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With a transaction fee market and without a block size limit in Bitcoin network;
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Abstract

We are interested in mining incentives in the Bitcoin protocols. The blockchain Bitcoin. The mining process is

used to confirm and secure all transactions in the network. This process is organized as a speed game between

individuals or groups, referred to as “miners” or “pools of miners”, respectively. Miners or pools of miners use

different computational powers to solve a mathematical problem, obtain a proof-of-work, spread their solution, and

this solution is verified by the community before the block is added in the only public blockchain replicated over all

nodes. First, we define and specify this game in the case with n players, n ≥ 2, under the assumptions denoted by (H)

below. Next, we analytically find its Nash equilibrium points. In other words, we generalize the idea of [1] by taking

into account the hypotheses of Peter Rizun’s paper [2], through cumbersome computations. Our purpose here is to

show some intuitions about the model rather than derive applicable results.

Keywords: Blockchain, Bitcoin, mining process, game, Nash equilibrium point

1. Introduction

Bitcoin was invented in 2008 by Satoshi Nakamoto [3]. By 2013, Bitcoin had left its circle of strict early adopters

and had become very popular. Bitcoin is usually described by laymen as a form of electronic or internet money. How-

ever, this definition is much criticized by the computer science community, which considers Bitcoin to be a disruptive

and revolutionary protocol. As a protocol, Bitcoin is still in its early stages of development, and its specifications are

still being modified. To reach the implementation stage, a proposed modification must go through a whole process of

validation. Questions remain regarding some specifications of the Bitcoin protocol, including queries about the value

and structure of the rewards earned by miners. In this paper, we analyze this aspect of the Bitcoin protocol. Our work

was inspired by the qualitative intuitions of the Bitcoin protocol given in 2014 by Nicolas Houy [1] who, in turn, was
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inspired by G. Andressen [4]. An extended work of P. Rizun in [2] will be also token into account in Section 2. To

analyze the mining aspect, we need to describe, at least superficially, how Bitcoin actually work. When an individual

sends bitcoins to another individual, this transaction is broadcast to the peer-to-peer Bitcoin network. For this trans-

action to be confirmed and secured, it needs to be included with other transactions as a block, in the blockchain, by

miner in the network. The blockchain is a public ledger that contains the full history of all transactions ever processed

in Bitcoin. Miners do work of confirming and securing transactions. This security aspect of the mining activity is

often forgotten or not known by Bitcoin critics. Briefly, this mining process consists of two principle steps. The first

step is to solve a mathematical problem (equation 1), called find a proof of work (in this paper, we consider there are

no difference between expressions "solve a mathematical problem", "find a block" or "find a proof-of-work"). The

second step of the mining process is the diffusion of the solution to the network for it to reach consensus. Each node,

as soon as it receives a new solution, verifies that the solution is exact and added the new block to its local blockchain

abandon the block that it is working on and start trying to build a new block. The description of this process is recalled

in many papers (see [3], [5], [6]) but a work about the game that it implies is never been developed, unless in [1] where

author studies the mining incentives in the case of two players. Thus, the complete game theoretical analysis that we

propose here, is very important motivation.

We are interested in the protocol of securing transactions, called mining, in the Bitcoin blockchain. The Bitcoin min-

ing process of confirming and securing transactions involves regrouping a finite number of transactions into a block,

looking for a proof-of-work based on the idea of [7] and broadcast its solution in the network. Others miners working

on the same blockchain, verify that this solution is valid and added this block to its local blockchain. If 50% of total

computational powers existing in the network work with a new released hash, the miner who has broadcast this one,

get a fixed reward and variables reward coming from the transactions fees in the bloc. To resume, we say that after

selecting a finite number of transactions from the Mempool’s node (Short for Memory Pool), each miner looks for

solution ni of the equation:

si = SHA256(hi + ni + si−1)) ≤ d, (1)

where the function SHA256(.) is a crypto-graphic hash function belonging to the set of Secure Hash Algorithm (SHA)

functions, hi = SHA256(Bi), Bi is a character string representing the set of transactions, + is the concatenation oper-

ator of strings and ni the value of the nonce, si−1 is the previous hash of its local blockchain, and d the current mining

difficulty which periodically calculated by the network. The nonce is a value to be sought randomly or systematically

to change the result of the hash function and to have a result that satisfies the equation 1. After having found a result

satisfying the equation 1, miner Mi added bloc Bi in its version of blockchain, and automatically diffuses its solution

(Bi, ni, hi, si) to all members of the peer-to-peer network. When another miner Mj , who is also working on the

blockchain C, receives the communication, it will compute:

s
′

= SHA256(ni + hi + sj−1). (2)
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If s
′

= si, then miner Mj will add block Bi to its blockchain C, abandon the block Bj that it is working on and start

trying to add a block to the chain CBi. Any transactions in Bj that are not in Bi will be incorporated into in this new

block. Importantly, miners Mi and Mj now, have identical versions of the blockchain. The first mined block who is

added by the majority of miners (in terms of computational power) gets automatically a reward. We consider in this5

paper that all miners are honest and follow the standard protocol implemented in Bitcoin as it is explained in [3], even

if in others papers like in [8] and in [9] for example, authors consider that colluding miners in the network can deviate

from the protocol and following some strategies other than that who is implemented in Bitcoin protocol. Example:

the strategy of block withholding called also Selfish mining strategy (see [8], [9]. There may exist others dishonest

mining strategies in the network, but in this paper we consider that all miners are honest and follow the protocol as it10

is implemented in Bitcoin.

Our first objective is to show that, at the time a honest miner starts creating a block with the last public hash, means,

after having already verified equation (2) and added the new block, he is in competition with others miners who has

received the same hash.

The Bitcoin protocol requires that a block newly found will be added in the public blockchain as soon as more than15

50% of the total computational power has accepted the solution (see [3]) (work with the solution si from equation

(1)). The first miner who completes these two steps first, has its block included in the blockchain and earns a reward in

BITCOIN (BTC). In the current implementation of Bitcoin Core, this reward comes from both an ex-nihilo creation of

new bitcoins and as fees that Bitcoin users can add to their transactions. To control the monetary base, mining is made

more complex than it could be. A first approximation, the probability that a miner solve a mining problem depends20

on their computational power; therefore, the mining complexity is dependent on the total computational power of all

miners. The complexity is dynamically adjusted so that a block is solved and bitcoins (BTC) are created every 10

minutes in average. Once a block is inserted in the public blockchain, the mathematical problem faced by all miners

are modified and we can consider that a fresh new speed game starts between miners.

This article tackles the issue of the incentives offered to miners as a function of the reward structure and values.25

Currently, the fixed reward is 12.5 bitcoins (BTC) per block. The fixed reward was 50 BTC in the first days of Bitcoin

in 2009; this amount was halved every 210,000 blocks. The number of bitcoins issued is programmed to reach a

maximum of 21,000,000 asymptotically. At the time that this article was written, there were about 16,000,000 BTC in

circulation. The variable reward is 0.0001 BTC / KB of transaction.

When mining a block, a miner is free to choose which of the transactions in the Mempool’s node they wish to include30

in block. In a very good first approximation, computing the mathematical problem (equation (1)) by including more

transactions is not more expensive in terms of CPU power, disk space, or bandwidth. However, the larger a block is,

the longer it will take to be propagated and verify by other miners. Thus, including more transactions in a block can

have the adverse effect of lowering the probability that a miner will earn any reward. When a miner finds a block but

is outraced by another miner, the block becomes orphaned. As we will show, this trade-off depends on how many35
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transactions other miners include in their blocks. The number of transactions included in the blocks is the outcome of

a game : namely, the Bitcoin mining game that we propose to study in this article.

It is also of importance in the current context of hot debates about the block’s size limit that should be imposed in

the Bitcoin protocol. Indeed, this debate is much about the transaction space offer function of miners. For instance,

P. Rizun constructs this offer function in a decision theory framework considering the costs and benefits mentioned40

above and atomistic miners.

In this article, we show that the game theory framework is more adapted to tackle theirs questions. In Section 2, we

describe the Bitcoin mining game and all hypotheses that we will use in this paper. We analytically study the Nash

equilibrium points of the game in the case of n miners (2 ≤ n < ∞). When remuneration is fixed for all miners,

the Nash equilibrium is reached at the beginning of the process when no transaction is included by the miners. All45

miners have a profitable deviation. We also study the case where the remuneration depends on the number of included

transactions, as well as the influence of minor powers on decision strategies. We provide the model, assumptions, and

main results in Section 2, Proofs of the main results of this paper, summarized in Theorem 6 , are given in Section 3.

Conclusions are provided in Section 4. A discussion of the findings and related work are provided in Section 5.

2. Model, statements and main results50

Consider a set M = {M1,M2, ...,Mn} of miners on the Bitcoin’s network working on the public blockchain called

C, and we call by M = {1, 2, ..., n} with 2 < n < ∞, the indexing set. Each miner Mi ∈ M has a relative hash

power αi > 0, proportional to the probability of solving the mathematical problem. Then, without loss of generality,

we can assume that:
n∑
i=1

αi = 1.

The mathematical problem of equation (1) is solved by a try-and-guess strategy, such that the occurrence of a problem

solution can be modeled as a random variable following a Poisson process. The complexity of finding a block is

dynamically adjusted so that the operation is expected to take 600 seconds to complete. Thus, the mining process is

a Poisson process with intensity λ = 1/600 > 0 for the whole network. The first observation is that the number of

transactions included in a block will have no effect on the complexity of solving the mathematical problem or on CPU55

cost. The problem of block’s size in Bitcoin Core was opened by Satoshi in [3] as a possibility to improve the Bitcoin

protocol. Satoshi said that the block’s size limit (1 MB) could be raised in the future when the need arrived. This is

one of the main feartures of Bitcoin Unlimited. In a recent paper ([2]), P. Rizun shows how a rational Bitcoin miner

should select transactions from his node’s mempool, when creating a new block, in order to maximize his profit in the

absence of a block’s size limit. P. Rizun introduces two novel concepts: the block space supply curve and mempool60

demand curve. In this paper, as in [1], we consider also that there is no limit for the block’s size, and the marginal cost

to add a transaction in block is zero. We associate each block’s size by the number of transactions included inside the
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block, and we deal with this number instead of block’s size. We denote here by xi the number of transactions included

in the block in preparation by miner Mi, xi ∈ R+.

Once a miner has found a block (i.e, get a proof-of-work by solving the mathematical problem) containing a

given number of transactions, the protocol requires that the miner broadcast automatically the solution to the Bitcoin

network. We assume that all miners are honest and there is no code changes to delay the transmission like the selfish

mine strategy in [8]. By taking into account the fact that the block’s size is the dominant factor of the transmission

of information in the network, then more a block is larger more it takes time to be propagated and verified in the

network (see [10]). So, we assume that the time needed for a block to be propagated in the network and verified by

the community before it will be added to the public blockchain depends linearly on the block’s size and, thus, depends

linearly on the number of transactions included in the block. Let k(xi) be the time needed for a block of xi transactions

to be propagated and verified by the majority of miners in the network.

k(xi) = k.xi k > 0. (3)

where k.xi is the scalar product in R between k and xi. This assumption is in perfect line with those suposed by P.

Rizun in [2] (see equation (9) of [2]). In paper [2] P. Rizun assumes that the block’s propagation delay is approximately

equal to the size of the block produced, divided by the coding gain with which the block solution can be transmitted,

and divided by the effective capacity of the communication channel. These two constants are denoted in [2] by C

(block solution coding gain) and Υ (channel capacity) respectively. In this model the constant k in equation (3) is

equivalent to 1
CΥ .

The first miner to solve the mathematical problem (i.e., to find a block) and to have the block verified at first by the

majority, earns a fixed reward R > 0 (in BTC) and variable reward amount transactions fees. In Bitcoin Core, the

sender of transaction choose to do a transaction with fees or without fees. Since miners are rationals, we consider that

they selectionne only transactions with fees in the Mempool’s node and it is well known that transactions without fees

can probably never be effective. We then assume, in this paper, as in [2] that all transactions in Bitcoin require fees.

In Bitcoin Core, the fees are calculated relative to the size of transaction message and the remuneration is equal to

10−4 for each KB (kilobyte) of transaction. In view of [4], the average Bitcoin transaction is about 250 bytes. Thus,

for all xi transactions (in average xi.250.10−3KB) included in one block, the variable reward from transactions fees

depends linearly on the number of transactions. If miner Mi is the first to be added in the public blockchain, i.e, if

he finds a solution of mathematical problem and the solution is the first to be approved by the majority of miners; the

reward earned is:

R(xi) = R+ c.xi c ≥ 0, R > 0. (4)

The proof of work can be achieved by choosing values for nonce randomly or systematically until equation (1) is

satisfied. Let ti be the random variable representing the time required for a miner to find a proof-of-work. This time is

exponentially distributed with parameter λ.αi, where λ is the intensity of mining process and αi is the computational
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power of miner Mi.

Consider that the blockchainC of minerMi, in section Introduction, is the public blockchain, means the longest chain,

that which contains more blocks starting from the genesis (see [3]). At the time t = 0 when miner Mi add the last

public bloc Bi, broadcast its solution and start looking for a new block, he is in competition with all other miners who

will added the last public bloc Bi, until another solution appears. We assume that miners can not detect the creation of

block by their opponents and thus, have not the ability to mine on top of such blocks before they receive them (not spy

mining for example). This means the competition is between {Mj}j∈M who have verified that the solution s
′

= si

before a new public block is announced to them. However, note that miners working on the same blockchain do not

receive the hash at the same moment but progressively because of the propagation delay of information in the network,

as we have precised in the preceding paragraph.

Technical assumptions for simplified calculations. Between the date when n miners M = {M1,M2, ...,Mn} have

already received the last public block header hash and start looking for a new block and the date when a new block will

be added in the public blockchain, each miner Mj has a finite number of transactions, xj > 0 to include in its block

and a computational power αj to solve its mathematical problem. these numbers can be equals or not equals but by

re-indexing the set of miners, we call by x1 the smallest number of transactions included, and miner M1 is the miner

who has included x1 transactions, x2 ≥ x1 for miner M2 and so on. Let xn be the largest number of transactions

included and we call this miner by Mn. Let−→x = (x1, x2, ..., xn) be the sequence of numbers of transactions included

for a bloc to be found, one for each miner. Thus, we have:

xn ≥ xn−1 ≥ ... ≥ x1. (5)

By this assumption, we define without lost of generality, the set of profile strategic in which we will find the Nash

equilibrium points:

Ξ = {x = (x1, x2, ..., xn) ∈ (R+)n| xn ≥ xn−1 ≥ ... ≥ x1}. (6)

This technical assumption will allow us to give a simplified expression of the probability in equation (7) and facilitate65

all following calculations.

2.1. Mining benefit

Let us compute the mining benefit earned by miners. We evaluate at first the probability of the event:

{ the block of miner Mi is the first to be added on the public blockchain}. This even is equivalent to:

{ti + k.xi < tj + k.xj ,∀j ∈M \ i} .
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Then the probability that miner Mi will solve the mathematical problem associated to its block between t and t + dt

and that block will be the first to be added in the public blockchain, is equal to:

P {tj + k.xj > t+ k.xi, t ≤ ti ≤ t+ dt} =λαie
−λαitdt

∏
j∈M\{i},t+k.xi−k.xj≥0

e−λαj(t+k.xi−k.xj)

=λαidt
∏

j∈M,t+k.xi−k.xj≥0

e−λαj(t+k.xi−k.xj).

By integrating this quantity between t = 0 and t = +∞, we obtain the probability Pi(−→x ) that miner Mi will find a

block and that its block will be the first to be added to the public blockchain by the majority (in terms of computational

power).

Pi(
−→x ) = λαi

∫ +∞

0

 ∏
j∈M,t+k.xi−k.xj≥0

e−λαj(t+k.xi−k.xj)

 dt. (7)

∀i ∈M,∀t > 0, we define:

Qi(x, t) =
∑
j∈M

αj1{k.xj≥t+k.xi}, Ai(x, t) =
∑
j∈M

αjk.xj1{k.xj≥t+k.xi}

k̄(x, t) =
∑
j∈M

αjk.xj .

Taking all of these definitions together, we can prove easily that equation (7) is equivalent to

Pi(
−→x ) = λαi

∫ +∞

0

e−λ((1−Qi(x,t))(t+k.xi)+Ai(x,t)−k̄)dt. (8)

The following remark gives a simple expression of Pn(−→x ), the probability that miner Mn earns the reward, derived

from equation (8).70

Remark 1.

∀x ∈ Ξ, Pn(−→x ) = αne
−λ((1−αn)kxn−

∑n−1
j=1 αjk.xj), (9)

and the expected reward of miner Mn is:

Πn(−→x ) = Pn(−→x )R = Rαne
−λ((1−αn)kxn−

∑
j∈M\n αjk.xj).

Proof. For all x ∈ Ξ, because xn ≥ xj for all j ∈M \ n, Qn(x, t) = 0

An(x, t) = 0
,

From equation (8), we get the result by computing the integral.

More generally:
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Proposition 2. For all x ∈ Ξ, for all i ∈M we have:

Pi(
−→x ) =

αi e
∑i−1
j=1−λαj(k.xi−k.xj)∑i

j=1 αj
− αi

n∑
l=i+1

[
1∑l−1

j=1 αj
− 1∑l

j=1 αj

]
e
∑l−1
j=1−λαj(k.xl−k.xj),

by assuming that:
n∑

l=n+1

[
1∑l

j=1 αj
− 1∑l−1

j=1 αj
] e

∑l−1
j=1−λαj(k.xl−k.xj) = 0(casei = n).

Proof. The proof is very easy. It uses equation (7) and some techniques of integral’s calculations. But authors are

ready to provide a complete text of the proof. We can also verify easily that for all fixed −→x ∈ Ξ,
∑n
i= Pi(

−→x ) = 1.

75

The expected reward Θi(
−→x ) associated to minerMi, is then equal to the probability Pi(−→x ) time the reward defined

(4):

Θi(
−→x ) = (R+ c.xi)Pi(

−→x ). (10)

2.2. The Bitcoin mining game:

The Bitcoin mining game is the given
(
M, (Si)i∈M , (Θi)i∈M

)
, where M is the set of players, Si = R+ the set of

strategies of minerMi, and Θi described in equation (10) is the payoff function of minerMi. To justify our theoretical

approach of the Bitcoin mining game, we prove the following proposition.

Proposition 3. Let c > 0, R > 0. Let −→x = (x1, x2, ..., xn) be the profile strategy in Ξ. For all miner Mi ∈ M and

for all r ∈M \ {i}, the function xr 7→ Θi(
−→x ) = Θi(x1, x2, ..., xr−1, xr, xr+1, ..., xn) is derivable on ]xr−1, xr+1[

and
∂Θi

∂xr
(−→x ) > 0. (11)

This proposition shows that introducing transactions in blocks by a miner Mr has positive externalities on other80

miner Mi for all i ∈M. Hence, our game theoretical approach is justified.

Indeed, when a miner Mr ∈ M introduces more transactions in his block, he makes longer the time needed to spread

his block in the network, in turn allowing more time for other miners to find the next block, spread it to the network and

will be verified by the majority of miners. However, this does not imply that the expected reward decreases for miner

r. Indeed, it is true that introducing more transactions in the block, the miner is looking for decreases its probability85

to find and spread it first. But it also increases the reward he earns in case he is actually the first one to find and spread

the next block. Of course, for this reasoning to be valid, we need to have c > 0 or else the marginal benefit to include

transactions in blocks vanishes.

In the trivial case where c = 0 and R = 0, the benefits of mining is obviously 0 anyway: there is nothing to earn

whatever the strategy profile −→x .90

Proof. We use the following remark to prove Proposition 3. This remark will also be used in Section 3 and Subsection

3.4.
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Remark 4. ∀−→x ∈ Ξ, ∀i ∈M, ∀l ∈ [i, n],

e
∑l−1
j=1−λαj(k.xl−k.xj) ≤ e

∑i−1
j=1−λαj(k.xi−k.xj) .

Proof. The proof is easy and does not use any Proposition or Remark in the preceding. Only the technical assumption

(5). Authors are ready to provide a complete text of the proof of this remark.

95

Let us prove Proposition 3. For −→x = (x1, . . . , xn) ∈ Ξ, we calculate ∂Θi
∂xr

(−→x ).

In view of definition of Θi(
−→x ) we have for r 6= i:

∂Θi

∂xr
(−→x ) = (R+ c.xi)

∂Pi
∂xr

(−→x )

By the expression of Pi(−→x ) in Proposition 2, we get:

if r < i,

∂Pi
∂xr

(−→x ) = λkαr

(
αi e

∑i−1
j=1−λαj(k.xi−k.xj)∑i

j=1 αj
− αi

n∑
l=i+1

[
1∑l−1

j=1 αj
− 1∑l

j=1 αj

]
e
∑l−1
j=1−λαj(k.xl−k.xj)

)
.

By Remark 4, for i < l ≤ n,

e
∑l−1
j=1−λαj(k.xl−k.xj) ≤ e

∑i−1
j=1−λαj(k.xi−k.xj) . (12)

Then,
∂Pi
∂xr

(−→x ) ≥

(
αi∑i
j=1 αj

− αi

[
1∑i

j=1 αj
− 1∑n

j=1 αj

])
λkαrαi e

∑i−1
j=1−λαj(k.xi−k.xj)

≥ αiλkαrαi e
∑i−1
j=1−λαj(k.xi−k.xj) > 0.

If r > i,

∂Pi
∂xr

(−→x ) = −

r−1∑
j=1

αj

 (−λkαi)

[
1∑r−1

j=1 αj
− 1∑r

j=1 αj

]
e
∑r−1
j=1 −λαj(k.xr−k.xj)

− λkαrαi
n∑

l=r+1

[
1∑l−1

j=1 αj
− 1∑l

j=1 αj

]
e
∑l−1
j=1−λαj(k.xl−k.xj)

≥ λkαiαr e
∑r−1
j=1 −λαj(k.xr−k.xj) > 0.

Because miners are considered to be rational, they will try to find the strategy that maximizes their expected reward.

To determine the optimal number of transactions to include in a block, each miner Mi ∈ M will solve the following

maximization problem:

max
xi∈R+

Θi(
−→x ). (13)
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Using the technical assumptions (5), the maximization problem of each miner becomes:

max
xi∈R+|x1≤x2≤...≤xi−1≤xi≤xi+1≤...≤xn

Θi(
−→x ). (14)

Before announcing and proving our main result, we recall some notation, definition and the well-known Nash theorem,

for reader’s convenience.

We denote by −→x−i = (x1, x2, ..., xi−1, xi+1, ..., xn) and (xi,
−→x−i) = (x1, x2, ..., xi−1, xi, xi+1, ..., xn) = −→x .

Definition 5. A point
−→
x∗ = (x∗1, x

∗
2, ..., x

∗
n) is called a Nash Equilibrium point if and only if:

∀i ∈M, x∗i = arg max
xi∈R+

Θi(xi,
−→
x∗−i).

In others words, for all i ∈M, if we fix any n− 1 elements x∗1, x
∗
2, ..., x

∗
i−1, x

∗
i+1, ..., x

∗
n, the function100

xi 7−→ Θi(x
∗
1, x
∗
2, ..., x

∗
i−1, xi, x

∗
i+1, ..., x

∗
n) is maximized in x∗i .

We recall the well-known theorem of Nash which ensures the existence of Nash equilibrium points in our game

model. But we recall for readers that our goal is to give explicitly these points.

Nash Theorem (1950) 1. All finite mixed-strategy form game admits at least a Nash equilibrium point.

For a best understanding about Nash equilibrium point in game theory, we suggest reader to learn [11].

Our main theorem give Nash equilibrium points of this model and our approach to prove the Nash’s equilibrium points

of this game is to use optimization techniques by doing cumbersome calculations. First, we summarize here the main

hypotheses used in this model before announcing the main theorem associated to it. We consider in this paper the

following assumptions:

(H)



The block’s size is not limited ([2]).

All transactions have fees.

Miners can not detect the creation of blocks by their opponents (no spy mining).

There is no protocole changes to delay the transmission of block like in [8] (i.e there is no selfish-mine attack

in the network, all miners are honest and follow the protocole)

,

The following theorem provide the main results of this paper.105

Theorem 6. Consider the mining game described in Section 2, in the context of Bitcoin blockchain. Then, we have

the following results:

1) If c = 0, then the mining game has a unique Nash equilibrium point x∗ = (x∗1, x
∗
2, ..., x

∗
n) ∈ (R+)

n with

x∗1 = x∗2 = ... = x∗n = 0. Moreover, ∀i ∈M, Θi(x
∗) = αiR.

2) If c > 0 and α1 = α2 = ... = αn = 1
n , then the mining game has a unique Nash equilibrium point

−→
x∗. More110

clearly, if 1
λk(1−αn) > 0,

−→
x∗ =

(
1

λk(1−αn) ,
1

λk(1−αn) , ...,
1

λk(1−αn)

)
else
−→
x∗ =

−→
0 .

3) If c > 0, then the mining game has a Nash equilibrium point x∗ = (x∗i )i=1,...,n ∈ (R+)
n. Values of (x∗i )i=1,...,n

are not explicitly given in this paper. However we will give, for all miner Mi, for all fixed profile strategic −→x−i, an

interval in which the point x0
i which maximizes its reward function, is located.

11



This theorem is proved in Section 3.115

Our first result is trivial. It signifies that including transactions in a block has the only consequence of extending the

period needed for a miner’s block to reach consensus. The marginal reward associated with this inclusion is null.

Hence, there are only negative incentives for miners to include transactions in blocks. The second result means that

the Nash equilibrium points are symmetric. This situation is in line with the idea that when including transactions in

blocks, a miner has positive externalities on other miners.120

In the third case, there is a large set of parameters for which the only Nash equilibrium of the Bitcoin mining game

occurs when no miners include any transactions in their blocks. It is crucial to check for the plausibility of such a

set of parameters because when all miners do not include transactions in their blocks, Bitcoin cannot be used for its

intended purpose as a payment system. This rationale is one motivation for studying the mining environment.

3. Proof of main results125

The proof of 1) and 2) of Theorem 6 are very simple. The proof of 3) is very technical and requires a little more

of attention. Let us characterize, in the following subsection, the main functions of this paper: Pi and Θi. Readers do

not forget we are in maximization’s problem.

3.1. Characterization of the probability function and the expected reward function

In this part, we characterize the probability Pi(−→x ) calculated in Proposition 2 and the expected reward function of

miner Mi denoted by Θi(
−→x ) for all −→x = (x1, x2, ..., xn) ∈ Ξ where −→x is the profile strategic.

Let us define the following set:

D−i = {−→x−i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1 | x1 ≤ · · · ≤ xi−1 ≤ xi+1 · · · ≤ xn}. (15)

We define also, ∀ −→x−i fixed in D−i, the real function:

xi 7−→ P̃i(xi,
−→x−i) and xi 7−→ Πi(xi,

−→x−i) (16)

by:

P̃i(xi,
−→x−i) = Pi(

−→x )|Ξ =
αi e

∑i−1
j=1−λαj(k.xi−k.xj)∑i

j=1 αj
− αi

n∑
l=i+1

[
1∑l−1

j=1 αj
− 1∑l

j=1 αj

]
e
∑l−1
j=1−λαj(k.xl−k.xj) .

and

Πi(xi,
−→x−i) = Θi(

−→x )|Ξ = (R+ c.xi)P̃i(xi,
−→x−i)).

In all the following, we denote by−→x = (x1, x2, ..., xn), ∂Πi
∂xi

(−→x ) the derivative of Πi with respect to the variable xi at

the vector −→x and, by ∂Πi
∂xi

(−→x )|xi=y the derivative of Πi with respect to the variable xi at the vector (x1, x2, ..., xi =

y, xi+1, ...xn).

Since the main problem for each miner is to maximize the function Θi in Ξ in view of the assumption (5) above, our

12



approach for the proof of Theorem 6 is to maximize xi 7−→ Πi(xi,
−→x−i) on R+ with −→x−i ∈ D−i fixed, and taking

only solutions xi ∈ [xi−1, xi+1]. More clearly, we deal for all i, the following maximization problem:

−→x−i ∈ D−i, max
xi∈[xi−1,xi+1]

Πi(xi,
−→x−i). (17)

For all i, if the solution of the problem (17) is unique and does not depend on −→x−i, we will regroup all the solutions

(x0
1, x

0
2, ..., x

0
n) which constitute the unique Nash equilibrium point (case of 1) and 2) of Theorem 6). For the proof

of 3) of Theorem 6, the solution is unique but depends on −→x−i. For reader’s convenience, we take into account in this

paper the fact that in all the following of this paper,

0∑
j=1

fj = 0 for all reals fj , and more general
n∑

l=n+1

[
1∑l

j=1 αj
− 1∑l−1

j=1 αj
] e

∑l−1
j=1−λαj(k.xl−k.xj) = 0. (18)

Characterization of the first derivatives of the reward function:130

Proposition 7. Let i ∈ M and let −→x−i ∈ D−i. The two functions xi 7−→ P̃i(xi,
−→x−i) and xi 7−→ Πi(xi,

−→x−i) are

derivable on R. Moreover,

∂P̃i
∂xi

(xi,
−→x−i) = λαik

(
P̃i(xi,

−→x−i)− e
∑i
j=1−λαj(k.xi−k.xj)

)
(19)

and
∂Πi

∂xi
(xi,
−→x−i)) = (c+ (R+ c.xi)λkαi)P̃i(xi,

−→x−i))− (R+ c.xi)λkαi e
∑i
j=1−λαj(k.xi−k.xj) . (20)

Proof. In view of Proposition 2 we have by deriving:

∂P̃i
∂xi

(xi,
−→x−i) = αi

∑i−1
j=1−λαjk∑i
j=1 αj

e
∑i−1
j=1−λαj(k.xi−k.xj)

+ αi

n∑
l=i+1

[
1∑l

j=1 αj
− 1∑l−1

j=1 αj

]
λαik e

∑l−1
j=1−λαj(k.xl−k.xj) .

(21)

By rewriting this expression, we get:

∂P̃i
∂xi

(xi,
−→x−i) = αi

∑i−1
j=1−λαjk − λαik∑i

j=1 αj
e
∑i−1
j=1−λαj(k.xi−k.xj) +αi

λαik∑i
j=1 αj

e
∑i−1
j=1−λαj(k.xi−k.xj)

+ αi

n∑
l=i+1

[
1∑l

j=1 αj
− 1∑l−1

j=1 αj

]
λαik e

∑l−1
j=1−λαj(k.xl−k.xj)

= λαik
(
P̃i(xi,

−→x−i)− e
∑i−1
j=1−λαj(k.xi−k.xj)

)
.

Let us prove the second equality of preceding Proposition. In view of definition (10),

∂Πi

∂xi
(xi,
−→x−i) = cP̃i(xi,

−→x−i) + (R+ cxi)
∂P̃i
∂xi

(xi,
−→x−i). (22)

13



Finally, we have:

∂Πi

∂xi
(xi,
−→x−i) = cP̃i(xi,

−→x−i) + (R+ c.xi)λαik
(
P̃i(xi,

−→x−i)− e
∑i
j=1−λαj(k.xi−k.xj)

)
= (c+ (R+ c.xi)λkαi)P̃i(xi,

−→x−i)− (R+ c.xi)λkαi e
∑i
j=1−λαj(k.xi−k.xj) . (23)

The proof of the proposition is ended.

More explicit we have:135

Proposition 8. ∀ i ∈M, ∀ −→x−i ∈ D−i:

∂Πi

∂xi
(xi,
−→x−i) = αi

(
c− (R+ cxi)λk

∑i−1
j=1 αj∑i

j=1 αj

)
e
∑i−1
j=1−λαj(k.xi−k.xj)

− (c+ (R+ cxi)λαik)αi

n∑
l=i+1

[
1∑l−1

j=1 αj
− 1∑l

j=1 αj

]
e
∑l−1
j=1−λαj(k.xl−k.xj) .

Proof. We develop the expression (23) replacing P̃i(xi,−→x−i) by it expression in Proposition 2.

Remark 9. ∀ i ∈M, ∀ −→x−i ∈ D−i:
∂P̃i
∂xi

(xi,
−→x−i) < 0.

Proof. This Remark holds from the formula (21).

∂P̃i
∂xi

(xi,
−→x−i) = −λkαi

∑i−1
j=1 αj∑i
j=1 αj

e
∑i
j=1−λαj(k.xi−k.xj)

− λk(αi)
2

n∑
l=i+1

[
1∑l−1

j=1 αj
− 1∑l

j=1 αj

]
e
∑l
j=1−λαj(k.xl−k.xj) < 0.

Remark 10. ∀ i ∈M \ {1}, ∀−→x−i ∈ D−i, ∀y > 1
λk(1−

∑i−1
j=1 αj)

− R
c then

∂Πi

∂xi
(xi,
−→x−i)|xi=y < 0.

Proof. See expression of Πi in Proposition 8. Indeed, we have a sum of one negative or null term and η(xi) =

αi

(
c−(R+cxi)λk

∑i−1
j=1 αj∑i

j=1 αj

)
e
∑i−1
j=1−λαj(k.xi−k.xj). Since η(xi) is strictly negative if and only if xi > 1

λk(
∑i−1
j=1 αj)

−
R
C = 1

λk(1−
∑n
j=i αj)

− R
c . The remark is proved.140

Characterization of the second derivatives of reward function:
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Proposition 11. ∀ i ∈M, ∀ −→x−i ∈ D−i:

∂2Πi

∂x2
i

(xi,
−→x−i) = −αiλk

i−1∑
j=1

αj

(2c− (R+ cxi)λk
∑i−1
j=1 αj∑i

j=1 αj

)
e
∑i−1
j=1−λαj(k.xi−k.xj)

− (2c+ (R+ cxi)λαik)λkα2
i

n∑
l=i+1

[
1∑l−1

j=1 αj
− 1∑l

j=1 αj

]
e
∑l−1
j=1−λαj(k.xl−k.xj) .

Proof. It suffices to derive again with respect to xi
(
∂Πi
∂xi

(xi,
−→x−i)

)
using Proposition 8.

Remark 12. If i = 1, ∀ −−→x−1 ∈ D−1, we have: ∂2Π1

∂x2
1

(x1,
−−→x−1) < 0.

∀ i ∈M \ {1}, ∀ −→x−i ∈ D−i, if y < 2
λk(1−

∑n
j=i αj)

− R
c , then ∂2Πi

∂x2
i

(xi,
−→x−i)|xi=y < 0.145

Proof. It follows from Proposition 11.

Indeed: if i = 1, the result follows from
∑0
j=1 αj = 0,

If i 6= 1, expression in Proposition (11) is a sum of negative or null term and

Λ(xi) = −αiλk
(∑i−1

j=1 αj

)(
2c−(R+cxi)λk

∑i−1
j=1 αj∑i

j=1 αj

)
e
∑i−1
j=1−λαj(k.xi−k.xj). Since Λ(xi) is strictly negative if and

only if xi < 2
λk(

∑i−1
j=1 αj)

− R
c = 2

λk(1−
∑n
j=i αj)

− R
c . The remark is proved.150

We combine now all the preceding propositions and Remarks to show Theorem 6.

3.2. Proof of 1) of Theorem 6

Let’s prove the point 1-) of Theorem 6.

By Proposition 8, ∀ i ∈M , ∀ −→x−i ∈ D−i, if c = 0,

∂Πi

∂xi
(xi,
−→x−i) = αi

(
−Rλk

∑i−1
j=1 αj∑i

j=1 αj

)
e
∑i−1
j=1−λαj(k.xi−k.xj)

−Rλαikαi
n∑

l=i+1

[
1∑l−1

j=1 αj
− 1∑l

j=1 αj

]
e
∑l−1
j=1−λαj(k.xl−k.xj) < 0.

Then 0 is the unique point who maximizes xi 7→ Πi(xi,
−→x−i) on R+ = [0,+∞[, for all i ∈M .

So the point
−→
0 = (0, . . . , 0) is the unique Nash Equilibrium point.155

3.3. Proof of 2) of Theorem 6

Let us prove the point 2-) of Theorem 6. In Proposition 8, we take i = n. By the fact that

0∑
j=1

αj = 0

and
n∑

l=n+1

[
1∑

j=1 l − 1
− 1∑

j=1 l
] e

∑l−1
j=1−λαj(k.xl−k.xj) = 0,
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we have: ∀−−→x−n ∈ D−n,

∂Πn

∂xn
(xn,
−−→x−n) = αn(c− (R+ cxn)λk(1− αn)) e

∑n
j=1−λαj(kxn−kxj) .

∂Πn
∂xn

(xi,
−−→x−n) = 0⇐⇒ (c− (R+ cxn)λk(1− αn)) = 0⇐⇒ xn = 1

λk(1−αn) −
R
c .

Then x0
n = 1

λk(1−αn) −
R
c maximizes xn 7→ Πn(xn,

−−→x−n) on R for all −−→x−n ∈ D−n and it is unique.

• if x0
n = 1

λk(1−αn) −
R
c < 0,

(
1

λk(1−αn) −
R
c /∈ R+

)
, 0 is the unique arg max of Πi(.,

−−→x−n) and by assumption (5)160

x∗j = 0, ∀j ∈M \ n. Conclusion,
−→
0 is a unique Nash Equilibrium point.

• if x0
n = 1

λk(1−αn) −
R
c ≥ 0, then we pose x∗n = 1

λk(1−αn) −
R
c . For i < n, we fix

−→
x∗−i = (x∗n, . . . , x

∗
n) ∈ D−i and

we study the function xi 7→ Πi(xi,
−→
x∗−i).

By simple computation, we have for all fixed
−→
x∗−i ∈ D−i,

∂Πi

∂xi
(xi,
−→
x∗−i)|xi=x∗n = 0.x∗n is candidate. (24)

Indeed, we fix
−→
x∗−i ∈ D−i, by Proposition 8, we have:

∂Πi

∂xi
(xi,
−→
x∗−i)|xi=x∗n = αi

(
c− (R+ cx∗n)λk

∑i−1
j=1 αj∑i

j=1 αj

)
e0

− (c+ (R+ cx∗n)λαik)αi

n∑
l=i+1

[
1∑l−1

j=1 αj
− 1∑l

j=1 αj

]
e0 .

By using the assumption αi = αn ∀i ∈M \ i, the equation (24) holds.

Now, let us study ∂2Πi
∂x2
i

(xi,
−→
x∗−i). By Remark 12,

∗ For i = 1, ∂
2Π1

∂x2
1

(x1,
−−→
x∗−1) < 0 on R+, so Π1(x1,

−−→
x∗−1) is concave on R+, and then x1 = x∗n is the unique point on

R+ which maximizes the function :

x1 7→ Π1(x1,
−−→
x∗−1).

∗ For i ∈M \ {1}, if y < 2
λk(1−

∑n
j=i αj)

− R
c then

∂2Πi

∂x2
i

(xi,
−→
x∗−i)|xi=y < 0.

So xi 7→ Πi(xi,
−→
x∗−i) is concave on [0, 2

λk(1−
∑n
j=i αj)

− R
c ] and then xi = x∗n is the unique maximum of xi 7−→

Πi(xi,
−→
x∗−i) on [0, 2

λk(1−
∑n
j=i αj)

− R
c ].

By Remark 10, for all y ≥ 2
λk(1−

∑n
j=i αj)

− R
c >

1
λk(1−

∑n
j=i αj)

− R
c

∂Πi

∂xi
(xi,
−→
x∗−i)xi=y < 0.

So x∗n maximizes also xi 7→ Πi(xi,
−→
x∗−i) on R+∗. In the other words,

1

λk(1− αn)
− R

c
= arg max

xi∈R+
Πi(xi,

−→
x∗−i). ∀i ∈M.

16



The point

(x∗1, x
∗
2, ..., x

∗
n) =

(
1

λk(1− αn)
− R

c
,

1

λk(1− αn)
− R

c
, . . . ,

1

λk(1− αn)
− R

c

)
(25)

is a unique Nash equilibrium point in Ξ.

Replacing αn by 1− 1
n , the 2) of Theorem 6 is proved.165

3.4. Proof of 3) of Theorem 6

To prove this part, we use the following Proposition.

Proposition 13. If c > 0, for all i = 1, . . . , n, for all fixed −→x−i ∈ D−i, there exists an unique point x0
i ∈ R which

maximizes xi 7→ Πi(xi,
−→x−i) on R with

x0
i ∈


H[−−→x−1] =

[
min

{
1

λk(1−α1) −
R
c , x2

}
,max

{
1

λkα2
− R

c , x2

}]
if i = 1

H[−→x−i] =
[
min

{
xi+1,

1
λk(1−αi) −

R
c

}
, 1
λk(1−

∑n
j=i αj)

− R
c

]
if i = 2, . . . , n.

Proof. The proof of this proposition is divided in two cases. The case where i = 1 and the case where i > 1 separately.

170

3.4.1. For i = 1

To prove the case i = 1, we prove the following proposition.

Proposition 14. For all fixed −−→x−1 ∈ D−1 we have:
∂Π1

∂x1
(x1,
−−→x−1) ≤ 0 if x1 ≥ max

{
1

λkα2
− R

c
, x2

}
∂Π1

∂x1
(x1,
−−→x−1) ≥ 0 if x1 ≤ min

{
1

λk(1− α1)
− R

c
, x2

}
then, there exists an unique x0

1 ∈ H[−−→x−1] =
[
min

{
1

λk(1−α1) −
R
c , x2

}
,max

{
1

λkα2
− R

c , x2

}]
which maximizes

x1 7→ Π1(x1,
−−→x−1) on R.

Proof. We give here a sketch of the proof. Before, we recall that

for all reals fj ,
0∑
j=1

fj = 0 and more general
n∑

l=n+1

[
1∑l−1

j=1 αj
− 1∑l

j=1 αj
] e

∑l−1
j=1−λαj(k.xl−k.xj) = 0.

By Proposition 8, we have:

∂Π1

∂x1
(x1,
−−→x−1) = c− (c+ (R+ cx1)λα1k)α1

α2

α1(α1 + α2)
e−λα1(k.x2−k.x1)

− (c+ (R+ cx1)λα1k)α1

n∑
l=3

[
1∑l−1

j=1 αj
− 1∑l

j=1 αj

]
e
∑l−1
j=1−λαj(k.xl−k.xj) .
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Since −−→x−1 is fixed in D−1, we have: If x1 ≥ x2 then e−λα1(k.x2−k.x1) ≥ 1. so,

∂Π1

∂x1
(x1,
−−→x−1) ≤ c− (c+ (R+ cx1)λα1k)α1

α2

α1(α1 + α2)

− (c+ (R+ cx1)λα1k)α1

n∑
l=3

[
1∑l−1

j=1 αj
− 1∑l

j=1 αj

]
e
∑l−1
j=1−λαj(k.xl−k.xj) .

∂Π1

∂x1
(x1,
−−→x−1) is negative if and only the first term is negative. In other word if and only x1 ≥ 1

λkα2
− R

c .175

In summary, if x1 ≥ max
{
x2,

1
λkα2

− R
c

}
then ∂Π1

∂x1
(x1,
−−→x−1) < 0. By the same reasoning, if x1 ≤ min

{
x2,

1
λk(1−α1) −

R
c

}
then ∂Π1

∂x1
(x1,
−−→x−1) ≥ 0. The existence of one point between max

{
x2,

1
λkα2

− R
c

}
and min

{
x2,

1
λk(1−α1) −

R
c

}
maximizing the function x1 7−→ Π1(x1,

−−→x−1), say H[−−→x−1], is proved. To prove the uniqueness, we use the second

derivative in Proposition 11 and show that the function x1 7→ Π1(x1,
−−→x−1) is concave on H[−−→x−1].

3.4.2. For i ≥ 2180

To prove the case i ≥ 2, we prove the following proposition.

Proposition 15. For i ≥ 2, for all fixed −→x−i ∈ D−i we have:
∂Πi

∂xi
(xi,
−→x−i) < 0 if xi >

1

λk(1−
∑n
j=i αj)

− R

c

∂Πi

∂xi
(xi,
−→x−i) > 0 if xi < min

{
xi+1,

1

λk(1− αi)
− R

c

}
then there exists an unique x0

i ∈ H[−→x−i] =
[
min

{
xi+1,

1
λk(1−αi) −

R
c

}
, 1
λk(1−

∑n
j=i αj)

− R
c

]
which maximizes

xi 7→ Πi(xi,
−→x−i) on R.

Proof. Let i ∈M \ {1}. Let −→x−i ∈ D−i fixed i.e. −→x−i = (x1, . . . , xi−1, xi+1, . . . , xn) such that x1 ≤ · · · ≤ xi−1 ≤

xi+1 ≤ · · · ≤ xn. Let xi ∈ R. We set −→x = (xi,
−→x−i) = (x1, . . . , xi−1, xi, xi+1, . . . , xn). The proof of Proposition185

15 is similar to the proof of Proposition 14. We use Proposition 11 and Remark 4.

Combining Proposition 14 and Proposition 15, we get Proposition 13.

Remark 16. If i = n, we have xi+1 = xn+1 = +∞ and

1

λk(1− αn)
− R

c
=

1

λk(1−
∑n
j=n αj)

− R

c

So x0
n = 1

λk(1−αn) −
R
c .

Corollary 17. For all i = 1, 2, ..., n and for all fixed −→x−i ∈ D−i, by Proposition 13, there ∃x0
i ∈ H[−→x−i] which190

maximizes xi 7→ Πi(xi,
−→x−i) on R. If x0

i < 0, then 0 maximizes xi 7→ Πi(xi,
−→x−i) on R+.
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Proof. It is the consequence of the definition of the x0
i . Indeed for all fixed−→x−i ∈ D−i, since x0

i satisfies the maximum

then we have: 
∂Πi

∂xi
(xi,
−→x−i) ≥ 0 if xi ≤ x0

i

∂Πi

∂xi
(xi,
−→x−i) ≤ 0 if xi ≥ x0

i .

If x0
i < 0, then for all xi ≥ 0 > x0

i ; ∂Πi
∂xi

(xi,
−→x−i) ≤ 0. Therefore, 0 maximizes xi 7→ Πi(xi,

−→x−i) on R+ = [0,+∞[

since the function xi 7−→ Π(xi,
−→x−i) is decreasing in R+.

Resume: So far, we have proved for 3) of Theorem 6, the following:

For all i = 1, 2, ..., n and for all fixed −→x−i ∈ D−i, by Proposition 13, there ∃x0
i ∈ H[−→x−i] which maximizes195

xi 7→ Πi(xi,
−→x−i) on R and If x0

i < 0, then 0 maximize xi 7→ Πi(xi,
−→x−i) on R+.

In Proposition 13 and corollary 17, we have proved the existence of the maximizing points, x0
i in R+ but they

don’t ensure the existence of these points in the domain Ξ as we have defined it at the beginning. In the following

proposition, we study the relation between the arg max points x0
i and x0

i+1 for all i. Note that the existence of x0
i ,200

for all i, depends on the fixed point −→x−i ∈ D−i. We will show that all relations between the maximizing strate-

gies x0
i and x0

i+1 are directly equivalent to relations between the hash powers of miners Mi and Mi+1 says αi and

αi+1. In others words, more the miner Mi is power, more the optimal number of transaction to included by miner

Mi is larger. This allows us to find the Nash equilibrium point in our domain of study Ξ defined in (6) at the beginning.

205

Proposition 18. Let x0
i ∈ R which maximizes xi 7→ Πi(xi,

−→x−i) on R as defined in Proposition 13, let αi the power

of miner Mi and Θi is the expected reward of miner Mi. We have the following relation:

αi = αi+1 ⇐⇒ x0
i = x0

i+1 (26)

αi < αi+1 ⇐⇒ x0
i < x0

i+1. (27)

In summary, in 3) of Theorem 6, we have shown: for all i, for all fixed −→x−i ∈ D−i there exists an unique

(x0
i ) ≥ 0 such that , x0

i = arg maxxi∈R+ Θi(x
0
i ,
−→x−i). And if α1 ≤ α2 ≤ · · · ≤ αn we have x0

1 ≤ · · · ≤ x0
n then

(x0
1, · · · , x0

n) ∈ Ξ. Conclusion: we can say that if α1 ≤ α2 ≤ · · · ≤ αn, there exist one point
−→
x∗ = (x∗1, . . . , x

∗
n)210

which is a Nash equilibrium point in Ξ defined in (6). The proof of 3) of Theorem 6 is ended. The Proof of Theorem

6 is ended. We will show in Remark 20 below that the condition α1 ≤ α2 ≤ · · · ≤ αn is always satisfied.

We can retrieve easily the result of 2). See the following remark.

Remark 19. If α1 = α2 = · · · = αn, then

x∗1 = x∗2 = · · · = x∗n = max

{
0,

1

λk(1− αn)

}

19



Proof. By Remark 16, x0
n = 1

λk(1−αn) . The assumption α1 = α2 = · · · = αn and Proposition 18 give: for

i = 1, . . . , n, x0
i = x0

n = 1
λk(1−αn) . Finally, by Corollary 17, x∗1 = · · · = x∗n = max

{
0, 1

λk(1−αn)

}
215

In the following remark, we explain more explicit the approach used here to prove 3) of Theorem 6. We will show

also that the hypotheses (5) is only technical and allow us to facilitate the calculations.

Remark 20. Let Sn the set of all permutations on the set M = {1, 2, . . . , n}. For each permutation σ ∈ Sn, we

define:

Ξ(σ) = {(x1, . . . , xn) ∈ Rn | xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n)}.

By definition, ⋃
σ∈Sn

Ξ(σ) = Rn.

Remark that our main assumption (5) in Section 2 corresponds to take the permutation σ = Id (Id(i) = i) and then,

Ξ defined in (6) corresponds to Ξ(Id). So we have showed in 3) of Theorem 6 that:

αId(1) ≤ αId(2) ≤ · · · ≤ αId(n) =⇒ x0
Id(1) ≤ x

0
Id(2) ≤ · · · ≤ x

0
Id(n).

In others words,

αId(1) ≤ αId(2) ≤ · · · ≤ αId(n) =⇒

the point (x0
Id(1), x

0
Id(2), · · ·x

0
Id(n)) ∈ ΞId . And then one Nash Equilibrium is given. But this reasoning works also,

for any permutation σ in Sn. Indeed, for all permutation σ in Sn \ {Id} it suffices to rename xσ(i) = yi for all i ∈M,

and by copying line by line this paper, replacing xi by yi, we have the same results as in Theorem 6.

Indeed, ∀σ ∈ Sn, for all −−−→xσ(i)− ∈ Dσ(i)−, there exists an unique x0
σ(i) ∈ H[−−−→xσ(i)−] such that:

x0
σ(i) = arg max

xσ(i)∈R+
Θ̃σ(i)(xσ(i),

−−−→xσ(i)−)

and if ασ(1) ≤ ασ(2) ≤ · · · ≤ ασ(n), then x0
σ(1) ≤ x0

σ(2) ≤ · · · ≤ x0
σ(n), that means (x0

σ(1), x
0
σ(2), ..., x

0
σ(n)) ∈ Ξ(σ).

That is sufficient to give the existence of one Nash equilibrium point.

Recall that the miner’s powers (αi)i∈M are known at the beginning. There exists an unique σ0 ∈ Sn such that

ασ0(1) ≤ ασ0(2) ≤ · · · ≤ ασ0(n).

If we change our field of study, by taking at the beginning Ξσ0 instead Ξ, i.e, by changing assumption (6) by:

xσ0(1) ≤ xσ0(2) ≤ · · · ≤ xσ0(n),

the maximazing points

(x0
σ0(1), x

0
σ0(2), · · · , x

0
σ0(n)) ∈ Ξ(σ0).

That is sufficient to get on Nash equilibrium point.
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3.5. Remarks

Remark 21. A simple case but not obvious, is when all miners include the same number of transactions in their blocks,220

formally xi = y ∈ R+ for all i ∈ M. Then, for each miner Mi ∈ M, the probability that the miner will earn the

reward is equal to the probability that they will solve the mining problem first, because all miners take the same time

to broadcast their solution to the network to be verified. This probability is directly proportional to the hash’s power

of miner Mi, called αi. Then, Θi(x) = (R+ c.xi)αi.

Remark 22. If n is large enough, then n
λk(n−1) −

R
c −→

1
λk −

R
c . In Bitcoin implementation, reward R is halved225

approximately every 4 years. We observe a geometric sequence with parameter 1
2 . We can easily compute the year

when reward R will be less than c and then the year when R
c will be small enough. This computation is easiest if λ, k

and c are fixed. Finally, we conclude that if n is large enough and if λ, k and c are constant, then n
λk(n−1) −

R
c would

be larger than zero.

4. Conclusion230

In this article, we have introduced and studied the mining game in Bitcoin blockchain. We have showed that this

process is a competition between some members of the network who choose to mine in the hope of getting a reward,

called miners. When miners make a decision regarding how many transactions they should include in the block that

they are mining, they must study the trade-off between, rewards and time. If they include more transactions in the

block, they will earn more transaction fees if they find the current block first. If they include fewer transactions in the235

block, they will minimize the time that they need to spread their block solution to the network and will be adopted by

the majority, thereby maximizing their probability of including their block in the public blockchain first. We studied

the case analytically and found the Nash equilibrium points according to the reward function and the powers of the

miners. If the reward is fixed, then the miners will not play a Nash equilibrium. However, the Nash equilibrium is

only reached when no transactions are included by the miners. If the reward depends on the number of transactions240

(i.e, a fixed reward and transactions fees), Nash equilibrium point are symmetric. And there exists a large set of

parameters for which not including any transaction in a block for both miners is the only Nash equilibrium situation of

the Bitcoin’s mining game (second case). In the third case, we have proved the existence of Nash equilibrium points

but we have not given explicitly the points. Reader’s can remark in the proof of the third case that for each miner Mi,

for all strategies−→x−i token by other miners, there exists one strategy x0
i which maximizes its reward function. We have245

given also an interval in which the values of x0
i is located. This remark is limited in reality by the faculty of agents to

coordinate. Finding the maximizing strategy for all miner Mi, independently of others strategies could be a good line

for future research. Even if our purpose gives some intuitions about the model rather than derive applicable results,

we believe that it represents a good starting point for future research about the mining problem in Bitcoin or Ethereum

blockchain.250
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5. Related work and Discussion

In this part, we discuss our model and related works to this one. The security of the Bitcoin network is ensured by

the mining protocol. The reward structure provides an incentive for miners to contribute their resources to the system,

and is essential to the currency’s decentralized nature.

N. Houy in [1] consider the case of two miners and shows that if the marginal cost to a miner to added transactions to a255

block was zero, then a miner would include all transactions whatever the fee attached. G. Andressen explained in [4],

however, that due to the increased chances of orphaning a block, the marginal cost is not zero; a rational miner should

include a given transaction if its fee is sufficient to cover the added risk of orphaning. Extending on the work of Houy,

P. Rizun in [2], account for Andresen’s orphaning factor and show that a rational miner will not in general include all

fee-paying transactions, and that a healthy fee market is, in fact, the expected outcome of rational miner behavior, if260

block size is unconstrained by the protocol. He shows that a transaction fees market should emerge without a block

size limit if miners includes transactions in a manner that maximizes the expectation value of their profit.

By considering that miners are rational and they try to maximize their revenues, we account for P. Rizun and G.

Andressen, have study the Bitcoin mining process and have proved that it is a speed game between miners and we

have given Nash equilibrium points of this game under the assumptions (H). In other words, we have considered265

Rizun’s assumptions in a network without attack, and compute Nash equilibrium points of the Bitcoin mining game,

by doing cumbersome calculations. Therefore, as we have announced it in the conclusion, we believe that it will

be very interesting to give explicitly in this model, the dominant strategy for each miner Mi, independently of other

strategies. We think that this will be a valuable help for mining investors in Bitcoin. Extending our model to Ethereum

protocol would be also an interesting work.270

The delay hypotheses that we have used in this model and so used in [2] by P. Rizun as a linear function of the block’s

size can be debated within the scientific community. Some papers working about the mining process consider that the

transmission of blocks in the network is intantaneous. This is the case in [8] where I. Eyal and E. G. Sirer assume

in [8] that the block propagation is instantaneous and study the reward earned by a colluding pool of miners using

the so-called selfish-mining strategy, compared to the reward associated to the honest mining. We believe strongly275

that is not true in reality and this is proved in many paper. For example in [10] Decker and Wattenhofer measured

the difference between the time that a node announced the discovery of a new block or a transaction and the time

that it was received by other nodes for a period of operation in the actual Bitcoin network. They observed that the

median time until a node receives a block was 6.5 seconds, the mean was 12.6 seconds and the 95th percentile of the

distribution was around 40 seconds. Moreover, they showed that an exponential distribution provides a reasonable fit to280

the propagation delay distribution. In paper [9], J. Gôbel and others extend the selfish-mine model of [8] by assuming

that the communication delay between two miners or pool of miners Mi and Mj for all i 6= j in the network, whether

collunding pool or honest pool, that lie a distance dij apart is normally distributed with a mean kdij proportional to this

distance and a constant variance σ2, independently of other transmission delays. This assumption does not contradict

22



Decker and Wattenhofer. Thus, the question of delay’s hypothesis in Bitcoin network remains debatable. Even if the285

security of Bitcoin seems infallible in reality thanks to the mining game and the contribution of resources by economic

agents (miners), efforts should be made to reduce energy consumption for the mining protocol. Example: K. O’Dwyer

and D. Malone show in [10] that the profitable mining process in Bitcoin consume an energy comparable to Ireland’s

electricity consumption.

Energy efficient is an important topic in the current context of global warming.290
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