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ON STABILITY OF LOGARITHMIC TANGENT SHEAVES.

SYMMETRIC AND GENERIC DETERMINANTS

DANIELE FAENZI, SIMONE MARCHESI

Abstract. We prove stability of logarithmic tangent sheaves of singular hypersurfaces D of
the projective space with constraints on the dimension and degree of the singularities of D.
As main application, we prove that determinants and symmetric determinants have stable
logarithmic tangent sheaves and we describe an open dense piece of the associated moduli
space.

Introduction

Given a hypersurface D ⊂ PN defined by a homogeneous form F of degree d over a field k,
the vector fields on P

N which are tangent to D define the logarithmic tangent sheaf TD of D.
This sheaf is the first syzygy of the Jacobian ideal sheaf JD of D, as the partial derivatives
∇(F ) of F , i.e., the generators of the Jacobian ideal JD, express it as the kernel of the
Jacobian matrix of F :

(1) 0→ TD → (N + 1).OPN

∇(F )
ÐÐÐ→ OPN (d − 1).

If the characteristic of k does not divide d, the sheaf TD(1) is a subsheaf of TPN , usually
denoted by TPN ⟨D⟩, and the quotient of TPN by TPN ⟨D⟩ is the equisingular normal sheaf
of D. The sheaf TPN ⟨D⟩, or rather its dual, often denoted by ΩPN (logD), was studied in
[Del70] and [Sai80] in connection with Hodge theory. All these sheaves play a major role
in the deformation theory of the embedding D ↪ P

N , see [Ser06, Section 3.4]. The graded
module of global sections of TD, which we denote by TD, is called the module of logarithmic
derivations, or of Jacobian syzygies of F . It has been also studied in detail, most notably for
hyperplane arrangements, see for instance [OT92].

For some noteworthy classes of hypersurface singularities the logarithmic tangent sheaf is
locally free, and this plays an important role in the theory of discriminants and unfolding of
singularities, cf. for instance [BEGvB09]. For some remarkable classes of divisor, the module
TD is itself free, see for instance [Ter81], so that TD splits as a direct sum of line bundles.

In contrast to this, for some interesting classes of hypersurfaces the sheaf TD is stable.
This happens for instance for generic arrangements of at least N + 2 hyperplanes [DK93],
but also for many highly non-generic arrangements cf. [FMV13, AFV16]. The stability
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2 D. FAENZI, S. MARCHESI

of TD for hypersurfaces with isolated singularities was studied in [Dim17], in connection
with the Torelli problem, on whether D can be reconstructed from TD. Stability of TD is
a fundamental preliminary step to connect the study of equisingular deformations of D to
moduli problems of sheaves over P

N . However, few methods for proving stability of TD are
available today, indeed very little seems to be known besides the case of arrangements and
isolated singularities of curves and surfaces.

The goal of this paper is to propose some tools to prove stability in a wide range of
situations. The general strategy is find a suitable closed subvariety X ⊂ PN where we may
prove that the restriction of TD is stable and then argue that this implies stability of TD itself.

The first possibility to explore is to take X to be a linear space disjoint from the singular
locus sing(D) of D. In the first part of this paper (see §1) we show that TD ∣X is stable
provided some vanishing of global sections of the reflexive hulls of exterior powers of TD in
terms of the codimension of singularities of D. More specifically, setting s = dim(sing(D))
and assuming s ≤ N − 2, we obtain the following result.

Theorem A. Assume that for all integers p with 1 ≤ p ≤ s + 1 we have:

H0 (∧pTD(q)∗∗) = 0, with: q = ⌊(d − 1)p
N

⌋ .
Then TD is slope-stable.

We may also formulate the result in terms of the Hilbert function of TD only.

Corollary B. The sheaf TD is slope-stable if:

H0 (TD(q)) = 0, with: q = ⌊(d − 1)(s + 1)
N

⌋ .
For isolated hypersurface singularities, this allows to generalize [Dim17, Theorem 1.3] and

[Dim19, Theorem 3.3] to arbitrary dimension.

Theorem C. Assume dim(sing(D)) = 0 and set q = ⌊d−1
N
⌋. Then TD is stable if:

deg(sing(D)) < (d − q − 1)(d − 1)N−1.
In the second part of this paper, we consider some natural families of divisors, not covered

by the previous results, where stability of TD can be proved. Indeed, many interesting
hypersurfaces tend to have singularities of small codimension, for instance many divisors
coming from orbit closures, discriminants or from moduli theory are highly singular. In
this case, one strategy we propose is to pick a subvariety X ⊂ P

N disjoint from sing(D),
such that TD restricts over X to a vector bundle of some special form, whose stability is
under control, and deduce from this the stability of TD. A natural candidate for this is
the bundle of principal parts En−1. This is defined as kernel of the evaluation of sections
H0(OX(n−1))⊗OX → OX(n−1). We contend that in some relevant situations TD will restrict
to a slope-stable bundle of principal parts En−1 and that this suffices to prove stability of TD

itself. Let us point out that vector bundles of principal parts on projective spaces, and in
particular their stability, is a matter of independent interest, see for example [Maa05, Re12].
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We contribute to this by showing that the vector bundle of principal parts on a smooth
quadric surface is slope-stable (see Proposition 3.8). For this we make use of representations
of a quiver supported on a planar graph, rather than the tree appearing in [Re12].

Going back to the main families of divisors where our strategy applies, let us first mention
symmetric discriminants, cf. Section 2. In this case, we argue that the suitable subvariety X
is a projective plane, where stability of vector bundles of principal parts is well-known. Also,
in view of the Goto–Józefiak–Tachibana’s resolution, see [Józ78, GT77] (cf. also [Wey03,
Section 6.3.8]), we get that TD is a Steiner sheaf, i.e., it has a linear resolution of length two.
Altogether, the result is the following.

Theorem D. Let D be the determinant divisor of symmetric n × n matrices in P
(n+1

2
)−1.

Then the logarithmic sheaf TD satisfies:

i) the sheafified minimal graded free resolution of TD takes the form:

0→ (n
2
).OPN (−2)→ (n2 − 1).OPN (−1) → TD → 0;

ii) the restriction of TD to a generic plane P ⊂ PN is isomorphic to the bundle of principal
parts En−1 defined as kernel of the evaluation map:

(n + 1
2
).OP → OP (n − 1);

iii) if char(k) = 0, the logarithmic sheaf TD is slope-stable.

The next family we wish to mention is one of the main characters of this paper, namely the
generic determinant, i.e. the divisor D defined as determinant of an n×n matrix of variables

(xi,j)1≤i,j≤n in P
N = Pn2−1. This time, the suitable subvariety X ⊂ PN is a smooth quadric

surface. As we mentioned above, the bundle of principal parts En−1 on X is slope-stable, so
the main point is to prove that TD restricts over X to the bundle En−1. To do this, we analyze
the Artinian reduction AL of the Jacobian algebra of D over the linear span L ≃ P3 ⊂ PN of
X. In particular, we prove a quadratic Lefschetz property of AL, which in turn is obtained by
specializing L to a well-chosen linear section which we call semigeneric. It will turn out that
the intersection D ∩L is a singular surface which is resolved by a projective plane, blown-up
at n(n − 1) complete intersection points. Studying carefully the divisors on this blow-up we
are able to prove the next result for all n ≥ 2.

Theorem E. Let D be the generic determinant divisor of n×n matrices in P
n2−1. Then the

logarithmic sheaf TD satisfies:

i) the sheafified minimal graded free resolution of TD takes the form:

0→ OPN (−n − 1)→ n2.OPN (−2)→ 2(n2 − 1).OPN (−1)→ TD → 0;

ii) the restriction of TD to a generic quadric surface X ≃ P1 ×P1 ⊂ PN is isomorphic to
the bundle of principal parts En−1 defined as kernel of the evaluation map:

n2.OX → OX(n − 1);
iii) the sheaves En−1 and TD are slope-stable.
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In light of the last item, it is natural to investigate the moduli space of semistable sheaves,
which we denote by Mn, that contains the sheaf TD. This is done in Section 4. Let us set
up the framework needed to state our result in this direction. Consider two n-dimensional
vector spaces U and V and the group SL(U) × SL(V ). Put A = Homk(V,U) ≃ V ∗ ⊗ U and
consider the standard representation of SL(U) on U , tensored with idV ∗ , so that SL(U) acts
linearly on A. This action commutes with the SL(V )-action on A obtained via the dual
representation on V ∗ tensored with idU . So A is a representation of SL(U) × SL(V ), which
is faithful. We get an injective map SL(U) × SL(V ) → GL(A) and an induced injective
morphism SL(U) × SL(V ) → PGL(A) which identifies SL(U) × SL(V ) to a closed subgroup
of PGL(A).

For any f ∈ Endk(A), we consider a map Mf ∶ U ⊗ OP(A)(−1) → V ⊗ OP(A) canonically
associated with f . It turns out that, setting Df = V(det(Mf )), we have:

TDf
is semistable ⇔ [f] ∈ PGL(A).

The subgroup SL(U) × SL(V ) acts on the matrices Mf by two-sided multiplication and this
does not alter the isomorphism class of TDf

. Hence the assignment Ψ ∶ [f] ↦ TDf
defines a

morphism:

Ψ ∶ PGL(A)/SL(U) × SL(V )→Mn

Of course, the transpose tMf of Mf lands on the same divisor Df . Our main result
concerning the moduli space Mn is that, up to the 2 ∶ 1 cover arising from transposition, the
map Ψ captures essentially the whole geometry of the open dense piece of Mn consisting of
logarithmic sheaves.

Theorem F. The map Ψ is an étale 2 ∶ 1 cover onto its image. The image of Ψ is a smooth
open affine piece of an irreducible component of Mn, of dimension (n2 − 1)2.

An analogous description as an algebraic group quotient could be obtained as well for the
case of hypersurfaces defined by determinants of symmetric matrices. Nevertheless, recall
that the generic element of the moduli space of semistable Steiner sheaves is locally free,
therefore the image of such quotient would sit as a closed subscheme of the relevant moduli
space. So there is no direct analogue of Theorem F for symmetric determinants.

Notation. Let us fix some notation which will be used throughout this paper. Denote by
k a field, whose assumptions may change in different sections. Consider the polynomial ring
R = k[x0, . . . , xN ] and, if A is a graded R-module, we denote by Ap its degree-p summand.

If U is a k-vector space, we write P(U) for the set of hyperplanes of U . For an integer
m, if E is a vector space, or module, or a sheaf, we write m.E for the direct sum of m copies
of E. Put PN = P((N + 1).k) = Proj(R). Given a non-zero homogeneous polynomial F ∈ R
of degree d, write D = V(F ) for the hypersurface of PN defined by F . Denoting by ∇(F )
its Jacobian matrix, the Jacobian ideal JD is the ideal generated by ∇(F ) and JD is the
Jacobian ideal sheaf. The logarithmic tangent sheaf TD associated to D is defined as the
kernel of the gradient of F :

0→ TD → (N + 1).OPN

∇(F )
ÐÐÐ→ JD(d − 1) → 0.
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Given a coherent sheaf F and i ∈ N, we write Hi
∗(F) for the i-th cohomology module of

F, namely Hi
∗(F) = ⊕t∈ZHi(F(t)). The module of logarithmic derivations of D is defined

as TD = H0
∗(TD). Moreover, sing(D) will denote the singular locus of D, equipped with its

natural scheme structure, which is to say sing(D) = V(JD). We write s = dim(sing(D)).
We will say that a coherent sheaf on a subvariety X ⊂ PN is stable or semistable if it is so

in the sense of Gieseker, with respect to the hyperplane divisor on X. We will use the notion
of slope-stability, again with respect to the hyperplane divisor, and use that slope-stability
implies stability while semistability implies slope-semistability. We refer to [HL97] for basic
material on semistability of sheaves.
Acknowledgements. We would like to thank the Institute of Mathematics, Statistics and
Scientific Computing in Campinas and the Institut de Mathématiques de Bourgogne in Dijon
for the warm hospitality and for providing the best working conditions. We are grateful to
Ronan Terpereau for useful comments.

1. Stability for low dimensional singularities

In this section, we study the general case, i.e. hypersurfaces D inside P
N of degree d ≥ 2.

Specifically, Section 1.1 is devoted to prove Theorems A and C and Corollary B. Sharpness of
these results is also discussed briefly. Finally, in Section 1.2 we provide some further remarks
and comments about the Torelli problem for logarithmic derivations, namely the question of
whether the hypersurface D can be reconstructed from the sheaf TD.

1.1. Stability of sheaves of logarithmic derivations. We first prove Theorem A. Our
strategy is to exclude the existence of destabilizing subsheaves having rank up to s+1 making
use of the vanishing assumptions of spaces of global sections of reflexive hulls of exterior
powers with a refinement of Hoppe’s criterion. Then, we take care of potentially destabilizing
subsheaves of rank between s+2 and n−1 by restricting TD to a linear space L of codimension
s + 1 disjoint from the singular locus sing(D) and working on the resulting Koszul complex
of ∇(F )∣L.
Proof of Theorem A. We assume that TD is unstable despite satisfying the assumptions and
we seek a contradiction. Without loss of generality, we may assume that the field k is
algebraically closed.

Consider a destabilizing subsheaf K of TD, set r = rk(K) and put c = deg(c1(K)) so that
r < N and:

(2)
c

r
≥ 1 − d

N
.

Without loss of generality, we may assume that TD/K is torsion-free. The embedding
j ∶ K↪ TD gives a non-trivial map ∧rK→ ∧rTD and, applying the bi-duality functor, we get
a non-trivial map:

jr ∶ OPN (c) ≃ (∧rK)∗∗ → (∧rTD)∗∗.
The image of jr is a quotient of OPN (c), hence it is a torsion sheaf unless jc is injective. The
former case is excluded since this image sits in (∧rTD)∗∗, so jr is injective and

(3) H0(PN ,∧rTD(−c)∗∗) ≠ 0.
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This non-vanishing contradicts our vanishing assumptions if r ≤ s+1. Hence we must have
s + 2 ≤ r ≤ N − 1. In other words, we have to prove that TD has no destabilizing subsheaf
of rank r with s + 2 ≤ r ≤ N − 1. So the proof is finished for s = N − 2 but needs further
argumentation for s < N − 2.

To comply with this, we consider a linear subspace L of PN of codimension s + 1 which is
skew to sing(D) and meets transversely the locus where TD/K is not locally free. Observe
that dim(L) = N − s − 1 ≥ 1. Denote F = (TD)∣L. Then the exact sequence defining TD

restricts to:

(4) 0→ F → (N + 1).OL → OL(d − 1) → 0

and therefore the sheaf F is locally free. Moreover, the map j restricts to an injective map
jL ∶ K∣L → F and, taking exterior powers of jL, we get:

H0(L,∧rF(−c)) ≠ 0.
Using the natural isomorphism ∧rF ≃ ∧N−rF∗(1 − d), this amounts to:

(5) H0(L,∧N−rF∗(1 − d − c)) ≠ 0.
Now, since d ≥ 2 and r < N , the inequality (2) gives:

c ≥ r(1 − d)
N

> 1 − d,
or, equivalently, 1−d− c < 0. Also, s+2 ≤ r ≤ N −1 gives 1 ≤ N −r ≤ N −s−r−2 ≤ dim(L)−1.
Therefore, to reach the desired contradiction, it suffices to show:

(6) H0(L,∧pF∗(−1)) = 0, for all integers p with 1 ≤ p ≤ dim(L) − 1.
To get this, we dualize (4) and take p-th exterior power to write an exact complex:

p

⋀(OL(1 − d)→ (N + 1).OL)Ð→ ∧pF∗ → 0.

Tensoring with OL(−1) and taking cohomology, since p ≤ dim(L) − 1 we get
H0(L,∧pF∗(−1)) = 0. So (6) is proved and the theorem as well. �

Proof of Corollary B. Given an integer p with 1 ≤ p ≤ s + 1, the p-th exterior power of the
injection i ∶ TD → (N + 1).OPN gives maps:

p

⋀TD
i1Ð→ (N + 1). p−1⋀ TD → ⋯ ip−1

ÐÐ→ (N + 1)(p−1).TD,

and taking reflexive hulls the composition ip−1 ○⋯ ○ i1 gives:

⋀p TD

ip−1○⋯○i1//

��

(N + 1)(p−1).TD

(⋀p TD)∗∗ // (N + 1)(p−1).T∗∗D
Since the kernel of each of the maps i1, . . . , ip−1 is a torsion sheaf, we get that ip−1 ○⋯ ○ i1
induces an injective map:

∧pTD(q)∗∗ ↪ (N + 1)(p−1).TD(q).
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Therefore, for all p with 1 ≤ p ≤ s + 1, setting qp = ⌊ (d−1)pN
⌋ and assuming H0(TD(q)) = 0 we

get that H0(∧pTD(qp)∗∗) = 0 for all p so Theorem A gives stability of TD. �

Proof of Theorem C. We assume deg(sing(D)) < (d − q − 1)(d − 1)N−1 and prove that TD is
slope-stable. Since the sheaf TD is reflexive and dim(sing(D)) = 0, in view of Theorem A we
only have to check:

H0(TD(q)) = 0.
The degree (i.e. the length) of the 0-dimensional subscheme sing(D) ⊂ P

N is the total
Tjurina number of sing(D), obtained as the sum of the length of the localization of sing(D)
at the points of the set-theoretic support of sing(D).

Consider the minimal degree relation of JD, i.e. the smallest integer r such that
H0(TD(r)) ≠ 0. If TD was not slope-stable we would have r ≤ q.

According to [dPW01, Theorem 5.3], the integer r satisfies (d − r − 1)(d − 1)N−1 ≤
deg(sing(D)). Hence, if TD was not slope-stable then r ≤ q, so (d − q − 1)(d − 1)N−1 ≤
deg(sing(D)), which contradicts our assumption. �

Remark 1.1. An obvious obstruction to stability of TD is that a partial derivative of the
equation f defining D vanishes identically, in a suitable system of coordinates. Indeed, if this
happens then the sheaf TD admits a decomposition of the following type:

TD ≃ TD̃
⊕ r.OPN ,

where r denotes the number of vanishing derivatives. This excludes that TD is slope-
semistable.

In characteristic zero this is equivalent to the fact that D is a cone, where r − 1 equals the
dimension of the linear (projective) subspace which is the apex of the cone.

Remark 1.2. If no partial derivative of f vanishes identically (up to a coordinate change)
and (d−1)(s+1) < N , then the sheaf TD is slope-stable. Notice that this numerical condition
is sharp, as the following example shows. Assume char(k) does not divide d nor d − 1 and
consider the hypersurface D defined by the homogeneous polynomial:

F = x0xd−11 + N

∑
j=2

xdj , which gives ∇(F ) = [xd−11 , (d − 1)x0xd−11 , dxd−12 , . . . , dxd−1N ].
Observe that D is singular only at the point (1 ∶ 0 ∶ . . . ∶ 0). The associated sheaf TD has

H0(TD) = 0 and H0(TD(1)) ≠ 0. If d > N + 1, we get c1(TD) ≤ −rk(TD), so the sheaf TD is
not slope-stable because OPN (−1) ⊂ TD is a destabilizing subsheaf.

1.2. A Torelli-type result. In this section we will focus on some results of “Torelli type”.
Recall that such nomenclature is used in general for results on the embeddings between
moduli spaces. In particular, this type of problems for logarithmic tangent sheaves has been
proposed by Dolgachev and Kapranov in [DK93], followed by many others.

In our case case we are interested in the morphism which associates to a hypersurface
D ⊂ PN its logarithmic tangent sheaf TD. More specifically we are interested in the follow-
ing question: Does the logarithmic tangent sheaf TD determine the hypersurface D? These
hypersurfaces have been called DK-Torelli in [Dim17]. Keeping this definition, we provide
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an extension of [Dim17, Theorem 1.5] to the case of non-isolated singularities, with a similar
proof. For terminology about Thom-Sebastiani hypersurfaces and multiplicity of singularities
we refer to [Wan15].

Proposition 1.3. Suppose that there exists an integer m < d − 1 such that:

● H0(TD(2m)) = 0;● there exist h1, h2 ∈ H1(TD(m − d)) with no common factor.

Then, TD determines the Jacobian ideal of f . Furthermore one of the following statements
holds:

● the hypersurface D is DK-Torelli;● D has a singularity of multiplicity d − 1;● the polynomial f is of Sebastiani-Thom type.

Proof. Our first goal is to characterize when a homogeneous polynomial g of degree d − 1
belongs to the Jacobian ideal JF . In order to do so, consider, for any k ∈ N, the following
exact sequence:

0→ OPN (−d + 1 + k) ⋅gÐ→ OPN (k)→ OY (k) → 0,

with Y = V(g). Let us tensor it by TD and note that the first map remains injective, since
TD is torsion free, and consider the induced exact sequence in cohomology:

0 → H0(TD(−d + 1 + k))→ H0(TD(k)) → H0(TD(k)∣Y )→
→ H1(TD(−d + 1 + k))→ H1(TD(k)) → ⋯

We know that H0(TD(k)) describes the homogeneous syzygies of degree k of the Jacobian
ideal, i.e. it is given by all the (N + 1)-tuples (a0, . . . , aN) of homogeneous polynomials of
degree k such that ∑N

i=0 ai
∂F
∂xi
= 0. This implies that the first linear map of the previous

diagram does not depend on the choice of g. Moreover, we know by [Ser14] that, if D is
singular, there is an identification of R-modules:

H1
∗
(TD) ≃ J sat

D

JD
,

where J sat
D denotes the saturation of JD. In particular we have isomorphisms:

H1(TD(t − d)) ≃ (J sat
D

JD
)
t

, for all t ∈ Z,
and these commute with multiplication maps in R. So we consider the multiplication map
by g:

(J sat
D

JD
)
m

(⋅g)m
Ð→ (J sat

D

JD
)
m+d−1

.

It is straightforward to observe that, if g ∈ JD, then (⋅g)m = 0. Let us prove the converse
implication. Suppose thus that (⋅g)m = 0 and note that that both g ⋅ h1 and g ⋅ h2 belong to
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(JD)m+d−1. This means that there are (N+1)-tuples of homogeneous polynomials (a0, . . . , aN)
and (b0, . . . , bN) of degree m, such that:

g ⋅ h1 = N

∑
i=0
ai
∂F

∂xi
and g ⋅ h2 = N

∑
j=0

bj
∂F

∂xj
.

Therefore we get:

0 = (g ⋅ h1)h2 − (g ⋅ h2)h1 = N

∑
j=0
(ajh2 − bjh1) ∂F

∂xj
.

In view of the assumption H0(TD(2m)) = 0, we have thus:

ajh2 − bjh1 = 0, for all j = 0, . . . ,N.
Since h1 and h2 have no common factor, we have that h1∣aj and h2∣bj , for j = 0, . . . ,N . In
turn, this implies that g ∈ JD.

Summing up, a polynomial g of degree d − 1 lies in JD if and only if (⋅g)m = 0. Since
JD is generated in degree d − 1, this says that JD is recovered by the R-module structure of
H1
∗
(TD), so that JD is determined by TD. For the last part of the statement, once we have

proven that TD determines the Jacobian ideal, we apply [Wan15, Theorem 1.1]. �

2. Symmetric determinants

In this section we suppose that the field k is of characteristic different from 2. Fixing an
integer n ≥ 2, we describe the ring R as R = k[xi,j ∣ 1 ≤ i ≤ j ≤ n], hence N = (n+12 ) − 1. For
1 ≤ i ≤ j ≤ n, put xj,i = xi,j and let M be the matrix (xi,j)1≤i,j≤n. Consider F = det(M). The
generic symmetric determinant is the degree-n hypersurface D = V(F ) ⊂ PN . It is singular
along the subscheme sing(D) cut by the N+1 minors of order n−1 ofM obtained by removing
from M the i-th line and j-th column, with 1 ≤ i ≤ j ≤ n. Moreover, sing(D) has codimension
3 in P

N .
Consider now a projective plane P ⊂ PN . The vector bundle of k-th principal parts Ek is

defined as kernel of the natural evaluation of sections H0(OP (k)) ⊗OP → OP (k). The main
goal of this section is to prove Theorem D, which establishes a link between TD and En−1

that yields the stability of TD.

2.1. Proof of Theorem D. Define the graded algebra A as quotient of R by the homoge-
neous ideal generated by the minors of order n− 1 of M . The minimal graded free resolution
of A is given by the Goto–Józefiak–Tachibana complex, see [Józ78, GT77], cf. also [Wey03,
§6.3.8]. This takes the form:

(7) 0←A←R←(n + 1
2
).R(1 − n)←(n2 − 1).R(−n)←(n

2
).R(−1 − n)← 0,

where the kernel of A←R is generated by the partial derivatives of F . The module TD(1−n)
is the kernel of the resulting map R← (n+1

2
).R(1−n) so its resolution is the truncation of the

above resolution at the middle step. Upon sheafification, this gives item i).
Next, note that iii) follows from ii). Indeed, by [Re12], the vector bundle En−1 is slope-

stable. Now, if TD had a destabilizing subsheaf K, then choosing P to be a generic plane,



10 D. FAENZI, S. MARCHESI

transverse to the locus where TD/K fails to be locally free, we would get a subsheafK∣P ⊂ TD ∣P
with the same rank and slope as K, so that K∣P would destabilize En−1, a contradiction.

So it remains to prove ii). Note that, since sing(D) has codimension 3 in P
N , we may

choose P disjoint from sing(D) so that TD ∣P fits into:

(8) 0→ TD ∣P → (N + 1).OP → OP (n − 1)→ 0.

Note that N + 1 = h0(OP (n− 1)) and observe that precomposing the evaluation of sections
H0(OP (n− 1))⊗OP → OP (n− 1) with an automorphism of (N + 1).k we get a kernel bundle
which is isomorphic to En−1. So it suffices to prove that, for generic P , the map (N +1).OP →
OP (n − 1) appearing in (8) is the evaluation of global sections, up to precomposing with
an isomorphism. But all such maps are the same up to precomposing with an isomorphism
provided that they have maximal rank, so it is enough to prove that for generic P we have
H0(TD ∣P ) = 0, or equivalently H1(TD ∣P ) = 0.

To achieve this, consider the coordinate ring RP of P . Taking the quotient by the homo-
geneous ideal generated by partial derivatives of F we obtain a graded algebra of dimension
N − 2. Passing to the quotient modulo the ideal of P we get thus an Artinian algebra A,
whose resolution is just obtained by specialization of (7), hence:

0←A←RP ←(n + 1
2
).RP (1 − n)←(n2 − 1).RP (−n)←(n

2
).RP (−1 − n)← 0.

We get, for all t ∈ Z, H1(TD ∣P (t −n + 1)) ≃ At. Computing dimension in the above display
gives At = 0 for all t ≥ n − 1 so H1(TD ∣P ) = 0 and we are done.

3. Determinants

This section is devoted to the proof of stability of the logarithmic tangent sheaf of the
determinant divisor of a matrix of indeterminates. We work over an arbitrary field k.

3.1. Basic setup. Let us fix an integer n ≥ 2. Consider the graded ring R = k[xi,j ∣ 1 ≤ i, j ≤
n] as coordinate ring of PN with N = n2 − 1. We call tautological determinant the form:

F = det((xi,j)1≤i,j≤n).
The corresponding tautological determinantal hypersurface of degree n is the divisor:

D = V(F ).
The hypersurface D ⊂ PN is singular along the subscheme sing(D) defined by Jacobian ideal
of F , which in turn is generated by the n2 minors of order n− 1 of the tautological matrix of
variables (xi,j)1≤i,j≤n. The subscheme sing(D) has codimension 4 in P

N .

3.1.1. Section outline. Our goal is to prove Theorem E. Here are our main steps:

i) find a resolution of the module of global sections TD;
ii) prove that the logarithmic sheaf restricts to a quadric surfaceX, withX∩sing(D) = ∅,

to the bundle principal parts En−1 = ker(H0(OX(n − 1)))⊗OX → OX(n − 1);
iii) prove that the principal part bundle En−1 of the quadric surface is slope-stable.
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Section 3.2 is devoted to prove item i). In Section 3.3, we introduce the concept of semi-
generic matrix which allows us, through a quadratic Lefschetz property described in Section
3.4, to prove that (TD)∣X ≃ En−1. Section 3.5 is devoted to prove that En−1 is slope-stable.
Finally, in Section 3.6, we combine all of the previous results to prove that TD is slope-stable
as well.

3.1.2. An intrinsic setup. Let U,V be two n-dimensional k-vector spaces and set:

A = Homk(V,U) ≃ V ∗ ⊗U.
We identify P

N with P(A), so an element [a] of P(A) is the proportionality class of a ∈A∗ ≃
V ⊗U∗, i.e., of a non-zero linear map a ∶ U → V .

An element of [f] of P(Endk(A)) is thus the proportionality class of an element f ∈
Endk(A), which under the identification H0(OP(A)(1)) =A can be seen as a map:

Mf ∶ U ⊗OP(A)(−1)→ V ⊗OP(A).

We denote by i the special element i = idA ∈ Endk(A). In any given basis (ui ∣ 1 ≤ i ≤ n) and(vi ∣ 1 ≤ i ≤ n) of U and V ∗, setting (xi,j ∣ 1 ≤ i, j ≤ n) for the dual basis of (ui ⊗ vj ∣ i, j ≤ n),
the matrix of Mi is (xi,j)1≤i,j≤n, so the tautological determinant is D =Di.

3.2. The resolution of TD. Here we give a minimal graded free resolution of the graded
module TD associated with the sheaf TD. The resolution is obtained directly as a truncation
of the Gulliksen-Neg̊ard’s complex. The upshot is that the projective dimension of TD is
2, one less than the codimension in D of the singular locus of D, in analogously with free
divisors.

The divisor D = V(det(Mi)) ⊂ P(A) is invariant with respect to the action of the group
G = SL(U)×SL(V ) on P(A). We seek a resolution of TD which is equivariant for the induced
action of G on the polynomial ring R seen as the symmetric algebra of A.

Proposition 3.1. There is a minimal graded free G-equivariant resolution of TD of the form:

(9) 0←TD←(sl(U)⊕ sl(V ))⊗R(−n) ϕ←ÐA⊗R(−n − 1)←R(−2n)← 0.

Looking only at the homogeneous Betti numbers, the resolution reads:

0←TD← 2(n2 − 1).R(−n)←n2.R(−n − 1)←R(−2n)← 0.

Proof. Recall that the homogeneous Jacobian ideal JD is defined by the partial derivatives
of F = det(Mi), where the matrix of the map Mi is the matrix of indeterminates (xi,j)1≤i,j≤n.
This ideal is generated by the n2 minors of order n − 1 of Mi. Namely, there is a natural
surjective map :

(10) A∗ ⊗R(1 − n)→ JD.

This map is the first differential of the resolution of JD given by the Gulliksen-Neg̊ard
complex, see [GN72] or [Wey03, §6.1.8]. This is a G-equivariant resolution that reads:

sl(U)⊗R(−n)
0←JD←A∗ ⊗R(1 − n)← ⊕ ←A⊗R(−n − 1)←R(−2n)← 0.

sl(V )⊗R(−n)



12 D. FAENZI, S. MARCHESI

The resolution of TD is obtained by truncation of the resolution of JD, since TD is the
kernel of the map (10). �

3.3. Semigeneric matrices. The next step is to choose a linear section L ≃ P3 of PN which
is semigeneric, in a sense that we will make more precise in the next paragraph. The goal of
this partial genericity will be to ensure that, for a honestly generic choice of L, the resulting
quotient algebra A is Artinian and satisfies the quadratic Lefschetz property, as we will see
in Section 3.4.

Restricting Mi to L, we get an n × n matrix ML of linear forms on L, whose n2 minors of
order n− 1 generate the ideal IL ⊂ RL = k[x0, x1, x2, x3] defining A. Set m0 = (x1, x2, x3) and
m = (x0, x1, x2, x3). In the next definition, we choose a basis of U and V .

Definition 3.2. We say that L is a semigeneric section if:

ML ∶ n.OL(−1)→ n.OL satisfies ML =M0 + x0E1,1,

whereM0 is generic in R0 = k[x1, x2, x3] and E1,1 is the elementary matrix (E1,1)i,j = δi,1δj,1,
i.e. the forms (ML)i,j lie outside a Zariski closed subset of the set of all n2-tuples of 1-forms

in R0, except for (ML)1,1 which also involves x0. In such case, we say that ML is a linear
semigeneric matrix of size n.

The goal of this subsection is to prove the following result.

Proposition 3.3. Let ML be a linear semigeneric matrix of size n. Then:

IL = x0mn−2
0 +mn−1

0 .

3.3.1. Semigeneric matrices and the blown-up plane. Our first observation aimed at proving
Proposition 3.3 is that the determinant of a semigeneric matrix defines a model of the blown-
up plane at n(n − 1) points.

Put p0 = (1 ∶ 0 ∶ 0 ∶ 0). Define the threefold T = P(OP2(1) ⊕ OP2) and the natural maps
π ∶ T → P

2 and σ ∶ T → P
3 so that π is the tautological P1-bundle and σ is blow-up of P3 at

p0. Set l (resp. h) for the pull-back to T of a hyperplane in P
2 (resp. in P

3).

Lemma 3.4. If ML is semigeneric, the degree-n surface S = V(det(ML)) ⊂ L ≃ P
3 is the

image of P2 by the linear system of curves of degree n passing through a smooth complete
intersection of n(n − 1) points. The surface S is smooth away from the (n − 1)-tuple p0 and

has a natural desingularization Ŝ which is an element of the linear system ∣OT ((n−1)l+h))∣.
Proof. The shape of M implies, by multilinearity of the determinant:

det(M) = det(M0) + x0 det(M1), with: M1 = (M0)2≤i,j≤n.
Therefore p0 is a point of multiplicity n−1 of S. Working over P2 = Proj(R0) we note that, if

M0 is general enough, we may assume that the curves G0 = V(det(M0)) and G1 = V(det(M1))
in P

2 are smooth of degree n and n−1 and meet transversely at a subschemeW ⊂ P2 consisting
of n(n − 1) reduced points. We have:

(11) 0→ OP2(1 − n)→ OP2(1) ⊕OP2 → IW /P2(n)→ 0.

Therefore S is smooth away from p0 and the projection away from p0 sends S birationally
to P

2. The inverse map is defined by the complete linear system ∣IW /P2(n)∣.
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Define the surface Ŝ as the blow-up of P2 atW . We have Ŝ ≃ P(IW /P2(n)), where the linear
system associated to the tautological relatively ample line bundle sends Ŝ to S ⊂ P

3. The
smooth surface Ŝ sits canonically in T , the embedding being defined by the projectivization
of the surjection in (11). �

The restriction of σ, π, l and h to Ŝ define objects which we denote by the same letters.
We set eπ for the exceptional divisor of π ∶ Ŝ → P

2, hence we have:

(12) h = nl − eπ.
For all i, j ∈ Z, the cohomology of OT (ih + jl) is:
(13) Hk(OT (ih + jl)) ≃

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⊕0≤u≤iH

k(OP2(j + u)), if i ≥ 0,
⊕i+1≤u≤−1H

k+1(OP2(j + u)), if i ≤ −2,
0, if i = −1.

Also, the cohomology of O
Ŝ
(ih + jl) is computed via (13) by induction on i and j from the

exact sequence:

(14) 0→ OT ((1 − n)l − h)⊕OT (l − h)→ OT (l) ⊕OT → O
Ŝ
(h) → 0.

3.3.2. Linear determinantal representation of the blown-up plane. Set L = coker(ML) and
write:

(15) 0→ n.OL(−1) MLÐÐ→ n.OL → L → 0.

Here, L is a reflexive sheaf of rank 1 on S which is not locally free. The next lemma

allows to determine an exact sequence on Ŝ, where the rightmost term is a line bundle L̂

on Ŝ. Moreover, it is possible to lift such sequence to the threefold T , in order to define L̂

as the determinant of a map of bundles or rank-n over T , whose push-forward to P
3 is the

semigeneric matrix ML we started with.

Lemma 3.5. There is a subset e1, . . . , em, with m = n(n − 1)/2, of the components of e1 +

. . . + en(n−1) = eπ, such that L̂ = (n − 1)l − e1 −⋯− em fits into:

(16) 0→ OT (−h)⊕ (n − 1).OT (−l)→ n.OT → L̂→ 0.

Moreover, the push-forward to L ≃ P3 of the above sequence is (15).

Proof. Let us use the notation described in Section 3.1.2 and also in the proof of Lemma 3.4.
We therefore consider the matrices ML and M0 as morphisms:

ML ∶ U ⊗OL(−1)→ V ⊗OL, M0 ∶ U ⊗OP2(−1) → V ⊗OP2 .

The sheaf L0 = coker(M0) is a line bundle supported on the curve G0 ⊂ P2. Transposing M0,
by Grothendieck duality we get:

0→ V ∗ ⊗OP2(−1)→ U∗ ⊗OP2 → L
∗

0(n − 1)→ 0.

We observe that a non-zero global section u of L∗0(n − 1) is given uniquely by a non-zero
element u ∈ U∗ and provides thus a 1-codimensional quotient U∗u = U∗/ku. The section u
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vanishes along a subscheme Wu of P2 of length m = n(n − 1)/2 which is contained in G0 and
we have a resolution:

(17) 0→ Uu ⊗OP2(−1) → V ⊗OP2 → IWu/P2(n − 1)→ 0.

Since ML is semigeneric, there are two 1-dimensional marked subspaces of V and U∗, corre-
sponding to the first row and column of M . We choose u ∈ U∗ to lie in this space, so that
Wu is a subscheme of half the length of G0 ∩G1 =W .

Set eu for the union of the m components (e1, . . . , em) of e1 + . . . + en(n−1) = eπ which are

contracted toWu by π and write eū = eπ−eu. Put L̂ = OŜ
((n−1)l−eu). Pulling back (17) to Ŝ

via π and removing the torsion part Oeu(−1) of π∗(IWu/P2(n−1)) we get the exact sequences:
0→K → V ⊗O

Ŝ
→ L̂ → 0,(18)

0→ Uu ⊗O
Ŝ
(−l)→ K→ Oeu(−1)→ 0.(19)

where the surjection in the first sequence is the natural evaluation of global sections of L̂ and
K is defined as the kernel of this map. Since Oeu(h) ≃ Oeu(1), we have:

0→ O
Ŝ
(−h − eu)→ O

Ŝ
(−h)→ Oeu(−1)→ 0.

Observe that O
Ŝ
(−h − eu) ≃ L̂((1 − n)l − h). By (13) we have H1(O

Ŝ
(h − l)) = 0, hence the

above surjection lifts to O
Ŝ
(−h)→K. Patching this with (19) we get:

(20) 0→ L̂((1 − n)l − h)→ O
Ŝ
(−h)⊕Uu ⊗O

Ŝ
(−l)→ K→ 0.

We rewrite this as a long exact sequence:

(21) 0→ L̂((1 − n)l − h)→ O
Ŝ
(−h)⊕Uu ⊗O

Ŝ
(−l)→ V ⊗O

Ŝ
→ L̂→ 0,

where the sheaf K is the image of the middle map. Such map lifts to the threefold T and we

have the determinantal representation of L̂ :

(22) 0→ OT (−h)⊕Uu ⊗OT (−l) → V ⊗OT → L̂ → 0.

This is precisely (16). Also, we have σ∗(OT (−l)) ≃ σ∗(OT (−h)) ≃ OL(−1) and σ∗(OT ) ≃ OL.
The functor σ∗ sends maps OT (−h) → OT to linear forms and maps OT (−l) → OT to linear
forms which vanish at p0 and each coefficient of the matrix appearing in (16) is mapped

via σ∗ to the corresponding coefficient of M . Therefore, σ∗ sends L̂ to L and the lemma is
proved. �

3.3.3. The rigid curve. Set g for the strict transform of G1 in Ŝ, so that g is smooth and:

g ∈ ∣O
Ŝ
((n − 1)l − eπ)∣, g2 = 1 − n, g ⋅ h = 0, H0(O

Ŝ
(g)) ≃ k.

More precisely note that g + l ≡ h, moreover deg(h∣g) = 0 and h0(Ŝ,h) = 4 > 3 = h0(Ŝ, l), so
that h0(g,h∣g) ≠ 0. Therefore we have:

(23) g∣g ≡ −l∣g.
We call g the rigid curve of Ŝ. We analyze the restriction of L and K to the rigid curve.

We would like to prove :

H0(g,K∗ ⊗ L̂(g − l)∣g) = 0.
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Write N = L̂∣g, so N ≃ Og((n − 1)l − eu). Since g∣g ≡ −l∣g, it suffices to prove the following
lemma.

Lemma 3.6. We have:

(24) H0(g,K∗∣g ⊗N(−2l)) = 0.
Proof. The divisor eu∣g has degree n(n − 1) −m =m and consists of m generic points of g, so
h0(g,N) = n−1 and h1(g,N) = 0. Note that the defining equation of the curve G0 corresponds
to the first element v of the chosen basis of the space of curves V of degree n−1 through Wu.
Hence, setting Vv = V /kv, we get an identification H0(g,N) = Vv and restricting (18) we get:

0→K0 → Vv ⊗Og → N → 0, K∣g ≃K0 ⊕Og.

Here, the sheaf K0 is defined by the sequence and the copy of Og sits in V ⊗ Og as the line
spanned by v. Since H0(g,N(−2l)) = 0, we have to show:

H0(g,K∗0 ⊗N(−2l)) = 0.
Restricting (20) to g and using Og(−h) ≃ Og we get:

(25) 0→ N((1 − n)l) → Uu ⊗Og(−l) →K0 → 0.

We may summarize this in the following long exact sequence:

0→ N((1 − n)l)→ Uu ⊗Og(−l)→ Vv ⊗Og → N → 0.

This gives a presentation:

0→ Uu ⊗O
Ŝ
(−l)→ Vv ⊗O

Ŝ
→ N → 0.

In particular H0(g,N(−l)) = 0. We also note that N ≃ π∗(coker(M1)) and that the above

sequence is the pull-back to Ŝ via π of:

0→ (n − 1).OP2(−1) M1ÐÐ→ (n − 1).OP2 → coker(M1)→ 0.

Applying Homg(−,Ng(−2l)) to (25) we get:

0→K
∗

0 ⊗N(−2l) → U∗u ⊗N(−l) → Og((n − 3)l) → 0.

Since H0(g,N(−l)) = 0, we get H0(g,K∗0 ⊗N(−2l)) = 0 and we are done. �

3.3.4. Matrix factorization and the proof of Proposition 3.3. Restricting ML to S, by matrix
factorization we get:

(26) 0→ L(−n)→ U ⊗OS(−1)→ V ⊗OS → L→ 0.

Recall that deg(S) = n and use [KMR05, Lemma 3.2] to get:

HomS(L(−n),L(−1)) ≃ H0(S,OS(n − 1)) ≃ H0(P3,OP3(n − 1)).
Therefore, applying HomS(−,L(−1)) to the inclusion L(−n)→ U ⊗OS(−1) appearing in (26)
and recalling that we set V = H0(S,L), we get a linear map:

(27) Hom(U,V ) =A∗ → H0(P3,OP3(n − 1)).
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Proof of Proposition 3.3. First observe that, since the degree of x0 in any of the minors
defining IL is at most 1, we have IL ⊂ x0mn−2

0 +mn−1
0 . Also, both IL and x0m

n−2
0 +mn−1

0 are
generated by n2 forms of degree n − 1, those of x0m

n−2
0 + mn−1

0 being linearly independent.
Hence it suffices to prove that the n2 generators of IL are also linearly independent.

The linear span of the n2 minors under consideration is the image of the map (27), so we
have to prove that this map is injective.

Set L′ = L̂((n − 2)h + (1 − n)l). Using (13), we deduce from (22):

H0(L′(h)) ≃ H0(L′(l)) ≃ V.
Therefore, we get an identification:

Hom
Ŝ
(O

Ŝ
(−h)⊕Uu ⊗O

Ŝ
(−l),L′) ≃ U∗ ⊗ V =A∗.

Also, we have:

Hom
Ŝ
(L̂((1 − n)l − h),L′) ≃ H0(O

Ŝ
((n − 1)h)) ≃ H0(OP3(n − 1)).

Now, applying Hom
Ŝ
(−,L′) to (20) we get an exact sequence:

0→ Hom
Ŝ
(K,L′)→A∗ → H0(P3,OP3(n − 1)) → Ext1

Ŝ
(K,L′).

In view of Lemma 3.5, the sequence (26) is the image via σ∗ of (21), in particular the middle
map of the above sequence is identified via σ∗ with the map (27). Thus we are reduced to
prove Hom

Ŝ
(K,L′) = 0, i.e.:

(28) H0(Ŝ,K∗ ⊗L
′) = 0.

To do this, we use the rigid curve g ≡ h − l. Note that:

L
′ ≃ L̂((n − 2)g − l).

By (23), for all integer j we have:

0→ O
Ŝ
((j − 1)g − l)→ O

Ŝ
(jg − l)→ Og(−(j + 1)l) → 0.

Since l∣g is effective, using induction on j with 1 ≤ j ≤ n − 2, to show (28) it suffices to prove:

H0(Ŝ,K∗ ⊗ L̂(−l)) = 0, H0(g,K∗ ⊗ L̂(−2l)∣g) = 0.
The second vanishing is precisely Lemma 3.6 so we only need to show the first one. But this

follows by looking at the dual of (18), tensored with L̂(−l), which reads:

0→ O
Ŝ
(−l)→ V ∗ ⊗ L̂(−l) →K

∗
⊗ L̂(−l)→ 0,

so since H0(Ŝ,L(−l)) = H1(Ŝ,O
Ŝ
(−l)) = 0, we get H0(Ŝ,K∗ ⊗ L̂(−l)) = 0. This completes the

proof of Proposition 3.3. �
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3.4. Quadratic Lefschetz property. Consider a linear subspace L ≃ P
3 ⊂ P

N . We get
a projection R → RL onto a polynomial ring RL in 4 variables, denoting as before RL ≃
k[x0, . . . , x3].

Choose an integer n ≥ 3. Since the singular locus sing(D) has codimension 4, generically
L will not meet sing(D). In this case the image of JD in RL defines an Artinian Gorenstein
algebra AL as quotient of R/(JD + IL). The algebra A = AL, called the Artinian reduction of
R/JD, inherits a minimal graded free resolution:

(29) 0←A←RL←n2.RL(1 − n)← 2(n2 − 1).RL(−n)←n2.RL(−n − 1)←RL(−2n)← 0.

We say that the algebra A has the degree-k Lefschetz property if, for each graded piece At

of A, there is an element h ∈ A1 such that ⋅hk ∶ At → At+k has maximal rank.
If L ∩Z ≠ ∅, the algebra A = AL is no longer Artinian. In the next paragraph we will see

how, choosing L in a semigeneric way, the resulting non-Artinian algebra allows to establish
the quadratic Lefschetz property for the Artinian algebras A′ = AL′ given by the generic
choice L′ ≃ P3.

Lemma 3.7. Assume that there is a linear subspace L = P3 ⊂ PN and a linear form h on L
such that ⋅h2 ∶ An−3 → An−1 is an isomorphism. Then, for generic choice of L′ ≃ P3 ⊂ PN ,
the Artinian algebra A′ = AL′ has the quadratic Lefschetz property.

Proof. Note that, since for a generic choice of L′ the Artinian algebra A′ has a graded
resolution of the form (29), the graded algebra structure of A′ and RL coincide up to degree
n − 1 ≥ 1. Therefore, ⋅h2 ∶ A′t → A′t+2 has maximal rank for any choice of 0 ≠ h ∈ A′1 and all
t ∈ {0, . . . , n − 4}. By Gorenstein duality, the same happens for t ∈ {n − 2, . . . ,2n − 6}, indeed
A′ has socle degree 2n − 4. Therefore, A′ has the quadratic Lefschetz property if there is
h ∈ A′1 such that ⋅h2 ∶ An−3 → An−1 has maximal rank. Because dim(An−1) = (n+23 ) − n2 =(n
3
) = dim(An−3), this amounts to ask that ⋅h2 ∶ An−3 → An−1 is an isomorphism. Since, by

our assumption, this holds for a special choice of the linear space L and the element h ∈ A1,
it also holds for a generic choice of the linear space L′ and the element h ∈ A′1. Therefore A′
has the quadratic Lefschetz property, as required.

�

3.5. Vector bundle of principal parts on a quadric surface. Consider a quadric surface
X ≃ P1

×P
1 ⊂ P3 and, for any (a1, a2) ∈ Z2, put OX(a1, a1) = p∗1OP1(a1)⊗ p∗2OP1(a2), where

p1 and p2 are the two projections of X onto its two P
1 factors. Write U1 = H0(X,OX(1,0))

and U2 = H0(X,OX(0,1)) and consider, for n ∈ N, the sheaf of principal parts En defined as
kernel of the natural evaluation:

En = ker (SnU1 ⊗ S
nU2 ⊗OX → OX(n,n)) .

The goal of this subsection is to prove the following result.

Proposition 3.8. For any n ∈ N, the sheaf E = En is slope-stable.

Set G = SL2(k) × SL2(k) and let P be the subgroup of G consisting of pairs of upper
triangular matrices. Then X ≃ G/P . Consider the quiver QX , whose vertices are defined
by the irreducible representations of the semisimple part of P , isomorphic to k

∗
× k
∗. The

vertices of QX are thus naturally identified with Z
2. In terms of sheaves over X, a vertex
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λ = (a, b) ∈ Z2 of QX is given by OX(λ). The arrows of QX are determined by the invariant
part of the extensions between representations. Namely, there is an arrow from λ ∈ Z2 to
µ ∈ Z2 if Ext1X(OX(λ),OX(µ))G ≠ 0, in which case we must have Ext1X(OX(λ),OX(µ))G = k.

Given a G-homogeneous bundle E, there exists a G-equivariant filtration:

0 ⊂ E1 ⊂ ⋯ ⊂ Ek = E
such that Ei/Ei−1 is a line bundle. The associated graded bundle is defined as:

gr(E) =⊕
i

Ei/Ei−1,

and does not depend on the chosen filtration. Write the graded bundle as

gr(E) = ⊕
λ∈Z2

Vλ.OX(λ),
where Vλ is a k-vector space whose rank is the number of copies of OX(λ) in gr(E). The
portion of QX whose vertices λ satisfy Vλ ≠ 0 is called the support of E and denoted by
supp(E). The G-action on E determines a linear map Vλ → Vµ for all λ,µ in supp(E)
satisfying Ext1X(OX(λ),OX(µ))G = k. In this situation (see e.g. [BK90, Hil98, OR06]) there
is an equivalence of categories between:

● G-homogeneous bundles over X;
● finite-dimensional representations of the quiver (with relations) QX .

Given a homogeneous bundle E, we denote by [E] the corresponding representation and
we talk indifferently of the support of E or of [E].
Lemma 3.9. We have that

gr (SnU1 ⊗ S
nU2 ⊗OX) = ⊕

t,k∈J0,nK

OX(−n + 2k,−n + 2t).
Proof. First start by computing gr(SnU1 ⊗ OX) by induction, observing that, for n = 1, we
have an SL2(k)-equivariant exact sequence:
(30) 0→ OX(−1,0) → U1 ⊗OX → OX(1,0) → 0.

This gives rise, for any n, to:

0→ Sn−1U1 ⊗OX(−1,0) → SnU1 ⊗OX → OX(n,0) → 0

We get the following:

gr(SnU1 ⊗OX) = ⊕
k∈J0,nK

OX(−n + 2k,0).
Analogously, we have that

gr(SnU2 ⊗OX) = ⊕
t∈J0,nK

OX(0,−n + 2t)
The proof is achieved observing that, for any pair of G-homogeneous bundles E and F , we

have gr(E ⊗ F ) = gr(E)⊗ gr(F ). �
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The previous lemma accounts for the vertices in supp(E), which are:

(n,n) − {2(k, t) ∣ (0,0) ≠ (k, t) ∈ J0, nK × J0, nK}.

Let us look at the arrows of [E]. We start by observing that the linear map in QX arising
from (30) is non-zero. More generally, the support of SnU1 ⊗OX is:

n n − 2 n − 4 ⋯ −n + 2 −n

● // ● // ● ⋯ ● // ●

The arrows correspond to elements of Ext1X(OX(a + 2,0),OX(a,0)). Note that all maps in
QX associated with [SnU1 ⊗ OX] are non-zero. We get the following picture for supp(E),
where all the associated linear maps are non-zero.

(31) n n − 2 n − 4 ⋯ −n + 2 −n

−n ● // ● // ● ⋯ ● // ●

−n + 2 ● //

OO

● //

OO

●

OO

⋯ ● //

OO

●

OO

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

n − 4 ● // ● // ● ⋯ ● // ●

n − 2 ● //

OO

● //

OO

●

OO

⋯ ● //

OO

●

OO

n ● //

OO

●

OO

⋯ ● //

OO

●

OO

Here, the side labels denote the degrees of the summand OX(a, b) in the associated graded
bundle. Moreover, the vertical (resp. horizontal) arrows are determined by Ext1(OX(a +
2, b),OX(a, b)) (resp. Ext1(OX(a, b+2),OX(a, b))). We will call main diagonal of the support
the set of vertices of the form (a,−a).

Consider a subrepresentation [E′] of [E]. Note that all arrows of [E] are isomorphisms
and every vertex in λ ∈ supp(E) is connected to another vertex to the right of λ or above λ
until reaching (−n,−n). Then the main observation is that, if a vertex λ1 = (a1, b1) is in the
support of [E′], then every vertex of supp(E) to right of λ1 or above λ1 is also in the support
of [E′], i.e. (a2, b2) ∈ supp(E′) if −n ≤ a2 ≤ a1 and −n ≤ b2 ≤ b1. Therefore, [E′] is completely
described by means of its boundary vertices, namely the vertices (a, b) in supp(E′), such that
neither (a + 2, b) nor (a, b + 2) is in supp(E′).
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Example 3.10. Let us consider n = 7 and a homogeneous bundle E′ whose representation
has the following support.

7 5 3 1 −1 −3 −5 −7

−7 ● // ● // ● // ● // ● // ● // ● // ●

−5 ● //

OO

● //

OO

● //

OO

● //

OO

●

OO

−3 ● //

OO

● //

OO

● //

OO

● //

OO

●

OO

−1 ● //

OO

● //

OO

● //

OO

●

OO

1 ● //

OO

● //

OO

●

OO

3 ● //

OO

● //

OO

●

OO

If [E′] is a subrepresentation of [E], then all arrows must be non-zero. The boundary vertices
are given by the four vertices of the quiver indexed by (7,−7), (−3,1), (−1,−1) and (3,−3).

Let us introduce stability with respect to the line bundle OX(1,1) in terms of representa-
tions of QX according to [Kin94]. For λ = (a, b) ∈ Z2, put c1([Vλ ⊗OX(λ)]) = rk(Vλ)(a + b)
and rk([Vλ ⊗ OX(λ)]) = rk(Vλ). For a G-homogeneous bundle E on X, define c1([E]) =
c1([gr(E)]) and rk(E) = rk([gr(E)]) by linearity. For every G-homogeneous bundle E′ we
put:

µE([E′]) = c1([E])rk([E′]) − rk([E])c1([E′]).
The representation [E] is called stable if for all subrepresentations [E′] we have that
µE([E′]) ≥ 0 and the equality holds if only if [E′] is either [E] or [0].

For the G-homogeneous bundle E, the stability of the representation [E] is equivalent to
the slope-stability of E itself. Indeed, the proof of [OR06, Theorem 7.2] applies here to show
that the representation [E] is slope-stable if and only if E ≃W ⊗E′, whereW is an irreducible
G-module and E′ is a slope-stable G-homogeneous bundle on X. Since H1(E(−n,−n)) ≃ k,
we must then have W ≃ k and E ≃ E′.

To conclude that E is slope-stable, we need only show that [E] is stable, which we do in
the next result.

Lemma 3.11. For any subrepresentation [E′], we have that µE([E′]) ≥ 0. Moreover,
µE([E′]) = 0 if only if either [E′] = [E] or [E′] = [0].
Proof. Let [E′] be a non-zero subrepresentation of [E]. We have:

µE([E′]) = ∑
(a,b)∈supp(E′)

(c1([E]) − rk([E])(a + b)) = ∑
(a,b)∈supp(E′)

(−2n + (1 − n2)(a + b)) .
For a point λ = (a, b) ∈ Z2, write τ(λ) = (−b,−a), so that τ is the reflection along the main

diagonal in (31). Any vertex λ = (a, b) ∈ supp(E′) satisfies a + b = 2t for some t ∈ J−n,nK.
Write suppt(E′) = {(a, b) ∈ supp(E′) ∣ a + b = 2t}. We get:

(32)
1

2
µE([E′]) = −n ∣supp(E′)∣ + ∑

t∈J−n,nK

∑
λ∈suppt(E′)

(1 − n2)t.
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Now recall that, for any λ ∈ supp(E′), the vertices of supp(E) to right of λ or above λ
are also in supp(E′). Therefore, for any λ ∈ suppt(E′) with t ≥ 0, the vertex τ(λ) also lies
in supp(E′), more precisely τ(λ) ∈ supp

−t(E′). Note that the two terms (1 − n2)t in the
summation (32) arising from a pair (λ, τ(λ)) ∈ suppt(E′) × supp−t(E′) add up to zero so
we may restrict the summation to the vertices λ ∈ supp(E′) such that τ(λ) does not lie in
supp(E′). In turn this can happen only if λ ∈ supp

−t(E′) with t ≥ 1. Set Vt(E′) for the set of
vertices λ ∈ supp

−t(E′) with τ(λ) /∈ supp(E′). Hence we rewrite (32) as:

1

2
µE([E′]) = −n ∣supp(E′)∣ − ∑

t∈J1,nK

∑
λ∈Vt(E′)

(1 − n2)t.
We have ∣supp(E′)∣ ≤ n2 − 1 so:

1

2
µE([E′]) ≥ −n(n2 − 1) − ∑

t∈J1,nK

∑
λ∈Vt(E′)

(1 − n2)t =

= (n2 − 1) ∑
t∈J1,nK

⎛
⎝−1 + ∑

λ∈Vt(E′)
t
⎞
⎠ .

Note that, since [E′] is non-zero, we must have (−n,−n) ∈ Vn(E′), hence:
1

2
µE([E′]) ≥ (n2 − 1)⎛⎝n − 1 + ∑

t∈J1,n−1K

⎛
⎝−1 + ∑

λ∈Vt(E′)
t
⎞
⎠
⎞
⎠ ≥

≥ (n2 − 1) (n − 1 + (1 − n)) = 0.
We have thus proved that [E] is semistable. Moreover, if equality is attained in the above

displays, then we must have ∣supp(E′)∣ = n2 − 1 which implies that [E′] is equal to [E]. �

3.6. Proof of Theorem E. All the ingredients to prove Theorem E are now ready. Accord-
ing to Proposition 3.8, the sheaf En−1 is slope-stable so it suffices to see that TD restricts over
X to En−1, for a generic quadric surface in P

N .
By Lemma 3.7 we only need to show that there is a linear space L ≃ P

3 ⊂ P
N and a

linear form h over L such that, in the resulting algebra A = AL = RL/IL, the multiplication
⋅h2 ∶ An−3 → An−1 is an isomorphism.

Choosing L to be semigeneric in the sense of Section 3.3 and h = x0, by Proposition 3.3 we
get that ⋅x20 ∶ An−3 → An−1 is injective since there is no polynomial involving x20 in the graded
piece of degree n − 1 of IL. Moreover, we observed that this graded piece has dimension n2

so again dim(An−3) = dim(An−1) = (n3) and therefore ⋅x20 ∶ An−3 → An−1 is an isomorphism.

Since ⋅h2 ∶ An−3 → An−1 is an isomorphism for a given choice of a linear form h in RL, then,
by Lemma 3.7, we get an isomorphism ⋅g ∶ An−3 → An−1 also for a generic choice of a quadric
form g in RL.

Next, considering TD ∣L we get the fundamental relation:

H1(TD ∣L(t)) ≃ At+n−1, for all t ∈ Z,
and these isomorphisms are compatible with the R-module structure. Then, we compute the
cohomology of the restriction of TD to the quadric surface X defined in L by the form g, for
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t ≤ 0 by the diagram:

0 // H0(TD ∣X(t)) // H1(TD ∣L(t − 2)) ⋅g // H1(TD ∣L(t)) // H1(TD ∣X(t)) // 0

At+n−3
⋅g // At+n−1,

For t = 0 we get, by our assumption, H0(TD ∣X) = H1(TD ∣X) = 0. It follows as in the proof of
Theorem D, cf. the paragraph following (8), that TD ∣X is isomorphic to En−1.

This concludes the proof of Theorem E.

4. Families of determinants

In view of Theorem E, we know that the logarithmic sheaf TD associated to the tautological
determinantD =Di of the n-matrix of variables is a slope-stable reflexive sheaf on P

N . Denote
by Mn the moduli space of semistable sheaves on P

N containing TD. Our goal is to describe
a dense open piece of this moduli space as a certain group quotient.

4.1. Moduli space and group quotient. In view of the setup of Section 3.1.2, for any
f ∈ Endk(A) we may consider det(Mf) as en element of SnA. We get a rational map:

det ∶ P(Endk(A)) ⇢ P(SnA),
defined at the points where det(Mf) ≠ 0. The image of det is the set of determinantal
hypersurfaces of degree n. We denote it by Dn. Recall that G = SL(U) × SL(V ) acts on
P(Endk(A)) by left and right composition. In terms of the matrices Mf , for (g,h) ∈ G, the
actions is M(g,h).f = (g,h).Mf = hMfg

−1. The determinant is fixed by this action, so we have
a map:

det ∶ P(Endk(A))/G ⇢ P(SnA),
whose image is again Dn. Recall that we put Df = V(det(Mf )).
Lemma 4.1. The sheaf TDf

is semistable (equivalently, slope-stable) if and only if f ∈ GL(A).
Proof. One implication is essentially Theorem E. Indeed, if f ∈ GL(A) then the entries of
Mf form a basis of A. Hence we can consider an appropriate change of coordinates to
transform Mf into the matrix of indeterminates Mi = (xi,j)(i,j)∈J1,nK2 . This manipulation has
no consequence on the stability of the associated sheaf and we know that TDi

is slope-stable,
so the sheaf TDf

is slope-stable.
Conversely, if f ∈ Endk(A)∖GL(A), then up to choosing a suitable basis of A, the matrix

the matrixMf is constant in some variable of R. Therefore, the equation of Df = V(det(Mf ))
does not depend of this variable. Hence, the sheaf TDf

has a trivial direct summand. Since
the sheaf TDf

has strictly negative slope, it cannot be semistable. �

Having this in mind, we note that, sinceMf is canonically associated to f and the formation
of TDf

is functorial, the sheaves (TDf
∣ [f] ∈ PGL(A)) glue to a coherent sheaf over PGL(A)

and thus yield a moduli map PGL(A) → Mn. This descends to a moduli map up to the
action of the closed subgroup G = SL(U)×SL(V ) ⊂ PGL(A) and therefore Ψ factors through
the map det. We write D○n for the set of tautological determinantal hypersurfaces up to a
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change of basis, i.e. the image of det restricted to PGL(A). We obtain an induced map
Φ ∶ D○n →Mn fitting in the following commutative diagram.

PGL(A)/G
det %%❑

❑❑
❑❑

❑❑
❑❑

❑

Ψ // Mn

D○n

Φ

==
④④④④④④④

④

4.2. The DK-Torelli property of the determinant. We first analyze the map Φ of the
above diagram via a Torelli-type result. Note that Proposition 1.3 fails for D = Di. Indeed,
H1
∗
(TD) = 0 so of course we cannot find the elements h1, h2 required to apply Proposition

1.3. Moreover, D has singularities of multiplicity n − 1, for example the point (1 ∶ 0 ∶ . . . ∶ 0).
Therefore, we couldn’t use anyway [Wan15] to recover D from the Jacobian ideal of D. In
spite of this, the following result shows that D enjoys the DK-Torelli property.

Proposition 4.2. The map Φ is injective.

Proof. Consider the tautological determinant D =Di = det(Mi). We give a closer look to the
Gulliksen-Neg̊ard complex considered in the proof of Proposition 3.1. Fixing a basis of U
and V ∗ we identify A = Homk(U,V ) with the vector space Mn(k) of square matrices of size
n. Following [BV88], we write an explicit description of the presentation matrix of TD, i.e.
of the map ϕ appearing in (9). To do this, we consider a non-zero matrix a ∈Mn(k) and we
describe ϕ fibre-wisely over a. Consider the complex:

k
ι
↪Mn(k)⊕Mn(k) π

Ð→ k

with ι(λ) = (λ1n, λ1n) for λ ∈ k and 1n ∈Mn(k) the identity matrix and π(a,b) = tr(a −b).
The homology of this complex is a vector space of dimension 2(n2−1). The map ϕ is induced
at the point corresponding to a matrix a by:

ψa ∶ Mn(k) Ð→ Mn(k)⊕Mn(k)
b ↦ (ab,ba)

Up to the choice of a new basis of U and V ∗, we may suppose that a is diagonal. On
the other hand, the rank of ϕ, and hence of TD at a diagonal matrix a can be read off from
the expression of ψa. Indeed, if a is invertible then ker(ψa) is spanned by a−1, while for a

of rank n − k, with k ∈ J1, n − 1K, writing a = diag(λ1, . . . , λn−k,0, . . . ,0) with λi ≠ 0 for all
i ∈ J1, n − kK we see that ker(ψa) consists of matrices b = (bi,j) with bi,j = 0 for i ≤ n − k or
j ≤ n − k. Summing up, for a of rank n − k, with k ∈ J1, n − 1K, we have

rk(TD ∣a) = n2 + k2 − 2.
This gives: {a ∈ PN ∣ rk(a) = 1} = {a ∈ PN ∣ rk(TD ∣a) = 2n2 − 2n − 1} .

In other words, the locus of rank-1 matrices is the support of the Fitting ideal of TD defined
by the minors of order 2n of ϕ.

Now, the hypersurface D is determined as the variety of (n − 1)-secant subspaces of di-
mension n − 2 to the locus of matrices of rank 1. This says in particular that TD determines
D as the (n − 1)-secant variety to the locus where TD has rank 2n2 − 2n − 1.
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After an appropriate change of coordinates, as mentioned before, we get that for every
hypersurface Df ∈D○n, the associated reflexive sheaf TDf

determines Df . �

4.3. The determinant as a 2 ∶ 1 cover. Here we show that the fibre of the map det ∶

PGL(A)/SL(U) × SL(V )→D○n consists of 2 distinct points.

Proposition 4.3. The morphism det is set-theoretically 2 ∶ 1.

Proof. By the argument of Proposition 4.2, it is enough to prove that the set-theoretic fibre
of det at D =Di = det(Mi) consists of two distinct points. To do this, we look more closely at
the geometry of a resolution of singularities σ+ ∶ D+ → D and argue that, up to the G-action,
the elements f ∈ PGL(A) such that Df =D are in bijection with effective divisor classes l on
D+f such that:

l ⋅ hn
2
−3 = (n

2
),

where h is the pull-back to D+ of the hyperplane class of D ⊂ PN . We then show that there
are precisely two such divisor classes.

To define D+, we consider P(V ) and the tautological quotient bundle Q+ of rank (n − 1)
on P(V ), defined by the Euler sequence:

0→ OP(V )(−1)→ V ∗ ⊗OP(V ) → Q+ → 0.

Put D+ = P(U ⊗Q+). Note that H0(U ⊗ Q+) ≃A. Geometrically, we have:

D+ = {([v], [a]) ∈ P(V ) ×P(A) ∣ v ○ a = 0}.
The linear system associated with the tautological relatively ample divisor h defines a bira-
tional morphism σ+ ∶ D+ → D. Denote by l+ the pull-back to D+ of a hyperplane of P(V )
via the bundle map π+ ∶ D+ → P(V ). The map σ+ is an isomorphism away from the singular
locus sing(D) of D which consists of the matrices a ∶ U → V of rank at most n − 2. This
locus has codimension 3 in D. The maps π+ and σ+ are the restrictions to D+ of the projec-
tions from P(V ) × P(A) onto the first and second factor. Note that the generic fibre of σ+

over sing(D) is a projective line, so the exceptional locus e+ of σ+ has codimension 2 in D+.
Therefore σ+ induces an isomorphism:

Cl(D) ≃ Pic(D+) ≃ Zh⊕Zl+.

Note that D+ is cut in P(V ) ×P(A) by a linear section, whose Koszul complex reads:

0→ OP(V )×P(A)(−n,−n)→ ⋯→ U ⊗OP(V )×P(A)(−1,−1) → OP(V )×P(A) → OD+ → 0.

Set tl+ = (n − 1)h − l+. From the above complex we compute:

H0(OD+(tl+)) ≃ U∗.
To see this, for i ∈ J1, nK, set Kj for the image of the j-th differential of the Koszul complex,
taking the form:

j

⋀U ⊗OP(V )×P(A)(−j,−j) → j−1

⋀ U ⊗OP(V )×P(A)(1 − j,1 − j).
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For all j ∈ J1, nK, the Künneth formula gives Hp(Kj(−1, n−1)) = 0 for p ∈ N∖{j}. We obtain:

H0(OD+(tl+)) ≃ H1(K1(−1, n − 1)) ≃ ⋯ ≃ Hn−1(Kn−1(−1, n − 1)) ≃ n−1

⋀ U ≃ U∗.
The linear system ∣tl+∣ gives a rational map D+ ⇢ P(U∗). Resolving the indeterminacies

of this map we get a variety D̂ and a morphism D̂ → P(U∗). Geometrically:

D̂ = {([v], [a], [u]) ∈ P(V ) ×P(A) ×P(U∗) ∣ v ○ a = 0 = a ○ u}.
Starting from P(U∗) and the quotient bundle Q− over P(U∗) we get second a desingular-

ization D− = P(V ∗ ⊗ Q−) with a birational map σ− ∶ D− →D. This is described as:

D− = {([a], [u]) ∈ P(A) ×P(U∗) ∣ a ○ u = 0}.
The manifold D̂ is the blow-up of D along sing(D) and the map D̂ →D is a P

1
×P

1-bundle
over the smooth locus of sing(D).

We look at the effective cone of D+. Tensoring the Koszul complex above with
OP(V )×P(A)(x, y), for some (x, y) ∈ Z2, we see H0(OD+(xl+ + yh)) = 0 if y < (1 − n)x or

if y < 0. So the effective cone of D+ is spanned over Q by l+ and tl+. Therefore, an effective
divisor on D+ is of the form xl+ + yh, with:

(33) (x, y) ∈ Z ×N, and: y ≥ (1 − n)x.
We compute:

l+ ⋅ hn−3 = tl+ ⋅ hn−3 = (n
2
), hn−2 = n.

Choose now [f ] ∈ PGL(A) such that the determinant Df of the matrixMf satisfies Df =D.
Then the coherent sheaf Lf = coker(Mf ) is a rank-one reflexive sheaf over D, actually an
Ulrich sheaf. Similarly we get a second Ulrich sheaf of rank 1 as:

t
Lf = coker (tMf ∶ V

∗
⊗OP(A)(−1)→ U∗ ⊗OP(A)) ; we have: Lf(1 − n)∗ ≃ t

Lf .

Each of these sheaves determines an element of End(A) up to G-action arising as the minimal
presentation matrix of the module of global sections of the sheaf, in some basis.

Next, note that a non-zero global section of L = Lf vanishes along the Weil divisor B of
D consisting of matrices of size n × (n − 1) that have rank at most n − 2. This pulls-back via
σ+ to an effective divisor of D+ of the form xl+ + yh, for some (x, y) ∈ Z ×N. The degree of
B in P(A) is (n

2
) so:
(xl+ + yh) ⋅ hn−2 = (n

2
), so: y = (n − 1)(1 − x)

2
.

Together with (33), this gives two possibilities for (x, y), namely either (x, y) = (1,0), in
which case the divisor class is l+, or (x, y) = (−1, n − 1) so that the divisor class is tl+.

In turn, ∣l+∣ gives the rational projection D ⇢ P(V ) and the sheaf L = σ+
∗
(OD+(l+)), while∣tl+∣ = ∣l−∣ gives D ⇢ P(U∗), and the sheaf tL = σ−

∗
(OD−(l−)), the indeterminacies of these

maps being resolved by π+ ∶ D ⇢ P(V ) and π− ∶ D ⇢ P(U∗) and simultaneously over D̂.
The two possible divisors of degree (n

2
) give thus precisely two points in the fibre of det over

D. �
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4.4. The Hilbert scheme. Our next goal is to prove that Ψ is a local isomorphism. To
do this, we consider a further space, which we denote by Hn. This is defined as the Hilbert
scheme of subschemes of P(A) having the same Hilbert polynomial as sing(D). Given any
f ∈ PGL(A), the minors of order (n − 1) of the matrix Mf cut a subscheme lying in Hn, so
the assignment [f] ↦ Zf = sing(Df ) defines a morphism Ξ ∶ PGL(A) → Hn, whose image we
denote by H○n.

Given Z = sing(Df ) ∈ H○n, the ideal homogeneous ideal IZ is minimally generated by the
n2 minors of degree n − 1 and the kernel of this set of generators (i.e. the first syzygy)
determines the module TD up to isomorphism. After sheafification, this yields a morphism
syz ∶ H○n →Mn. Summing up, we get a different factorization of Ψ as:

PGL(A)/G
Ξ

%%❑
❑❑

❑❑
❑❑

❑❑
❑

Ψ // Mn

H○n

syz

==
⑤⑤⑤⑤⑤

⑤⑤⑤

Proposition 4.4. The morphisms syz and Ψ are submersions.

Proof. Up to the an appropriate change of coordinates, it is enough to prove the statement at
the point i associated to the tautological matrix of indeterminates (xi,j)1≤i,j≤n, as mentioned
before. To do this, we consider the determinant hypersurface D = Di and its singular locus
Z = sing(D).

First of all, we collect some vanishing results. The ideal sheaf IZ = IZ/P(A) is just the
Jacobian ideal JD. Write again the exact sequence relating TD and

(34) 0→ TD →A⊗OP(A) → IZ(n − 1)→ 0,

where the surjection onto IZ(n − 1) is the natural evaluation of global sections. Denote by
ξ ∈ Ext1

P(A)(IZ(n − 1),TD) the class of (34).

We mentioned in Section 3.2 that this surjection lifts to an epimorphism of graded R-
modules A⊗R → IZ(n− 1). In turn, this implies that H1

∗
(TD) = 0. Next, recall that the ring

RZ = R/IZ is a graded Cohen-Macaulay ring of dimension N − 4. This implies:

(35) Hp
∗
(IZ) = 0, for p ∈ Z ∖ {0,N − 3,N}.

Together with H1
∗
(TD) = 0, this gives:

(36) Hp
∗
(TD) = 0, for p ∈ Z ∖ {0,N − 2,N}.

Next, note that Serre duality gives a natural isomorphism:

(37) HN−p(IZ(t −N − 1))∗ ≃ Extp(IZ(t),OP(A)), for all p, t ∈ Z.
By the above displays we get Ext1

P(A)(IZ(n − 1),OP(A)) = 0. Also, HomP(A)(IZ(n −
1),OP(A)) = 0 so HomP(A)(TD(n − 1),OP(A)) is canonically identified with A∗ and hence
IZ(n − 1) is recovered as cokernel of the dual evaluation:

TD → HomP(A)(TD(n − 1),OP(A))∗ ⊗OP(A).
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The upshot is that the map syz is injective, for the ideal sheaf of the subscheme Z ⊂ P(A)
is reconstructed by TD. Therefore syz is bijective as it is surjective by definition.

Taking HomP(A)(IZ(n − 1),−) of (34) and using (35) gives a natural isomorphism:

∧ξ ∶ Ext1
P(A)(IZ , IZ)→ Ext2

P(A)(IZ(n − 1),TD).
Next we observe that, applying HomP(A)(−,TD) to (34) and using (36) we get a natural

isomorphism:

∧ξ ∶ Ext1
P(A)(TD,TD)→ Ext2

P(A)(IZ(n − 1),TD).
We get an isomorphism Ext1

P(A)(IZ , IZ) → Ext1
P(A)(TD,TD) induced by ∧ξ and (∧ξ)(−1)

which corresponds to the differential of syz at the point Z of H○n. We have showed that
syz is a submersion. Finally, we use that Ξ is a submersion, cf. [KMR20, Corollary 7.6].
Therefore Ψ is also a submersion. �

4.5. Proof of Theorem F. In order to prove Theorem F, we show the following more precise
result.

Theorem 4.5. The map Φ is an open immersion onto a smooth affine piece of an irreducible
component of Mn of dimension (n2 − 1)2. The map det is an étale 2 ∶ 1 cover onto D○n.

Proof. In order to prove this, in view of Proposition 4.2 and Proposition 4.3 it suffices to show
that Ψ is a submersion and that the image of Ψ is affine. The first statement is proved in
Proposition 4.4. The fact that the image of Ψ is affine follows from the fact that PGL(A)/G
is affine, as PGL(A) is affine and PGL(A)/G is the spectrum of the ring of G-invariants of
the coordinate ring of PGL(A), cf. [Hum75, Chapter IV]. So the image of Ψ is affine as well
as it is the quotient of PGL(A)/G by the free Z/2Z-action given by transposition. �
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[Del70] Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathe-
matics, Vol. 163, Springer-Verlag, Berlin, 1970.

[Dim17] Alexandru Dimca, Jacobian syzygies, stable reflexive sheaves, and Torelli properties for projec-

tive hypersurfaces with isolated singularities, Algebr. Geom. 4 (2017), no. 3, 290–303.
[Dim19] Alexandru Dimca, Versality, bounds of global Tjurina numbers and logarithmic vector fields

along hypersurfaces with isolated singularities, arXiv e-print Math.AG/1904.00686 (2019).
[DK93] Igor V. Dolgachev and Mikhail M. Kapranov, Arrangements of hyperplanes and vector

bundles on P
n, Duke Math. J. 71 (1993), no. 3, 633–664.



28 D. FAENZI, S. MARCHESI

[dPW01] Andrew A. du Plessis and C. T. C. Wall, Discriminants, vector fields and singular hyper-

surfaces, New developments in singularity theory (Cambridge, 2000), NATO Sci. Ser. II Math.
Phys. Chem., vol. 21, Kluwer Acad. Publ., Dordrecht, 2001, pp. 351–377.

[FMV13] Daniele Faenzi, Daniel Matei, and Jean Vallès, Hyperplane arrangements of Torelli type,
Compos. Math. 149 (2013), no. 2, 309–332.

[GN72] Tor Holtedahl Gulliksen and Odd Guttorm Negȧrd, Un complexe résolvant pour certains
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