinear transform as follows

F̃h(s) = F h(z)
∣∣
s= 2

Ts

z−1
z+1

=

 0.056665z8 − 0.0070842z7 + 0.00076362z6

−0.013993z5 − 0.0021986z4 − 0.0092568z3

−0.0078828z2 − 0.0055324z − 0.0053431


 z8 − 0.17929z7 − 0.068993z6

−0.20917z5 − 0.046007z4 − 0.13145z3

−0.14177z2 − 0.076204z − 0.090977



∣∣∣∣∣∣∣∣∣∣∣∣∣
s= 2

Ts

z−1
z+1

=

 0.062377s8 + 88.023s7 + 49583s6

2.1988×107s5 + 4.6787×109s4 + 8.8295×1011s3

+6.599×1013s2 + 5.2483×1015s+ 1.2587×1016


 s8 + 1568.9s7 + 8.8721×105s6

+3.9591×108s5 + 8.3902×1010s4 + 1.5336×1013s3

+1.1226×1015s2 + 8.4538×1016s+ 1.1511×1017

 (11)

with sample interval Ts = 0.01. The transfer function in (11) can be written in state-space form as
F̃h(s) = C̃h(sI8 − Ãh)−1B̃h + D̃h where D̃h = 0.062377 Ω.
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3rd step: obtention of a reduced-order continuous-time model Fh(s).

The system F̃h(s) given in (11) can be approximated by a transfer function Fh(s) of order nr less
than n = 8 by means of a balanced truncation proposed by Moore in [47]. The Hankel singular values of
any state-space realization of F̃h(s) given in (11) are

h1 = 0.024217, h2 = 0.0055604, h3 = 0.0054879, h4 = 0.0012106,

h5 = 0.00070002, h6 = 0.00050868, h7 = 0.00042657, h8 = 0.00020877.

For the balanced state-space realization of F̃h(s), these Hankel singular values measure the “influence”
of the input ie` on the states and of the states on the output ve`. So an approximated state-space
realization of order nr < n for the system F̃h(s) is obtained by deleting the last n − nr last states of
the balanced state-space realization of F̃h(s), and the error made can be evaluated by the corresponding
deleted Hankel singular values [47].

The Hankel singular values of F̃h(s) can be divided into the following three sets: S1 = {h1}, S2 =
{h2, h3} and S3 = {h4, h5, h6, h7, h8}. The Hankel singular values in S3 are very small compared to those
in S2. We can therefore hope to obtain a reduced order model at least equal to 3. The Hankel singular
values in S2 are close. it is therefore necessary to test the reduced orders nr = 2 and nr = 3. The Hankel
singular in S2 are large compared to that in S1. It is therefore interesting to test the reduced order
nr = 1.

For the reduced order nr = 1, 2, 3, we obtain the following approximations for Fh(s)

Fh1(s) =
0.062377s+ 0.13769

s+ 1.2426

= Fh1a(s) + D̃h =
0.060183

s+ 1.2426
+ 0.062377, (12a)

Fh2(s) =
0.06238s2 + 0.138s+ 0.0002637

s2 + 1.247s+ 0.002163

= Fh2a(s) + D̃h =
0.060212

s+ 1.2453
+

1.9457×10−5

s+ 0.001737
+ 0.062377, (12b)

Fh3(s) =
0.06238s3 + 45.07s2 + 5900s+ 1.225×104

s3 + 875.38s2 + 92736s+ 1.1043×105

= Fh3a(s) + D̃h =
−11.567

s+ 752.31
+

1.9758

s+ 121.87
+

0.057506

s+ 1.2045
+ 0.062377. (12c)

In Figure 5, the following curves are plotted: the measured voltage ve`, the response of discrete-time
system F h(z) to the measured current ie` with order n = 8, and the responses of continuous-time system
Fh1(s), Fh2(s) and Fh3(s) to a step of amplitude 24.883 A, where 24.883 is the magnitude of the step
current ıe` in Figure 3. Unlike Figure 3, a negative offset has been introduced in the measured voltage
ve` in Figure 4 so that ve` is initialized to zero. In the same way, a negative offset has been introduced
in the measured current ie` in Figure 5 so that the response of discrete-time system F h(z) is initialized
to zero.
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Figure 5: Step responses of PEM electrolyzer and developed models.

In Figure 5, the step responses of Fh1(s), Fh2(s) and Fh3(s) are almost identical and match well with
the measured ve` and the response of F h(z). This observation is confirmed by the values of the transfer
functions in (12):

• we have Fh1a(s) ≈ Fh2a(s) because of the value 1.9457×10−5 in the second term in Fh2a(s),

• the main time constants in Fh1a(s), Fh2a(s) and Fh3a(s) are close: T1 =
1

1.2426
= 0.80479 s,

T21 =
1

1.2426
= 0.80304 s and T31 =

1

1.2045
= 0.83023 s (the difference between T1 and T21 is due

to the rounding in the writing of the number 1.2426 in (12a) and (12b)),

• the time contants T32 =
1

121.87
= 0.0082055 s and T33 =

1

752.31
= 0.0013292 s are much faster

than T31 . Their effect can therefore be overlooked in the step response of Fh3(s).

With the analysis made above, the transfer function of 1st order, Fh1(s) given in (12a) is retained as
a model for the PEMEL, and we set Fh(s) = Fh1(s) in the sequel of the paper.

Therefore, the 1st order model of the PEMEL with the current ie` as input and the voltage ve` as
output can be described by the RC circuit given in Figure 6,

ie`

Ra

Ca

Rb

−
+Vintve`

Figure 6: Model of the PEM electrolyzer.

and corresponds to the following state-space model

ẋh = −RaCaxh +Raie` (13a)

ve` = xh +Rbie` (13b)

which leads to the transfer function Fh(s) given by (see (12a))

Fh(s) =
Ve`(s)

Ie`(s)
=

Ra

RaCas+ 1
+Rb

10



=
RaRbCas+Ra +Rb

RaCas+ 1
=
Rbs+

Ra +Rb

RaCa

s+
1

RaCa

=
0.0502s+ 0.11081

0.80479s+ 1
=

0.062377s+ 0.13769

s+ 1.2426
, (14)

with Ra = 0.048434 Ω, Rb = 0.062377 Ω and Ca = 16.616 F. The steady-state gain is kh = Fh(0) =
0.11081 Ω.

2.3 Discussion on the obtained PEM electrolyzer model

The resistors Ra and Rb, and the capacitor Ca in model (14) do not have a “physical sense”, but allow
to better apprehend the complexity of the slow dynamics of the PEMEL. So, equation (14) can be seen
as a black-box model. Indeed, to control the PEMEL, a “complete physical model” is not needed: it is
enough to have a model that captures both dynamic and static behaviors like model (13).

In the literature, few works have been reported on the dynamic modeling of PEMEL. In [44, 45], the
authors have proposed an equivalent electrical circuit to model the dynamics of the PEMEL. However,
this modeling is based on previous works focused on modeling of PEM fuel cells without any validation
on the real dynamic behavior of PEMEL.

Recently, a first investigation in [35] has been carried out on the analysis of the real dynamics of
PEMEL. By studying these dynamics, the authors in [35] have shown that the behavior of PEMEL can
be modeled as an equivalent electrical circuit composed by the following part:

• an electromotive force modeling the reversible voltage,
• a resistor modeling the ohmic overvoltage and membrane losses,
• a RC branch modeling the dynamics at the anode, the Gibbs energy, and losses,
• a RC branch modeling the dynamics at the cathode and losses.

It has been emphasized in [35] that the reaction kinetics at the anode is much slower than the reaction
kinetics at the cathode. For this reason, the activation phenomena in PEMEL are mainly dominated
by the anode reaction. Therefore, this analysis is in agreement with the model in (14) which exhibits a
dominant time constant in the behavior of the PEMEL.

Nevertheless, notice that the steady-state behavior has not been studied in [35].
Compared to the previous works reported in the literature (see Section 1), this work aims at designing

and comparing two controllers based either on the PEMEL current or voltage. These two variables are
strongly linked to the energy efficiency and hydrogen flow rate of the PEMEL. Indeed, the higher the
current, the higher the hydrogen flow rate; whereas the higher the stack voltage, the lower the energy
efficiency. These controllers are developed to keep up the current or voltage as its reference value whatever
the input voltage variations. The reference allows guaranteeing the required energy efficiency or hydrogen
flow rate. Besides, the dynamic response of the PEMEL must be taken into consideration while designing
the controller to avoid hazardous overshoot; which could damage the PEMEL.

3 Stacked interleaved DC-DC buck converter modeling

3.1 Presentation of the system

After presenting the developed PEMEL model and the method to determine its parameters, this section
is mainly focused on the modeling of the DC-DC converter connected to the PEMEL. In this work, it
has been decided to choose a SIBC as the interface between the DC grid and the PEMEL as shown in
Figure 7.
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−
+Vintve`
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Cp

Cs

R`s Ls is

R`p Lp ip

T4

T3

T2

T1

−
+Vi

PWM

u

Stacked interleaved

DC-DC buck converter

Model of PEM electrolyzer

Figure 7: Stacked interleaved DC-DC buck converter with pulse width modulation (PWM) and model
of PEM electrolyzer.

Indeed, for PEMEL applications, step-down voltage conversion is requested due to the high input DC
voltage and low output DC voltage. The SIBC as shown in Figure 7 is perfectly suitable to meet this issue.
Furthermore, SIBC is based on an interleaved structure by paralleling two basic buck converters increasing
its availability in case of power switch failures. Compared to a classic interleaved buck converter, the
SIBC includes an additional capacitor (i.e. Cs) located between the second (i.e. s) and first (i.e. p)
phases. This additional capacitor allows stopping the DC part of the current is . Thus, only the AC
part of the current is flows through the second phase. Besides, since a couple of switches (i.e. T1 and
T4, T2 and T3) is controlled in an opposite way (see Figures 7 and 8), the output current ripple (i.e. ie`)
can be canceled whatever the duty cycle value. To summarize, the couple of switches (i.e. T2 and T3)
is controlled with a duty cycle equal to (1 −D), whereas the couple (i.e. T1 and T4) is controlled with
a duty cycle given by D, as shown in Figure 8, where Tc is the switching period of the SIBC. Based on
Figure 8, during the time period Tc(1 −D), the power switches T2 and T3 are closed (ON state); while
T1 and T4 are open (OFF state). In comparison, during the time period TcD, the power switches T2 and
T3 are open (OFF state); while T1 and T4 are closed (ON state).
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Figure 8: Switching diagram and current waveforms.

The following subsections introduce the state-space averaging modeling and the transfer function of
the system.

3.2 State-space averaging modeling and transfer function

Based on Figures 7 and 8, the system (including the SIBC and developed PEMEL model) has been
modeled by using the state-space averaging techniques to obtain the state-space model [36, 37]. The
modeling of the system in this section is different compared to the previous work developed with the
SIBC [48] since the proposed dynamic model of the PEMEL is taken into account. Therefore, there is an
additional state variable in the system. Thus, a new transfer function is obtained both to regulate the
PEMEL current or the voltage.

Based on the control theory for state-space averaging modeling [36, 37], the system is divided into two
subsystems: one fit during DTc, another one fit during (1−D)Tc. The analysis of these two subsystems
enables obtaining two sets of matrix A, B, and C (i.e. A1, A2, B1, B2, C1, C2). Then, the state-space
model can be obtained by averaging the two sets of matrix A, B, and C.

The proposed state-space models during either DTc (with index i = 1), or during (1 − D)Tc (with
index i = 2) are given by

ẋ = Aix+Biu (15a)

y = Cix (15b)

where xT =
[
ip is ve` vcs vca

]
is the state vector, the voltage u ∈ IR is the control input and

yT =
[
ie` ve`

]
are the measured outputs.

13



Applying Kirchhoff’s circuit laws in Figure 7 gives

A1 = A2 =



−R`p

Lp
0

−1

Lp
0 0

0
−R`s

Ls

−1

Ls

−1

Ls
0

1

Cp

1

Cp

−1

RbCp
0

1

RbCp

0
1

Cs
0 0 0

0 0
1

CaRb
0

−(Ra +Rb)

CaRaRb


, (16a)

B1 =



1

Lp

0
0
0
0

, B2 =


0
1

Ls
0
0
0

, C1 = C2 =

0 0
1

Rb
0
−1

Rb
0 0 1 0 0

, (16b)

and the average state-space model is given by

ẋ = Ax+Bu (17a)

y = Cx (17b)

where A = A1 = A2, B = (B1 −B2)Vi and C = C1 = C2.
This model can be simplified since we have R` = R`p = R`s and L = Lp = Ls in Figure 7, and we

obtain

A =



−R`

L
0

−1

L
0 0

0
−R`

L

−1

L

−1

L
0

1

Cp

1

Cp

−1

RbCp
0

1

RbCp

0
1

Cs
0 0 0

0 0
1

CaRb
0

−(Ra +Rb)

CaRaRb


, (18a)

B =



Vi
L
−Vi
L
0
0
0


, C =

0 0
1

Rb
0
−1

Rb
0 0 1 0 0

. (18b)

The transfer matrix associated to the state-space model (17)-(18) is given by

G(s) =

[
Gi(s)
Gv(s)

]
=


Vi(CaRas+ 1)

CaCpCsL2RaRb
Vi(CaRaRbs+Ra +Rb)

CaCpCsL2RaRb


s5 + c4s4 + c3s3 + c2s2 + c1s+ c0

, (19)

where Gi(s) and Gv(s) are the transfer functions from u to ie` and ve`, respectively, and

c4 =
CaCsL

2Ra + CpCsL
2Ra + CpCsL

2Rb + 2CaCpCsLRaRbR`

CaCpCsL2RaRb
, (20a)
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c3 =
CsL

2 + CaCpLRaRb + 2CaCsLRaRb + 2CaCsLRaR`

CaCpCsL2RaRb

+
2CpCsLRaR` + 2CpCsLRbR` + CaCpCsRaRbR

2
`

CaCpCsL2RaRb
, (20b)

c2 =
CaLRa + CpLRa + CpLRb + 2CsLRa + 2CsLRb + 2CsLR` + CaCsRaR

2
`

CaCpCsL2RaRb

+
CpCsRaR

2
` + CpCsRbR

2
` + CaCpRaRbR` + 2CaCsRaRbR`

CaCpCsL2RaRb
, (20c)

c1 =
L+ CsR

2
` + CaRaRb + CaRaR` + CpRaR` + CpRbR` + 2CsRaR` + 2CsRbR`

CaCpCsL2RaRb
, (20d)

c0 =
Ra +Rb +R`

CaCpCsL2RaRb
. (20e)

Notice that relation (19) gives Fh(s) =
Gv(s)

Gi(s)
, where Fh(s) is the transfer function in (14).

3.3 Numerical values of the model

The numerical values of the electrical components in Figure 7 are given in Table 3.

Table 3: Numerical values of the electrical components in Figure 7.
Electrical components Values Units

Vi 30 V

L = Lp = Ls 426×10−6 H

R` = R`p = R`s 0.06 Ω

Cp 0.0001 F

Cs 10×10−6 F

Ra 0.048434 Ω

Rb 0.062377 Ω

Ca 16.616 F

Using Table 3 and the matrices given in (18), the transfer matrix G(s) in (19) has the following
state-space realization

G(s) =

[
Gi(s)
Gv(s)

]
=

[
A B

C 0

]

=



−140.85 0 −2347.4 0 0 70423
0 −140.85 −2347.4 −2347.4 0 −70423

104 104 −1.6032×105 0 1.6032×105 0
0 105 0 0 0 0
0 0 0.9648 0 −2.2073 0

0 0 16.032 0 −16.032 0
0 0 1 0 0 0


. (21)

The poles (pi, i = 1, . . . , 5, for Gi(s) and Gv(s)), the zeros (zi for Gi(s) and zv Gv(s)) and the
steady-state gains (ki = Gi(0) and kv = Gv(0)) are

p1 = −143.22 + 15327j, p2 = −143.22− 15327j,

p3 = −1.7373, p4 = −287.06,

p5 = −1.6002 105

zi =
−1

RaCa
= −1.2425, zv =

−(Ra +Rb)

RaRbCa
= −2.2073,
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ki = Gi(0) =
Vi

Ra +Rb +R`
= 175.63 A, kv = Gv(0) =

Vi(Ra +Rb)

Ra +Rb +R`
= 19.462 V,

where j is the imaginary number satisfying j2 = −1.

We obtain
kv
ki

= kh = 0.11081 Ω (see (14)).

The damping factor ζ and the natural frequency ωn associated to the complex poles p1 and p2 are
ζ = 0.0093439 and ωn = 15328 rad/s, where (s− p1)(s− p2) = s2 + 2ζωn + ω2

n.

The real eigenvalues give the three following time constants: T1 =
−1

p3
= 0.5756 s, T2 =

−1

p4
=

0.0034836 s and T3 =
−1

p5
= 6.2491×10−6 s. A fourth time constant T4 =

1

ωn
= 6.5242×10−5 s is

associated to the complex poles p1 and p2.
The step responses of Gi(s) and Gv(s) are plotted in Figure 9.
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Figure 9: Step responses of Gi(s) (dashed line) and Gv(s) (solid line).

Since T1 � T2 � T4 > T3, it can be noted that the transient behaviour of the two step responses
depends almost exclusively on the time constant T1 with a settling time given by ts ≈ 3T1 = 1.7268 s.
The interleaved buck converter has influenced the dynamics of the step responses since the time constant
of the model of the PEMEL in Figure 6 is RaCa = 0.80479 s (see (14)) and is higher than T1.

4 PID control

4.1 Generalities on PID control

In this section, the model given in (19) is used to synthesize two PID controllers dedicated for the control
of the current ie` and the voltage ve`, respectively. In Section 5, these two PIDs are implemented on
the experimental test bench including the SIBC and the PEMEL shown in Figure 1 with the features
given in Table 1. The control structure is given in Figure 10, where the measurement is either y = ve` or
y = ie`.
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Figure 10: Control structure.

The PID controller in Figure 10 is given by the following transfer function

U(s) = Kp

(
1 +

1

Tis
+

Tds

τds+ 1

)
E(s) (22)

where Kp is the proportional gain, Ti > 0 is the integral time constant, Td > 0 is the derivative time

constant, and τd =
Td
N

is the filter time constant with N = 10. This type of corrector is used in this work

because PIDs are the most used correctors in industrial applications. For a survey on PID control, the
reader can see [49, 50, 51, 52].

The following table summarizes the effects of PID parameters Kp, Ti and Td settings on closed loop
system behavior.

Table 4: Effects of PID parameters on the step response.
actions rise time settling time overshoot steady-state error stability margin

Kp ↗ ↘ ↗ ↗ ↘ ↘
Kp

Ti
↗ ↘ ↗ ↗ vanish ↘

KpTd ↗ ↗ ↘ ↘ no effect ↗

As can be seen in Table 4, a PID controller is well adapted to control a PEMEL. For example, the
proportional gain Kp can decrease overshoot on the step response due to abrupt variations when consid-
ering a RES as power source. The integral action allows to track the reference in spite of variations of
operating conditions due weather changes. Rise and settling times can be adjusted with the proportional
gain Kp and the derivative time constant Td (two parameters Kp and Td are useful since their effects
on rise and settling times are antagonistic). In addition, the robustness of the closed loop behavior to
modeling error in the transfer function Fh(s) (see (1) and (14)), i.e. the stability margin, can be improved
by adjusting the derivative time constant Td.

The tuning of the PID parameters is made in the following three steps:

1) Based on the analysis of the transfer function of whole SIBC-PEMEL, (i.e. G(s) in (21)), two
design methods for PID tuning are chosen in Section 4.2.

2) The tuning of the PID controllers is made in Section 4.3.
3) Some remarks on the obtained stability margins are made in Section 4.4.

4.2 Model analysis for the choice of the PID controllers synthesis methods

As can be seen classical works on PID design [53, 54, 55] and in textbooks and report on PID control
[49, 50, 51, 52], many tuning approaches for PID parameters are based on the step response of the open
loop process to be controlled. This step response, also called process reaction curve in the literature,
should exhibit a horizontal tangent at the origin, this horizontal tangent at the origin being approximated
by a pure time delay in the literature. In addition, this step response should be monotonic with a positive
slope. The steps responses of Gi(s) and Gv(s) do not exhibit a horizontal tangent at the origin or a pure
time delay as shown in Figure 9. In addition, the step response of Gi(s) in Figure 9 presents a decreasing
behavior. Therefore, the PID tuning based on open loop step response models described in the literature
can not be used.
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In the sequel, two tuning approaches are retained in this work to determine the coefficients of the
PID controllers for the PEMEL:

• a step by step method initially presented by Prouvost in [56] and modified in [57],
• the phase margin method proposed by Åström and Hägglund [58].

Before applying the two above-mentioned methods, a frequency analysis of systems Gi(s) and Gv(s)
is made to help the tuning of the PID controllers. The Bode diagrams of Gi(s) and Gv(s) are plotted in
Figures 11 and 12.
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Figure 11: Magnitudes of Gi(s) (dashed line) and Gv(s) (solid line).
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Figure 12: Phases of Gi(s) (dashed line) and Gv(s) (solid line).

As can be seen in Figures 11 and 12, the frequency range [104 2×104] rad/s is very important:

i) Due to a very small damping factor (ζ = 0.0093439), the magnitudes of Gi(s) and Gv(s) have
a huge peak at ωp = 15325 rad/s (see Figure 11): |Gi(jωp)| = 244.9816 (i.e. 47.78267 dB) and
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|Gv(jωp)| = 15.2812 (i.e. 23.6831 dB). A bad adjustment of the PID parameters around this
frequency can generate oscillations in the step response in closed loop.
Notice that the derivative action gives high gain in high frequencies. Then, the derivative time

constant Td should be chosen such that
1

Td
> ωp to avoid an oscillatory behavior in closed loop.

ii) For Gi(s) and Gv(s), the ultimate frequency ωosc = 15316.55 rad/sec (i.e. arg(Gi(jωosc)) =
arg(Gv(jωosc)) = −180◦) is close to ωp. At ωosc, the phases of Gi(s) and Gv(s) have an inflec-
tion point with an almost vertical tangent (see Figure 12). This ultimate frequency is associated to
the ultimate period Tosc = 4.1022×10−4 s and the gain margin is computed at this frequency. In the
sequel, the gain margins, which are also called critical gains, are denoted Kosci for Gi(s) and Koscv

for Gv(s). In Figure 11, we have |Gi(jωosc)| = 244.57 (i.e. 47.768 dB) and |Gv(jωosc)| = 15.256

(i.e. 23.669 dB). So, the gain margins for Gi(s) and Gv(s) are Kosci =
1

|Gi(jωosc)|
= 0.0040888 and

Koscv =
1

|Gv(jωosc)|
= 0.06555.

The above discussion has two consequences for the improvement of the gain margin:

• The proportional gain Kp of the PID controllers should be less than Kosci for the current
control and Koscv for the voltage control.

• Since the derivative action gives high gain in high frequencies, the derivative time constant Td

should be chosen such that
1

Td
> ωosc.

This frequency analysis is important since the problems due to the frequency range [104 2×104] rad/s
do not appear in the step responses in Figure 9. Indeed, this frequency range is associated with the time

constant T4 =
1

ωn
= 6.5242×10−5 s which is very small compared to the time constants T1 =

−1

p3
= 0.5756

s and T2 =
−1

p4
= 0.0034836 s (see the paragraph below Figure 9).

4.3 PID tuning

This section is devoted to the tuning of the PID parameters. For each of the two tuning methods retained
in Section 4.2, we proceed as follows. First, the PID design methods are presented in Section 4.3.1, and,
second, it will be applied on the transfer functions Gi(s) and Gv(s) leaning on the above frequency
analysis in Section 4.3.2.

4.3.1 Presentation of the retained PID tunings

4.3.1.1 Step by step method [56, 57]
The step by step method consists of successively adjusting the PID parameters in closed loop. This

adjustment is based on the effects of PID parameters on the step response summarized in Table 4.
The adjustment of the PID parameters is carried out in the following order.

1) Tuning of the proportional gain Kp. Only the proportional part of the PID (22) is considered at

this step. With the help of the 1st row of Table 4, a value of Kp can be obtained such that the
overshoot is not higher than 25 % with a rise time “sufficiently” low.

2) Tuning of the derivative time constant Td. Now, the proportional and derivative parts of the PID

(22) are taken into account with Kp obtained in the previous step. Using the 3rd row of Table 4, a
value of Td can be determined such that the rise time and the overshoot are both decreased.

3) Tuning of the integral time constant Ti. The proportional gain obtained in the first step is increased
by 10 %, i.e. Kp is replaced by 1.1Kp. Initially, the integral time constant Ti is chosen “sufficiently
large” to exhibit no overshoot in the closed loop step response despite a settling time which can be
“very” high. If it is not the case, the value of Ti should be increased. Then, as it is mentioned in
the 2nd row of Table 4, Ti is progressively decreased to obtain a settling time which is satisfactory
without overshoot or with low overshoot.
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4.3.1.2 Phase margin method of Åström and Hägglund [58]
This method does not require to know the transfer function of the plant to be controlled, but only the

critical gain Kosc and the ultimate frequency ωosc of this plant. Kosc is the gain margin which corresponds
to the ultimate gain obtained by using the Ziegler-Nichols continuous cycling method given in [53] and

ωosc =
2π

Tosc
where Tosc is the ultimate period.

Let φm be the desired phase margin. The PID parameters are given by [58]

Kp = Kosc cos(φm), (23a)

Td =
Tosc

4π

(
tan(φm) +

√
4

α
+ tan2(φm)

)
, (23b)

Ti = αTd, (23c)

where α > 1. α can be used as a tuning parameter to improve the closed loop response. The constraint
α > 1 allows having Ti > Td, which leads to a low-frequency range for the integral action and to a
high-frequency range for the derivative action, without intersection between these two frequency ranges.

Notice that the obtained phase margin may not exactly match φm since the computation of τd is not
included in the method, i.e. the three formula in (23) assume that τd = 0 in (22).

4.3.2 PID control of the current ie` and the voltage ve`

The application of the two methods described in Section 4.3.1 has given the following results.

• Step by step method [56, 57], Section 4.3.1.1: The closed loops in current and in voltage obtained
with the PID controllers have a good behavior with good stability margins. In the sequel, the PID
for current and voltage controls are called C1(s) and C2(s), respectively

C1(s) = Kp

1 +
1

Tis
+

Tds
Td
N
s+ 1

 = 0.001

1 +
1

0.00205s
+

8.333×10−5s

8.333×10−5

10
s+ 1

 , (24)

C2(s) = Kp

1 +
1

Tis
+

Tds
Td
N
s+ 1

 = 0.004

1 +
1

0.00168s
+

8.375×10−5s

8.375×10−5

10
s+ 1

 . (25)

• Phase margin method of Åström and Hägglund [58], Section 4.3.1.2: The closed loops in current
and in voltage obtained with the PID controllers are unstable for all desired phase margins φm ∈
[5◦ 80◦]. Nevertheless, the closed loop in voltage is stable with φm = 85◦, while the one in current is
unstable. For this reason, only one PID was selected with φm = 85.531◦, which is the phase margin
obtained with the PID for voltage control for the step by step method. This PID for voltage control
with φm = 85.531◦ is called C3(s) in the sequel

C3(s) = Kp

1 +
1

Tis
+

Tds
Td
N
s+ 1

 = 0.0051079

1 +
1

0.0083581s
+

0.00083581s
0.00083581

10
s+ 1

 . (26)

To explain the tuning of the PID parameters using the frequency analysis made in Section 4.3.2, the
Bode diagrams of the PID controllers, plotted in Figures 13 and 14, and the Bode diagrams of the loop
gains, plotted in Figures 15 and 16, are needed.
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Figure 13: Magnitudes of PID controllers C1(s) (¬), C2(s) () and C3(s) (®).
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Figure 14: Phases of PID controllers C1(s) (¬), C2(s) () and C3(s) (®).
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Figure 15: Magnitudes of loop gains Gi(s)C1(s) (¬), Gv(s)C2(s) () and Gv(s)C3(s) (®).
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Figure 16: Phases of loop gains Gi(s)C1(s) (¬), Gv(s)C2(s) () and Gv(s)C3(s) (®).

The switching period of the SIBC is Tc = 50 µs, which corresponds to a frequency ωc = 125663.71
rad/s. The frequency ωc must be taken into account in the design of the PID controllers.

4.3.2.1 Application of step by step method
In the sequel, the PID for current and voltage controls are called C1(s) and C2(s), respectively.

• Design of PID C1(s) for system Gi(s). Since Kosci is the gain margin, a low value is chosen to
initialize the gain Kp for the step by step method (see item (ii) in Section 4.2 for the value of
Kosci).
Now, the analysis made in item (i) in Section 4.2 is used. So as not to excite the peak in the

magnitude plot in Figure 11 in the frequency range [104 2×104] rad/s, the values of Kp =
0.001

1.1
and Td = 8.333×10−5 s have been obtained at the 2nd step of the method. Indeed, the more Td is
small, the less the magnitude peak is excited by the 20 dB/dec slope due to derivative action (see
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curve ¬ in Figure 13). The amplitude of this peak has decreased a lot in Figure 15, which allows
to increase the closed loop damping factor. In addition, Td can not be chosen too small because ωc

must be greater than
1

Td
.

To complete this analysis (see item (ii) in Section 4.2), notice that small Kp and Td are required
to ensure closed loop stability (see Figures 11 and 12): the magnitude of Gi(s)C1(s) must be less
than 1 when the phase of Gi(s)C1(s) is equal to −180◦ (see Figures 15 and 16).
At the 3rd step of the method, with Kp = 0.001 and Td = 8.333×10−5 s, the derivative time constant
Ti is adjusted to obtain a sufficiently settling time without overshoot (see the 3rd step in Section
4.3.1).

• Design of PID C2(s) for system Gv(s). The magnitudes of Gi(s) and Gv(s) are almost parallel, and
the phases of Gi(s) and Gv(s) are almost equal except in the frequency interval 0.1 6 ω 6 10 rad/s.
So, the PID tuning for voltage control is almost similar to the one for current the discussion on the
design of PID C2(s) is similar to that on design of PID C1(s), but there are fewer constraints for
the design of C2(s) than that of C1(s). Indeed, curve  is below the curve ¬ in Figures 11 and 12,
and Koscv > Kosci . This explains the values of Kp, Ti and Td obtained for C2(s) compared to those
of C1(s) and that is the reason why the discussion on C2(s) is not detailed.

In Figures 13, 14, 15 and 16, although the derivative time constant Td is small for PID C1(s) and

C2(s), and therefore that the frequency
1

Td
in rad/s is large, the frequency range for the derivative action

is smaller than the SIBC switching frequency ωc.

4.3.2.2 Application of phase margin method
This PID for voltage control with φm = 85.531◦ is called C3(s) in the sequel.

• Design of PID C3(s) for system Gv(s). According to the above discussion on PID controllers C1(s)
and C2(s), the parameter Kp and Td should be sufficiently small. Since φm = 85.531◦, relation
(23a) gives a proportional gain Kp which is almost as small as for C2(s), however tan2(φm) is much

larger than
4

α
in relation (23b) with α > 1. Therefore all the values of α > 2 lead to values of Td

which are very close to the one obtained for PID C3(s). As can be seen in Figures 13 and 14, the
frequency range in which the derivative action for C3(s) acts is a decade before that the one for
C2(s). The consequence can be read in figure 15: the peak is larger for C3(s) than for C2(s).

In (23b) and (23c), α = 10 has been chosen, while
Ti
Td

= 20.06 for PID C2(s). It should be noticed

that choosing α = 20.06 has no influence in the behavior of PID C3(s) because Td = 0.00083555 s
with α = 20.06 instead of Td = 0.00083581 s with α = 10.

4.4 Stability margins

The stability margins obtained with the PID controllers are given in Table 5, where the modulus margin
is the minimum distance of the Nyquist plots of C1(s)Gi(s), C2(s)Gv(s) or C3(s)Gv(s) from the critical
point (−1, 0) of the complex plane.

Table 5: Stability margins with PID controllers.
PID C1(s) PID C2(s) PID C3(s)

gain margin 3.3075 13.239 1.707

phase margin 81.719◦ 85.531◦ 89.911◦

modulus margin 0.65361 0.91125 0.38831

Table 5 shows that PID C1(s) provides good stability margins. PID C2(s) generates very good
stability margins, especially the modulus margin which is close to 1. But it is not the case for PID C3(s).
Indeed, although the phase margin is good with PID C3(s), the gain and modulus margins are small.
In the sequel of this section, the comments on the stability margins given in Table 5 are based on a
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frequency analysis with Bode diagrams, while the obtained closed loop time responses are presented in
Section 5.

To end this discussion, notice that gain and phase margins given in table 5 can be deduced using
Figures 15 and 16.

5 Experimental results

5.1 Description of the experimental test bench

To evaluate the performances of the different PID controllers (both for PEMEL current and voltage)
designed in Section 4, a fit experimental test rig has been realized in the GREEN laboratory at IUT de
Longwy as shown in Figure 17. The description of the experimental test rig is provided in the caption of
Figure 17. The developed PID control laws have been realized through Matlab/Simulink environment.
Afterthat, the control laws have been transfered into a dSPACE DS1104 board to generate the PWM
gate control signals to drive the power swithes of the SIBC. Since the PID control laws are based either
on PEMEL current or voltage, the measurements are achieved through a current clamp PAC 12 from
Chauvin Arnoux Company and a voltage probe MTX 1032-B from Metrix Company. The PWM control
signals generated from the dSPACE DS1104 board are 0-5V and therefore, they are not fit to drive the
SEMIKRON driver boards SKHI 22 requiring a voltage level 0-15 V. As a result, an interface board
has been designed (located between the dSPACE DS1104 board and driver boards) to adapt the input
control signals from 0-5 V to output control signals 0-15 V. The system specifications of the PEMEL
and SIBC have been provided respectively in Sections 2 and 3. The switching frequency of the SIBC has
been selected to 20 kHz to decrease the switching losses, which corresponds to a switching period of the
SIBC given by Tc = 50 µs.

1○

2○

3○

4○

5○

6○
7○

8○

9○

10○

11○

12○

13○

Figure 17: Experimental test rig to validate PID control laws: 1○ → laptop with a virtual control
panel for the DC power supply, 2○ → computer including Matlab/Simulink and dSPACE ControlDesk
softwares, 3○→ DC power supply (input), 4○→ pure water tank, 5○→ interface board, 6○→ dSPACE
DS1104 board, 7○ → IGBT module stack to realize the SIBC, 8○ → inductive components (i.e. Lp, Ls),
9○ → capacitive components (i.e. Cp, Cs), 10○ → PEMEL, 11○ → current clamp, 12○ → voltage probe,
13○ → 4-channel digital oscilloscope.

In the next subsection, experimental results are presented and commented to assess the performances
of the different designed and tuned PID controllers to control either the current or the voltage.
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5.2 Experimental results for the PID control laws

The PID current controller C1(s) and voltage controllers C2(s) and C3(s) have been tested experimentally
and have given the following responses:

• Figure 18: closed loop step response of the current ie` with the PID controller C1(s) where the
measured feedback is ie`,

• Figure 19: closed loop step response of the voltage ve` with the PID controller C1(s) where the
measured feedback is ie`,

• Figure 20: closed loop step response of the voltage ve` with the PID controller C2(s) where the
measured feedback is ve`,

• Figure 21: closed loop step response of the current ie` with the PID controller C2(s) where the
measured feedback is ve`,

• Figure 22: closed loop step response of the voltage ve` with the PID controller C3(s) where the
measured feedback is ve`,

• Figure 23: closed loop step response of the current ie` with the PID controller C3(s) where the
measured feedback is ve`,

It shall be noticed that the six Figures 18-23 correspond only to three tests: the first for Figures
18-19, the second for Figures 20-21, and the third for Figures 22-23. The current responses are slower
than the voltage ones. Therefore, the time axis is 0.038 seconds in Figures 18, 21 and 23, while the time
axis is 0.010 seconds in Figures 19, 20 and 22.

A decimation phenomenon affects the six Figures 18-23. This is due to the 4-channel digital oscil-
loscope used to record the values of the current and the voltage in the experimental test bench (see 13○
in Figure 17). However, this decimation phenomenon does not act on the closed loop behavior since the
record with the 4-channel digital oscilloscope is outside the closed loop.

Based on Figures 18-23, the performances in closed loop of the PID controllers are summarized in
Table 6.

Table 6: Closed loop performances of PID controllers.
PID C1(s) PID C2(s) PID C3(s)

voltage settling time in second 0.002 0.002 0.002

current settling time in second 0.022 0.022 0.026

1st overshoot for current in percent 21.102 17.949 25

From the obtained responses, it can be observed that the three voltage dynamics are similar, without
overshoot and faster than the current dynamics. The settling time for the current dynamics is similar
for PID C1(s) and C2(s), but is a little bit higher for PID C3(s). The lowest overshoot in the current
response is obtained with PID C2(s) while the highest one is obtained with PID C3(s).

So, we can conclude that the two PID designed with step by step method (C1(s) and C2(s)) present
better performances than the PID method based on phase margin (C3(s)).

In Figures 18-19, the controlled variable ie` converges more slowly than the non-controlled variable
ve`, whereas in Figures 20-21 and 22-23, this is not the case: the controlled variable ve` converges more
quickly than the non-controlled variable ie`. In addition, the steady-state behavior in Figure 18 begins
at time instant t = 0.03 s while it starts at t = 0.034 s in Figures 21 and 23. The difference between
these two time instants is higher to the voltage settling time (see Table 6). Thus, it is more appropriate
to control the current instead of the voltage to get better action on the dynamics of both controlled and
non-controlled variables.

In conclusion, based on the previous observations, for small-scale PEM electrolyzer, it makes more
sense to control the current instead of the stack voltage, since the desired hydrogen flow rate can be
directly obtained by regulating the electrolyzer current. Furthermore, the small-scale studied PEMEL
can be seen as a high current-low voltage load: the stack voltage range is very small included between
4.4 V and 8 V, while the current range is quite high, between 0 A and 50 A (see Table 1). Stack
voltage regulation is particularly suitable for large-scale alkaline electrolyzers since their voltage range
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are extended [46]. For this application, stack voltage regulation is achieved through the use of thyristors-
based rectifiers.
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Figure 18: Closed loop step response of the current ie` with the current PID C1(s).
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Figure 19: Closed loop step response of the voltage ve` with the current PID C1(s).
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Figure 20: Closed loop step response of the voltage ve` with the voltage PID C2(s).
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Figure 21: Closed loop step response of the current ie` with the voltage PID C2(s).
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Figure 22: Closed loop step response of the voltage ve` with the voltage PID C3(s).
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Figure 23: Closed loop step response of the current ie` with the voltage PID C3(s).

6 Conclusion

The main purpose of this article was to propose a methodology to design PID controllers based either
on voltage or current regulation applied to a stacked interleaved DC-DC buck converter for PEMEL
applications.

Unlike the approaches usually developed in the literature where the PEMEL is modeled as a resistive
load, the determination of the parameters of the PID controllers takes into account the dynamic behavior
of the PEMEL. So, a model of the PEMEL has been first obtained through a least-square algorithm with
input-output measured data (current-voltage). Second, the obtained discrete-time model of the PEMEL
has been converted into a continuous time one and then combined with the used DC-DC converter
state-space description.

Notice that the shape of the step responses of the obtained models does not allow to use standard PID
tuning methods based on open loop step response models, which are proposed in the literature. For this
reason, an alternative tuning approach based on a step by step method has been retained. For comparison
purposes, phase margin method proposed in the literature has also been taken into consideration.
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To assess the performances of the developed PID controller tunings, experiments have been carried out
on a fit experimental test bench. Based on the obtained results, the step by step method has given better
performances than the phase margin method, this latter has not worked in current control configuration.
Finally, based on the analysis of the experimental results, it is more suitable to use a current control
configuration instead of a voltage control configuration for the investigated small-scale PEM electrolyzer,
which can be considered as a high current-low voltage load. Indeed, by controlling the current instead of
the stack voltage, the desired hydrogen flow rate can be easily obtained.

This work comes within the scope of the following larger perspective: integrating a fuel cell in the
hydrogen process. In this context, the design of the PID control laws must take into account the operating
conditions of the fuel cell according to its hydrogen consumption. Notice that the proposed approach to
PID design is well adapted to the changes in the operating conditions:

• first, the interesting operating conditions can be selected by studying the whole process composed
by the fuel cell and PEMEL,

• second, for each selected operating condition, a model of the PEMEL can be determined using
the methodology developed in Section 2.2, and the step by step PID design method presented in
Section 4.3.1 can be used to design a PID controller,

• third, a gain scheduling procedure can be used to associate each designed PID to a given operating
point.

As can be seen in the experimental test bench Figure 17, a RES has not been considered as power
source. However, a photovoltaic power source can be used since the considered input DC voltage to
supply the SIBC is low (around 30 V). For this application, the variations of the input DC voltage
are small (around 8 to 10 V) depending on the weather conditions. In comparison, when considering a
wind turbine as power source, the input DC voltage is higher (around a hundred volts) and the voltage
variations are more important. So, the wind turbine is not suitable within the framework of this work.
In addition, our approach is well adapted to take into account small variations and disturbances due to
changes in weather conditions. Indeed, PID control allows to compensate disturbances effects on the
steady-state error and changes in the operating conditions (see in Table 4, the role of the derivative
action on overshoot and stability margin, and the effect of the integral action on the steady-state error).
In addition, as above-mentioned, a gain scheduling procedure is perfectly fit with our approach to meet
operating condition changes.
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Table 7: Nomenclature.
Acronyms

IGBT Insulated Gate Bipolar Transistor

PEMEL Proton Exchange Membrane Electrolyzer

PI Proportional and Integral

PID Proportional, Integral and Derivative

PWM Pulse Width Modulation

RES Renewable Energy Sources

SIBC Stacked Interleaved DC-DC Buck Converter

Roman Symbols

A, B, C Matrices of the state-space realization of the SIBC+PEMEL model

C1(s), C2(s), C3(s) PID controllers

Ca Capacitor in PEMEL model

Cp First phase capacitor

Cs Second phase capacitor

D Duty cycle

Dh(z) Denominator of F h(z)

e Closed loop error in PID control

Fh(s) Continuous-time transfer function of PEMEL

F h(s) Discrete-time transfer function of PEMEL before truncation

F̃h(s) Continuous-time transfer function of PEMEL before truncation

Fh1(s), Fh2(s), Fh3(s) Fh(s) for nr = 1, nr = 2 and nr = 3

G(s) Transfer function vector of the SIBC+PEMEL model

Gi(s) 1st component of vector G(s) → current

Gv(s) 2nd component of vector G(s) → voltage

h1 to h8 Hankel singular values of F̃h(s)

ie` PEMEL current

ip First phase current

is Second phase current

j Imaginary unit of a complex number

kh Steady-state gain of the PEMEL model

ki Steady-state gain of Gi(s)

Kosc Critical gain

Kosci , Koscv Critical gains for Gi(s) and Gv(s)

Kp Proportional gain of the PID controller

kv Steady-state gain of Gv(s)

Lp First phase inductor

Ls Second phase inductor

mi Peak of the magnitude of Gi(s)

mv Peak of the magnitude of Gv(s)

N Filtering ratio of the PID controller

n Order of F h(z) and F̃h(s)

N Number of available samplings in Figure 3

Nh(z) Numerator of F h(z)

nr Order of Fh(s)

p1 to p5 poles of G(s), so also for Gi(s) and Gv(s)

r Reference signal for PID control

Ra Resistor in PEMEL model

Rb Resistor in PEMEL model

R`p Parasitic resistor of the inductor Lp

R`s Parasitic resistor of the inductor Ls
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Table 7: Nomenclature (continued).
Roman Symbols

T1, T21 , T31 , T32 , T33 Time constants of Fh1(s), Fh2(s) and Fh3(s)

T1 to T4 Time constants of of G(s)

T1 to T4 Power switches of the SIBC

Tc Switching period of the SIBC

Td Derivative time constant of the PID controller

Ti Integral time constant of the PID controller

Tosc Ultimate period

Ts Sample time interval

ts Settling time of G(s)

u Control input of the state-space realization of the SIBC+PEMEL model

vca Voltage at the terminals of capacitor Ca

vcs Voltage at the terminals of capacitor Cs

ve` PEMEL voltage

Vi Input voltage of the SIBC

Vint Reversible voltage in PEMEL model

x State of the state-space realization of the SIBC+PEMEL model

xh State of the state-space realization of the PEMEL model

y Measured output of the state-space realization of the SIBC+PEMEL model

y Measurement in PID control (either ie` or ve`)

YN Vector of measured outputs

zi Zero of Gi(s)

zv Zero of Gv(s)

Greek Symbols

α Ratio between Ti and Td in PID C3(s)

εk Modeling error

EN Vector of modeling errors in least-square procedure

ζ Damping factor of G(s)

θ Vector of coefficients of F h(z)

θ̂ Vector of estimated coefficients of F h(z)

τd Filter time constant of the PID controller

φm Desired phase margin

ΦN Regression matrix

ω Frequency in rad/s

ωc Switching frequency of the SIBC (rad/s)

ωn Natural frequency of G(s)

ωp Frequency at the peak of the magnitude of Gi(s) and Gv(s) (rad/s)
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