
HAL Id: hal-03112085
https://hal.science/hal-03112085

Submitted on 22 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Causal and ∆-Causal Broadcast in Opportunistic
Networks

Frédéric Guidec, Pascale Launay, Yves Mahéo

To cite this version:
Frédéric Guidec, Pascale Launay, Yves Mahéo. Causal and ∆-Causal Broadcast in Opportunistic Net-
works. Future Generation Computer Systems, 2021, 118, pp.142-156. �10.1016/j.future.2020.12.024�.
�hal-03112085�

https://hal.science/hal-03112085
https://hal.archives-ouvertes.fr


1

Causal and Δ-Causal Broadcast
in Opportunistic Networks

Frédéric Guidec1,2, Pascale Launay1,2, Yves Mahéo1,2

1 IRISA, Université Bretagne Sud, BP 573, 56017 Vannes
Cedex, France
2 Laboratoire Cogitamus, France

Abstract—Causal broadcast is a fundamental communication
abstraction for many distributed applications. Several implemen-
tations of this abstraction have been proposed over the last
decades for traditional networks, that is, networks that assume
the existence of a continuous bi-directional end-to-end path be-
tween any pair of nodes. Opportunistic networks constitute a kind
of networks in which this assumption cannot be made, though, so
the implementation of causal broadcast in such networks must be
addressed differently. This paper presents two algorithms based
on causal barriers that can ensure the causally-ordered delivery
of broadcast messages in an opportunistic network, considering
both cases where the messages propagate in the network without
or with a bounded lifetime. The latter case is especially interesting
in networks that must run for a long time, or with a population
of nodes that changes continuously.

I. INTRODUCTION

Causal broadcast is a high-level communication abstraction
that ensures that messages broadcast in an asynchronous
networking system are delivered in their broadcast causality
order. More specifically, if a broadcast message m has been
delivered to the application layer on node u, and if after that
event node u broadcasts message m’, then m’ is said to depend
causally on m. Consequently, no network node can deliver m’
to its own application layer unless it has delivered m first.

This abstraction is a major enabler for distributed applica-
tions, as it makes it possible for concurrent parts of an appli-
cation to follow a consistent course of actions. In discussion
forums or social networks, for example, the messages can be
presented to a user in a causally consistent order, even though
these messages may be received in any order.

The notion of causal order dates back to 1987, as it was
first introduced in the ISIS system [1], [2]. Since then many
algorithms have been proposed to ensure causal message
delivery in either point-to-point or broadcast communication.
Most of these algorithms rely on strong assumptions about the
underlying network, though. For example it is often assumed
that this network is connected (i.e., that there exists a bi-
directional path between any pair of nodes), and that the
number of nodes in this network — or at least those that
need to exchange causally ordered messages — is known and
is stable. Sometimes the topology of the network is assumed
to be quite stable as well, so an overlay can be built and
maintained in order to forward messages efficiently, especially
in very large networks. Quite frequently it is assumed that

reliable transmissions are ensured in the network, so causal
message delivery is often built upon this property.

Overall, most of the causal broadcast algorithms that have
been designed over the last decades are meant to run in the
Internet, or in networks with similar properties as the Internet:
the existence of a continuous bi-directional end-to-end path
between any pair of nodes, low error rates, and reasonably
short and roughly symmetric round-trip delays. Yet over the
last few years a different kind of network has appeared, that
does not share these properties.

An opportunistic network (or OppNet for short) is a network
whose nodes are mostly mobile, and that operates solely
by exploiting transient direct radio contacts between pairs
of nodes [3]. Most of the times these contacts cannot be
predicted in advance, so they must be exploited opportunisti-
cally whenever they occur, hence the opportunistic nature of
communication in such a network.

Figure 1 shows a typical OppNet, in which the mobile
nodes are handheld devices carried by human beings. These
devices only come into contact with each other every now and
then, depending on how their carriers move. In this figure the
communicating devices are carried by people, but they may
as well be carried by vehicles, by animals, by drones, or by
any combination of mobile entities.

Although a radio contact between two nodes is only possible
at close range in an OppNet, the transmission of messages over
long distances is still possible in such a network, thanks to the
“store, carry, and forward” principle: each mobile node can
serve as a “data mule” for messages it has either produced
itself or received recently, storing these messages in a local
cache, and carrying them for a while before they can be
forwarded to other nodes [4]. Thus, although an end-to-end
path may not always exist between the sender of a message
and the intended receiver(s), a journey may however exist
between these sender and receiver(s). A journey is, basically, a
succession of hops from one node to the next, each hop being
only possible at the appropriate time, while two nodes are in
radio contact.

Many message forwarding protocols have been proposed in
the literature based on this general principle, each protocol
addressing a particular kind of OppNet [5], [6], [7], [8], [9],
[10]. The delivery of a message to a particular destination node
is not always guaranteed, though, as it depends on how the
nodes move and come into radio contact. Besides a message
may take several minutes, hours, or even days to reach its
destination. Again this depends on the particular dynamics of
the whole network.

The population of nodes that constitute an OppNet is not



2

Figure 1: Example of an opportunistic network composed of handheld devices carried by human beings

always stable either. For example, in the OppNet depicted in
Fig. 1, some people may occasionally shut their device off and
thus leave the network (either temporarily or definitely), while
others may enter the network at any time.

An OppNet is therefore a network where reliable communi-
cation cannot always be guaranteed, where the time required
for a node to receive a message is usually not known either,
and where even the number of nodes that constitute the
network at any time may remain unknown.

Causal broadcast algorithms that have been designed for
more “traditional” networks can hardly run in an OppNet. Yet
an OppNet is a network in which applications have to be dis-
tributed, hence the need to support high-level communication
abstractions such as causal broadcast in such a network.

In the remainder of this paper we propose two algorithms
that can ensure causal broadcast in an OppNet. The first
algorithm can be used when the broadcast messages have no
bounded lifetime, while the second algorithm, called Δ-causal
algorithm, takes care of messages with a bounded lifetime.
Both algorithms are directly derived from [11] and [12]
respectively, but they have been modified so as to take into
account the peculiarities of opportunistic networks.

The remainder of this paper is organized as follows. Related
work is presented and discussed in Section II. The system
model we consider in this work is detailed in Section III.
The causal and Δ-causal broadcast algorithms we propose
are presented in sections IV and V respectively. Section VI
presents experimental results we obtained while running both
algorithms in realistic scenarios. Section VII concludes the
paper.

II. RELATED WORK

Causal ordering has first been introduced in the ISIS sys-
tem [1], [2]. The first approach implemented in this system
consisted in piggy-backing in each message all its causal
predecessors, that is, all the messages it causally depends on.
This approach is effective, but not efficient: the communication
overhead is large, so garbage collection is required every now
and then to expunge old messages that are not significant
anymore.

Vector clocks have then been introduced by Fidge [13] and
Mattern [14] as a means to reduce the communication over-
head [15]. Instead of piggy-backing all its causal predecessors
(that is, all the messages that must be delivered before its

own delivery), each message only carries a vector of logical
timestamps. Each entry in this vector corresponds to a network
or process, and each timestamp characterizes the last message
received from that process by the sender of this message.
Based on this meta-information, a process receiving a message
can decide if it can be delivered immediately to the application
layer, or if this delivery must be deferred until all its causal
predecessors have been delivered locally.

The main advantage of using vector clocks is that their
implementation can be quite compact: the vector size is O(N),
where N is the number of processes that participate in group
communication). The disadvantage is that they can only be
used when N is known by every process, so each process can
be assigned an integer number as an identifier. This is only
possible, either when N is known in advance and remains static
during the network’s entire lifetime, or when an additional
group membership algorithm is used to manage the population
of processes.

Although a vector clock is already a rather compact data
structure, several vector compaction methods have been pro-
posed in later years. For example, the idea proposed in [15]
consists in piggy-backing in each broadcast message only
information about what has changed in the sender’s vector
clock since its last broadcast. The authors of [16] propose a
general method using clock matrices instead of vector clocks,
which can be used for both point-to-point and broadcast
communication.

The causal broadcast algorithm defined in [11] defines the
notion of causal barrier, which stems from the observation
that when a message is sent in the network, there is no need for
this message to carry information about all its causal predeces-
sors. Instead a message only needs to carry information about
its immediate predecessors, that is, the messages on which
its delivery directly depends on. This minimal information
constitutes the so-called causal barrier of a message, which
can be piggy-backed in the broadcast messages at minimal
cost.

The work described in [12] is also based on causal barriers.
It proposes a special type of causal broadcast, called Δ-causal
broadcast, that can be used when the broadcast messages
have a bounded lifetime Δ. A message can then only be
delivered before its lifetime expires. Otherwise this message
is considered lost, and any causal dependency on this message
is considered canceled.



3

More recently, several new algorithms have been proposed
to support causal broadcast in different kinds of networking
systems. For instance, causal broadcast in cellular networks
is considered in [17], assuming that the wireless channels
between mobile support stations and mobile hosts are reliable
and FIFO.

A probabilistic causal message ordering mechanism to be
used in large dynamic networks is defined in [18]. This
approach reduces the cost of causal broadcast, while admitting
a small (and controllable) rate of errors. It is assumed that a
reliable broadcast primitive is available, though.

The new algorithm detailed in [19] also targets large
dynamic systems. In this algorithm it is assumed that the
processes communicate via an overlay network, whose links
are FIFO. Besides each process is assumed to be aware of the
links through which it can reach other processes.

The problem of the accumulation of control information in
causal broadcasting is addressed in [20]. The authors propose
a method whereby each process can forget obsolete control
information about the messages it has already delivered. Since
this algorithm does not assume that the underlying system
ensures reliable broadcast, the focus is on preventing multiple
deliveries of the same message. Like in [19], though, it is
assumed that the processes communicate via the FIFO links
of an overlay network.

Finally, the case where processes can crash is explored
in [21]. An algorithm is presented that can tolerate any number
of crashes in the system. It is assumed that the transmission
channels are reliable, which notably means that messages are
assumed never to get lost.

As mentioned in Section I, an OppNet is a network in which
transmissions can only rely on pairwise radio contacts between
mobile nodes. As a general rule a node cannot predict when a
radio link is going to appear or disappear between itself and
another node. Besides, the propagation of messages all over
the network relies on the store, carry and forward principle. As
a consequence, how a message will propagate cannot always
be predicted. Finally, the number of nodes in the network is
usually not determined in advance, since OppNets are typically
networks whose population of nodes can vary over time.

For all these reasons, most of the above-mentioned causal
broadcast algorithms could hardly be used in an OppNet.
Algorithms based on vector clocks (or any variant thereof)
require that the size of the population of nodes (or processes)
be known in advance. Incidentally they also require that each
node (process) be uniquely identified by an integer number,
which is not always feasible in a network whose nodes are not
necessarily administered by any central authority. Algorithms
that assume reliable (or FIFO) communication links cannot
be used either in OppNets, because message delivery in such
networks cannot always be guaranteed, and because a node
may receive messages in any order.

Among these algorithms, though, those based on causal
barriers present interesting features. Their implementation
does not require any additional control messages, and the
meta-information (i.e., the causal barrier) piggy-backed in each
broadcast message is minimal. These algorithms are usually

presented as requiring no prior knowledge of the network
or communication topology. Yet, the algorithms presented
in [11] and [12] both require that each process maintains data
structures that are defined as arrays (or vectors) of N entries,
N being the number of processes involved in causal broadcast.
In other words, both papers assume that N is known, and that
each process is identified by a unique integer value taken in
the range [0..N-1]. This approach is actually quite similar to
that used in algorithms based on vector clocks, although the
meta-information piggy-backed in the broadcast messages is
different.

The notion of Δ-causal broadcast addressed in [12] can be
especially interesting in OppNets, since assigning messages a
bounded lifetime is common practice in such networks. This is
a convenient means of preventing the saturation of the message
cache maintained by each node.

Overall, causal barriers and Δ-causality are interesting
features that fit the needs of OppNets perfectly. However, the
algorithms presented in [11] and [12] cannot be implemented
directly in OppNets, for they assume too much knowledge
of the network, and they could not be used in an OppNet
with a high churn ratio. The two algorithms presented in
the remainder of this paper are definitely inspired from [11]
and [12], but special attention has been paid to removing these
limitations.

To the best of our knowledge, causal broadcast in OppNets
has so far only been addressed in [22] and [23]. In [22]
causal broadcast is obtained with an algorithm that is derived
from the CBCAST algorithm [15], and in [23] an algorithm
derived from [11] is used instead. In both papers, though,
the focus is on supporting conflict-free replicated data types
(CRDTs) in OppNets, so very little detail is provided about
how causal broadcast is actually implemented. Besides, Δ-
causal broadcast is not considered in any of these papers.

III. SYSTEM MODEL

The two algorithms defined in the next sections are meant
to run on top of an opportunistic networking layer, and
under an application layer that requires broadcast messages
to be causally ordered. The opportunistic networking layer is
assumed to run according to the store, carry, and forward
principle [4], ensuring the dissemination of messages over the
whole network. The following lines explain what is expected
from this networking layer, and how the causal broadcast layer
can itself interact with the application layer.
• The opportunistic networking layer provides a function

oppnet_id() that returns the unique identifier of the local
host in the opportunistic network. This identifier is of
type ID_TYPE. On a smartphone it may for example be
the IMEI of the device, or a self-assigned IPv6 address.
In any case we do not assume that this identifier is
an integer value. Likewise, we do not assume that the
number of hosts in the network is known, or that this
number remains stable during the network’s lifetime. As
a consequence, the data structures each host needs to
maintain to ensure causal ordering cannot simply be based
on arrays or vectors. Instead the algorithms described



4

below rely on maps of <key, value> pairs, where the key
appears at most once and may be either the identifier of a
host, or that of a message. This is a major difference with
algorithms that rely on vector clocks or similar structures.

• Each message carries a unique identifier, which is pro-
duced by the opportunistic networking layer on the sender
side. Since our causal broadcast algorithms are meant to
be implemented over an existing opportunistic networking
layer, we cannot assume that we can freely assign an
identifier to a message. Instead we must do with the
identifiers produced by the networking layer. However
we assume that we can freely add meta-information to
each message before it is sent in the network.

• The opportunistic networking layer maintains a cache in
which any message produced locally or received from
the network is systematically deposited. The capacity of
this cache is of course limited, so the networking layer
must implement a strategy to reclaim some space when
the cache is full. However, since storing messages while
moving around is a prime requirement for mobile hosts in
an opportunistic network (as part of the store, carry and
forward principle), we assume that the cache’s capacity
is such that messages can stay there long enough to
disseminate properly in the network, and to be of some
use to high-level services that rely on the networking
layer (such as our causal broadcast algorithm).

• The opportunistic networking layer provides a function
oppnet_broadcast() that makes it possible to broadcast
a message in the network, and a notification function
oppnet_receive() that is called whenever a new broadcast
message has been received from the network. We make
no particular assumption about how a message is actually
broadcast. Epidemic forwarding is typically an effective
method to broadcast information in an OppNet [24], [25],
but other methods may be used, for example in networks
where mobility or contacts follow regular patterns.

• The opportunistic networking layer takes care of dupli-
cates: the same message may be received several times
from the network, but it will be put in the local cache
only once, and function oppnet_receive() will therefore
be called only once (just after the message has been
deposited in the cache).

• Interaction between the causal broadcast algorithm and
the application layer is based on functions co_broadcast()
and co_deliver(). Function co_broadcast(m) can be called
by the application layer to request the broadcast of
message m, and function co_deliver(src, m) is called
when a message m, which has been sent by node src,
is fit to be delivered to the application layer.

It is worth highlighting that we do not assume reliable broad-
cast in the OppNet, because in such a network there is usually
no guarantee that a broadcast message will eventually reach
every possible node. In fact, since OppNets are dynamic by
nature, reliable broadcast is only possible in some of them,
and sometimes only during specific time intervals. Achiev-
ing reliable broadcast therefore depends on the dynamics of
the network considered. The algorithms described below are

meant to ensure that the messages delivered to the application
layer of a node are causally ordered, but they cannot ensure
that all messages are delivered.

Terminology: In papers that deal with opportunistic net-
working, the term message delivery is often used to denote
the event where a message is delivered to a network node,
that is, the event where the message is actually received by
a node. In this paper we must distinguish between the event
where a message is received by a node, and the event where
the message can be delivered to the application layer on this
node, with causal order preserved. In order to prevent any
confusion between these two kinds of events we use the term
co-deliver (which stands for causally ordered delivery) in the
remainder of this paper to denote the event when a message
is delivered to the application layer.

IV. A CAUSAL BROADCAST ALGORITHM FOR
OPPORTUNISTIC NETWORKS

In this section we do not consider the case where broadcast
messages are given a bounded lifetime when they are sent in
the network. This case will be addressed in the next section.

The algorithm described below is strongly inspired
from [11], but it has been designed so as to fit the system
model described earlier.

A. Data structures maintained by each mobile host

• st: this is an integer variable that serves as a sequence
tag1 for messages co_broadcast by this host;

• c_barrier: this is a registry of messages that are im-
mediate predecessors of the next message that will be
co_broadcast by this host. This registry is actually a
map of <src,st> pairs, where each pair identifies one
immediate predecessor.

• co_delivered: this is a registry of messages that have been
co-delivered locally. This registry is also structured as a
map of <src, st> pairs, each pair indicating the sequence
tag st of the last message from src that has been co-
delivered on the local host.

• pending: this is a registry of messages that have been
received by the local host, but not co-delivered to the
application layer yet (because they still depend on as-yet-
undelivered messages). It is structured as a map of <mid,
cb> pairs, where mid is the unique identifier of a pending
message, and cb is the current state of the causal barrier
of this message. This causal barrier is updated whenever
an immediate predecessor of this message is co-delivered
locally, and once the barrier is empty the message can
itself be co-delivered.

Code 1 shows the definition of these data structures.

B. Algorithm

Let us first consider what happens when the application
layer needs to broadcast a new message.

1We deliberately avoid using the term “sequence number” here, because
this tag will be assigned date values in Section V.



5

Code 1 Definitions and initialization of data types
def ID_TYPE: String
def CB_TYPE: Map<ID_TYPE, long int>

Initialization:
static ID_TYPE host_id ← oppnet_id()
long int st ← 0
CB_TYPE c_barrier ←∅
CB_TYPE co_delivered ←∅
Map<mid, CB_TYPE> pending ←∅

Code 2 Function co_broadcast()
Function co_broadcast(m):

st ← st + 1
oppnet_broadcast(<host_id, st, c_barrier, m>)
c_barrier ←∅
performDelivery(host_id, st, m)

When function co_broadcast(m) (see Code 2) is called, the
sequence tag is first incremented, and the message is then
broadcast by calling oppnet_broadcast(). The message that is
actually broadcast is a combination of m with the local host’s
id, the new value of the sequence tag, and the current state of
the local causal barrier. Once the message has been broadcast,
the c_barrier registry is reset, and function performDelivery()
is called in order to co-deliver the message locally.

Function performDelivery() (see Code 3) is used to co-
deliver any message to the application layer, whether this
message has been produced locally or received from another
host. When this function is called, the co_delivered registry
and the c_barrier registry are both updated in order to reflect
the co-delivery of this message (i.e., the sequence tag of
the last message co-delivered from source src is now stsrc).
Function co_deliver() is called to co-deliver the message (with
indication of its source) to the application layer, and function
forgetDependency() is called to update the pending registry
accordingly.

Whenever a message m (identified as pair <src, stsrc>) is
co-delivered, function forgetDependency() is called to expunge
any dependency on that message from the causal barriers of all
the messages that are waiting in the pending registry. Basically,
if the causal barrier of a pending message m’ contains a pair
<src, st’> such that st ′ ≤ st, then it means that m’ was waiting
for m to be co-delivered. Now that m has been co-delivered,
the dependency of m’ on m can be removed from the causal
barrier.

Any causal dependency is thus removed from the causal
barriers of pending messages whenever possible. When the

Code 3 Function performDelivery()
Function performDelivery(src, stsrc, m):

co_delivered.put(src, stsrc)
c_barrier.put(src, stsrc)
co_deliver(src, m)
forgetDependency(src, stsrc)

Code 4 Function forgetDependency()
Function forgetDependency(src, stsrc):

for all <mid, cb> in pending do
if ∃ <src,st’> in cb s.t. st’ ≤ stsrc then

cb.remove(src)
fi

done

Code 5 Function oppnet_receive()
Upon oppnet_receive <mid, src, stsrc, cb, m> do

expungeDeliveredPredecessors(cb)
if cb 6=∅ then

pending.put(mid, cb)
else

performDelivery(src, stsrc, m)
checkPendingMessages()

fi

causal barrier of a pending message is empty, it means that
this message is fit to be co-delivered.

Let us now examine what happens when a broadcast mes-
sage is received. Function oppnet_receive() is called by the
opportunistic networking layer as soon as a new broadcast
message has been received and put in the local cache (see
Code 5). The causal barrier contained in this message is first
updated based on the current state of the co_delivered registry.
This update is performed by calling function expungeDeliv-
eredPredecessors(cb) (see Code 6), which basically removes
from the causal barrier cb (passed as a parameter) any pair
<src, st> such that <src, st’> exists in registry co_delivered,
and st ′ ≥ st. In other words, this update consists in expunging
from the causal barrier any dependency on a predecessor that
has already been co-delivered locally. Once the causal barrier
of a newly received message has been updated, this barrier
is examined. If it is not empty yet, then the co-delivery of
the message must be deferred. In that case an entry <mid,
cb> is added to the pending registry, where mid is the unique
identifier of the message (this is the id that will later make it
possible to retrieve this message from the local cache), and cb
is the current state of its causal barrier. If the causal barrier
of the message is empty, then function performDelivery() is
called to co-deliver the message to the application layer. The
co-delivery of this message may have an impact on the deliver-
ability of other messages that were specifically waiting for this
message to be co-delivered. Function checkPendingMessages()
(see Code 7) is therefore called to evaluate the consequences
of this co-delivery. Basically, this function looks in the pending
registry for messages whose causal barrier is now empty (and
which can thus be co-delivered). Each entry with an empty
causal barrier is removed from this registry, the actual message
is retrieved from the cache, and this message is co-delivered
to the application layer. Note that this co-delivery may in turn
render other waiting messages deliverable. This is the reason
why function checkPendingMessages() defines a loop that runs
until no further message can be co-delivered for the time being.



6

Code 6 Function expungeDeliveredPredecessors()
Function expungeDeliveredPredecessors(cb):

for all <src, stsrc> in cb do
if ∃ <src,st’> in co_delivered s.t. st’ ≥ stsrc then

cb.remove(src)
fi

done

Code 7 Function checkPendingMessages()
Function checkPendingMessages():

repeat
msg_delivered ← False
for all <mid, cb> in pending do

if cb =∅ then
pending.remove(mid)
<src, stsrc, m> ← cache.extract(mid)
performDelivery(src, stsrc, m)
msg_delivered ← True

fi
done

until not msg_delivered

C. Considerations about communication and storage over-
heads

An interesting consequence of the presence of a cache in the
opportunistic networking layer is that, in our causal broadcast
algorithm, we do not have to care about preserving messages
until they can be co-delivered to the application layer. We only
have to maintain enough information to be able to retrieve a
message from the cache whenever necessary. The registries
mentioned in the former section therefore do not actually store
any message. They only maintain meta-information that makes
it possible to ensure the causal ordering of message deliveries,
and to retrieve a message from the cache when its co-delivery
is actually required. The data space required to maintain these
registries therefore remains quite negligible compared to the
data space occupied by the cache itself.

More specifically, the size of the causal barrier is propor-
tional to the number of immediate predecessors of the next
message that will be broadcast locally. In the worst case a host
may receive at least one message from each possible source
between two of its own successive broadcasts, and in that case
the size of the causal barrier would be proportional to the
number of (other) hosts in the network. In practice, though,
the causal barrier will most of the time be far smaller than
that maximal size, as it is reset every time a new message is
broadcast locally.

The co_delivered registry typically contains one entry for
each source from which a message has been received in the
past. Its size is therefore proportional to the number of (other)
hosts in the network.

The pending registry only maintains information about
messages that have not been co-delivered yet, so its size
depends on the actual ordering of message receipts and co-
deliveries on each host. As soon as a message is co-delivered,
though, the corresponding entry is removed from this registry,

so there is no risk to see its size growing continuously.

V. A Δ-CAUSAL BROADCAST ALGORITHM FOR
OPPORTUNISTIC NETWORKS

A. Motivation

An opportunistic network may run for a very long time, and
possibly continuously. Since the dissemination of messages in
such a network relies on the store, carry and forward principle,
the cache each node maintains to store messages is likely to
saturate after a while. Several methods have been proposed in
the literature to address this problem, for example by dropping
messages randomly, or based on their assumed utility. The
most common method consists in dropping messages after
they have disseminated in the network for a certain amount of
time. When it is sent in the network, each message is allowed
a certain lifetime, after which all copies of this message are
removed from the caches where they have been stored. The
problem is thus for the designer of an application, or for the
administrator of the network (assuming there is indeed an
administrator), to determine how long a message should be
allowed to propagate in the network. Sometimes the lifetime
of a message may be determined by the very nature of the
information it contains: a message transporting for example
the weather forecast for tomorrow does not need to keep
propagating in the network the day after tomorrow. Sometimes
this lifetime may be determined based on insights about how
long it usually takes for a message to reach its destination(s):
if statistics show that the messages propagating in a certain
opportunistic network always reach any possible destination
in less than two hours, there is no need to give each message
a lifetime of several days.

Δ-causal ordering is a communication abstraction designed
for distributed applications whose messages have a bounded
lifetime but must still be co-delivered according to causal
ordering. Once a message m1 has reached the end of its
lifetime, the information it contains is considered as irrelevant
for the application layer, so it can safely be discarded. The
consequence for any other message m2 whose co-delivery
depends on that of m1 is that once m1 has been discarded,
m2 can be considered as not being dependent on m1 anymore.

With Δ-causal ordering, the idea is to co-deliver as many
messages as possible before their lifetime is over, while
respecting the causal order of the messages that are actually
co-delivered.

A Δ-causal broadcasting algorithm based on the notion
of causal barrier has been presented in [12]. This algorithm
resembles the one presented in [11] (which does not account
for bounded lifetimes), but instead of tagging each message
with a sequence number, it tags it with its sending date, with
the assumption that two messages sent successively by the
same process cannot have the same sending date. When a
message is received by a node, its deadline is calculated based
on its sending date and its lifetime, and if this deadline is
over the message is discarded. In [12] it is assumed that all
nodes can access a common clock, though. This is a strong
assumption that does not always hold true in an OppNet.
Sometimes the mobile nodes include a GPS receiver, which



7

can serve as a common time reference in the network. This
is typically the case in a network whose nodes are carried by
vehicles. But in other kinds of networks, such as those whose
nodes must run indoor or with a very limited power-budget,
relying on GPS receivers is not an option. As a general rule,
it can however be assumed that each node has a local clock,
and that all clocks are “reasonably” in sync with each other.
The time returned by two different clocks may thus differ by
a few seconds, but this difference is negligible considering the
transmission delays observed in an OppNet (sometimes up to
a few minutes or hours). When Δ-causal ordering is expected
in broadcast messages, the question is mostly to determine if
two nodes with slightly divergent clocks may take decisions
that would violate the causal ordering of the messages co-
delivered to their application layer. Let us consider the case
where two nodes u and v receive the same message m, whose
deadline is almost over. If node u has a clock that is a bit late
compared to that of node v, then node u may consider that m
is still valid and co-deliver it to its application layer. Node v
however may observe that m is actually expired, and simply
discard it. Thus, nodes with different clocks may take different
decisions regarding how to process the same message. But
this observation does not mean that a node may co-deliver
messages in an order that is not causally consistent. Since
each node takes decisions based on its own clock, the order in
which it co-delivers messages to its application layer remains
causally consistent, even though the messages it actually co-
delivers may not be the same as those delivered on another
node.

B. Additions to the system model

The system model for our Δ-causal broadcasting algorithm
is similar to the one described in Section III, with the following
additional assumptions:
• Function oppnet_broadcast(m, [dln]) admits an optional

parameter dln that defines the deadline of message m.
This information is transported with the message (as
meta-data), and the networking layer automatically takes
care of messages when they expire. More specifically,
when a message is received, its deadline is compared to
the current time (as returned by the local clock), and if
this deadline is over the message is discarded rather than
being deposited in the local cache.

• The networking layer spontaneously expunges any mes-
sage whose deadline is over from the local cache, and
before doing so it invokes the notification function opp-
net_discard(mid) in order to inform any higher-level
algorithm that message mid is expiring.

C. Algorithm

The Δ-causal broadcast algorithm described below is
strongly inspired from [12], but it has been designed so as
to fit our system model.

Since this algorithm has the same general architecture as the
one presented in Section IV, we only highlight in this section
the lines that are either different or new in this algorithm.

Code 8 Definition of the lifetime of messages
Initialization:

static long int lifetime ← . . .

Code 9 Function co_broadcast() for Δ-Causal broadcasting
Function co_broadcast(m):

st ← NOW + lifetime
expungeExpiredPredecessors(c_barrier)
oppnet_broadcast(<host_id, st, c_barrier, m>, st)
c_barrier ←∅
performDelivery(host_id, st, m)

The lifetime assigned to messages is of course a parameter
of this algorithm (see Code 8). In this example we assume
that the lifetime variable takes a static value, but this value
may actually change over time, for example to give messages
a longer lifetime when they are broadcast at the end of the
day, or just before the week-end.

When a message is co_broadcast the sequence tag it carries
is not a sequence number anymore, but a date. In [12] this date
is the sending date of the message, so it is up to each receiver
to calculate the message’s deadline based on this sending date
and on the lifetime of the message. In our algorithm the
deadline is calculated on the sender side. This is a very minor
difference with [12], and it has no side effect on the behavior
of the algorithm.

Before the message is sent in the network, function expunge-
ExpiredPredecessors() is called in order to clean up the causal
barrier of the sending node. Indeed, this causal barrier is meant
to specify what are the immediate predecessors of the message
that is being sent. But since the identities of these predecessors
may have been put in the c_barrier registry some time ago,
some of them may have already reached their deadline. There
would be no advantage in sending a message with a causal
barrier that indicates that it depends on predecessors that
are already expired. Function expungeExpiredPredecessors()
therefore cleans up this causal barrier by removing any depen-
dency on an expired predecessor. The consequence of calling
this function before broadcasting a message is that the causal
barrier embedded in this message may be slightly smaller. The
gain, if any, is thus observed in the communication overhead.

Function expungeExpiredPredecessors() is also called
whenever a message is received from the networking layer, in
order to clean up the causal barrier of this message from any
reference to an expired predecessor (see Code 11). Remember
that in an OppNet the journey of a message from a sender

Code 10 Function expungeExpiredPredecessors() for Δ-
Causal broadcasting
Function expungeExpiredPredecessors(cb):

for all <src, stsrc> in cb do
if stsrc < NOW then

cb.remove(src)
fi

done



8

Code 11 Function oppnet_receive() for Δ-Causal broadcasting
Upon oppnet_receive <mid, src, stsrc, cb, m> do

expungeExpiredPredecessors(cb)
// Remainder of the code as shown in Code 5

Code 12 Function forgetExpiredMessages()
Function forgetExpiredMessages():

for all <mid, cb> in pending do
expungeExpiredPredecessors(cb)

done
for all <src, stsrc> in co_delivered do

if stsrc < NOW then
co_delivered.remove(src)

fi
done

to a receiver may take minutes, or even hours. So it makes
sense, when a message is received, to check if some of its
predecessors have not expired during its journey.

Note that when function oppnet_receive() is called there is
no need to check if this message has reached its deadline, for
this has already been verified by the opportunistic networking
layer. Any message that comes from the networking layer is
thus a message whose deadline has not been reached yet.

Information pertaining to expired messages can also be
expunged on occasions from the pending registry and the
co_delivered registry. This is achieved in function forgetEx-
piredMessages() (see Code 12), which is called whenever the
algorithm must check if pending messages can now be co-
delivered (see Code 13).

When a message that is present in the cache expires, the
networking layer calls function oppnet_discard(mid) before
actually removing this message from the cache. The algorithm
therefore checks if this message that is expiring was registered
in pending (which means it has not been co-delivered yet).
If that is the case, then the corresponding entry is removed
from the pending registry, meta-information (namely the <src,
stsrc> pair) about this message is extracted from the cache,
so function forgetDependency() can be called to expunge any
dependency on that message from the pending registry. Finally,
function checkPendingMessages() is called because some of
the pending messages may be deliverable now that they do
not depend on <src, stsrc> anymore.

D. Considerations on communication and storage overheads

Since the registries maintained by a mobile host have the
same structure and the same role as in Section IV, the data
space they occupy is bounded by the same limits. The causal
barrier transmitted with every message may be slightly smaller

Code 13 Function checkPendingMessages() for Δ-Causal
broadcasting
Function checkPendingMessages()

forgetExpiredMessages()
// Remainder of the code as shown in Code 7

on average, though, for references to expired predecessors
are systematically expunged from this barrier just before the
message is sent in the network. The pending registry should
also occupy less data space on average, because references
to expired messages are expunged from the causal barriers it
contains (one for each pending message) whenever function
checkPendingMessages() is called. Finally, the co_delivered
registry may grow and shrink over time, while it can only grow
or keep the same size in the algorithm presented in Section IV.

Adjusting the size of the co_delivered registry dynamically
is actually of prime importance when Δ-causal broadcast is
required in an opportunistic network that exhibits a high churn
ratio. Indeed, in a network whose population of nodes is
renewed continuously, a long-standing node could endlessly
receive messages from sources it has so far never heard
of. Function forgetExpiredMessages() (see Code 12) helps
to prevent the co_delivered registry from growing endlessly,
by removing from this registry any entry that is not useful
anymore.

VI. EXPERIMENTATION

Evaluating the performance of a distributed algorithm de-
signed for OppNets is always a challenge, because the behav-
ior of this algorithm is directly dependent on the dynamics of
the network considered. In the literature, protocols and higher-
level algorithms are often evaluated using plain simulators,
which simulate the movement or the radio contacts between
mobile devices, but with which the communication protocols
and distributed algorithms are often over-simplified. The va-
lidity of results thus obtained is therefore debatable, as the
simulation conditions can always be deemed as not realistic
enough.

In order to mitigate this problem, we implemented the algo-
rithms described in sections IV and V over a fully-functional
opportunistic networking system that can run equally well
in a real setting or in simulated conditions. This system,
called DoDWAN, is implemented in Java, and it can notably
run on Android smartphones, laptops, and tablets [26], [27].
DoDWAN essentially supports the dissemination of messages
in an OppNet, using the epidemic forwarding model. By
implementing our causal and Δ-causal broadcast algorithms
over this platform, we ensure that they can indeed rely on
the opportunistic communication services offered by a real
opportunistic system.

Besides running on real mobile devices, DoDWAN can also
be used with the LEPTON emulation platform [28]. With LEP-
TON, many instances of an opportunistic networking system
(DoDWAN in that case) can run concurrently on a single
workstation (or on a cluster of workstations if needed), while
the radio contacts between these virtual nodes are simulated by
the emulation platform. With this approach the same mobility
or contact scenario can be replayed as many times as needed,
and this scenario can involve hundreds or thousands of nodes,
which would be intractable in real conditions.

A. Causal and Δ-causal broadcast in a city bus network
In order to evaluate the algorithms presented in sections IV

and V, let us first consider a scenario in which the mobile



9

Figure 2: Snapshot of the city bus network scenario (close-up)

Metrics Values (* = min / max / avg / stdev values)
Duration of the scenario 14h15’
Nb of nodes 60 (total) / 56 (max. active simultaneously)
Activity duration per node 26’ / 14h08’ / 10h58’ / 3h26’ (*)
Number of contacts 8.892
Durations of contacts 1” / 04’09” / 1’24” / 1’05” (*)

Table I: Statistics about the city bus scenario

nodes are city buses.
a) Mobility and contacts scenario: In order to simulate

the mobility of these buses, and radio contacts between
them, mobility traces have been produced by extracting the
characteristics of the bus routes of a real bus network from
OpenStreetMap, and combining these routes with the bus
timetables. In that case we considered the bus network of the
city of Vannes (France). Based on this mobility scenario, radio
contacts have been calculated, assuming a transmission range
of 200 meters around each bus. The result is a mobility and
contacts scenario that can be played by LEPTON. A snapshot
collected while running this scenario is presented in Figure 2,
and a video is available on our website2.

This scenario involves 60 buses covering the city, between
05:30 in the morning and 19:45 in the evening. These buses
neither start nor stop running at the same time, as can be
observed in Figure 3. Besides, a few of them only run at
specific periods during the day. These are typically school
buses that transport students to school or back home. The
OppNet considered in this scenario therefore exhibits moderate
churn, as the number of mobile nodes (in that case, buses)
involved in that scenario is not stable over time. Statistics
about this scenario are available in Table I. Note that 8.892
radio contacts occur between the nodes during one day, with
an average contact duration of 1’24”.

b) Application scenario: The application scenario we
consider is defined as follows: each bus broadcasts messages
periodically, and each message is meant to be received —

2https://casa-irisa.univ-ubs.fr/lepton/videos.html

0

10

20

30

40

50

60

06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00

N
od
es

hh:mm

Figure 3: Running intervals in the city bus network scenario
(each horizontal line represents the period when a bus runs)

ideally — by all other buses. The broadcast period is set
to 20 minutes, and the first message is sent by a bus 20
seconds after it starts running. Since all buses do not start
running at the same time, and since they do not run for the
same amount of time, they do not broadcast the same number
of messages. Actually, 2004 messages are broadcast in this
application scenario, and since a bus may broadcast a message
after other buses have already stopped running, the number of
potential receivers for each message depends on when it is
broadcast, and by which bus.

c) Experimental procedure: The scenario described
above (that actually combines the mobility and traces scenario
with the application scenario) has been run with LEPTON
driving DoDWAN nodes. This experiment has first been con-
ducted assuming that the messages broadcast by each bus have
no bounded lifetime. In that case an implementation of the
causal broadcast algorithm described in Section IV was run
by each DoDWAN node. We then assumed that the messages
have a bounded lifetime, and the Δ-causal broadcast algorithm
described in Section V was run by each DoDWAN node.

d) Metrics considered: During each experiment we
recorded data in order to observe the following metrics:

• bcasti: the number of messages broadcast by node i;
• rcvdi: the number of messages received by node i;
• codlvdi: the number of messages co-delivered by node i

to its application layer;
• expdi: the number of messages that expired on node i

before being co-delivered to the application layer (this is
only applicable to messages with a bounded lifetime, and
there is necessarily codlvdi ≤ rcvdi);

• scbm: the size of the causal barrier transported in mes-
sage m (i.e., number of entries in this data structure);

• sdlvi: the size of the co-delivered registry maintained on
node i (i.e., number of entries in that registry);

• tdelaym,i: the transmission delay of message m to node i
(i.e., time elapsed between the time when message m
is broadcast by its source node, and the time when this
message is received by node i);

https://casa-irisa.univ-ubs.fr/lepton/videos.html


10

• ltcym,i: the co-delivery latency for message m on node i
(i.e., the time elapsed between the time when m is
received on node i, and the time when it can be co-
delivered to that node’s application layer).

Note that tdelaym,i is a metric of how long it takes for message
m to propagate in the network and reach node i. This is
therefore an indication of how long it would take for m to be
delivered on i if there was no obligation to deliver messages
in causal order. In contrast, ltcym,i is an indication of how
much additional time it takes to ensure causal order in message
delivery.

Based on these data we collected, we also calculated several
other metrics:
• codlvdelaym,i = tdelaym,i+ ltcym,i: the age of message m

when its is co-delivered on node i.
• codlvratioi =

codlvdi
bcasti+rcvdi

: the co-delivery ratio observed
on node i (note that the messages co-delivered on node i
have either been broadcast by node i, or received by node
i);

• expratioi =
expdi
rcvdi

: the expiration ratio observed on node i
(note that the messages that expire on node i before being
co-delivered to the application layer have necessarily been
received by that node, since the messages broadcast by
a node are co-delivered immediately to its application
layer);
e) Results:

Pure causal broadcast (i.e., no bounded lifetime).
Let us first focus on the results obtained when the messages

have no bounded lifetime, that is, the results obtained using
the causal broadcast algorithm described in Section IV. Each
column in Table II shows details about the number of messages
that were broadcast, received, co-delivered, or that expired
during a particular experiment. Additionally, each line in
Table III provides statistical measures about the transmission
delays and co-delivery latencies observed for all messages. The
first column in Table II shows that in the experiment conducted
with no message lifetime, all the messages got co-delivered on
all nodes, hence a 100% co-delivery ratio. This confirms that
causal broadcast can indeed be ensured in an OppNet such as
the one considered in this scenario.

Figure 4a shows a plot of the co-delivery latency observed
for each message against its transmission delay. Notice that
in this figure the units in the x and y scales are different.
A message may reach a node several hours after it has been
sent in the network. However, once this message has been
received by a node, the additional time required to co-deliver
this message to the local application layer (respecting causal
order) is usually within minutes. Indeed, as shown in Table III
the average transmission delay observed for messages with no
lifetime is 43’50”, but the average co-delivery latency is only
13”.

Details about the statistical distribution of transmission de-
lays and co-delivery latencies are available in Figure 5, which
shows the cumulated distribution functions (CDF) for both
metrics. For now, let us again consider only the experiment
involving messages with no lifetime. It can be observed that
about 50% of these messages are received in less than 20

(a) No lifetime

(b) 20’ lifetime

Figure 4: Transmission delay vs co-delivery latency in the city
bus scenario

minutes, about 88% in less than an hour, and about 92% in
less than two hours. The reason why a few messages still need
several hours to be received by some nodes is that these nodes
only run episodically in the network. A message broadcast by
a node around 08:00 can hardly be received in the morning
by a node that only starts running after noon. This node will
only have a chance to receive the message after it has started
running, that is, several hours after the message has been sent
in the network.

In Figure 5b it can be observed that for most of the messages
the co-delivery latency is quite low. Actually, for 90% of the
co-delivery events the latency is less than 7.6 seconds, and for
95% of them it is less than 50 seconds. Considering that the
actual transmission of a message often takes several minutes
in a scenario such as the one considered here, we can conclude
that the additional latency incurred in order to ensure causal
order remains quite negligible for most messages. Only a few
co-deliveries require a latency over a minute. You may notice
that in Fig. 5b the range along the x axis has deliberately
been cut at 60 seconds, in order to keep the figure readable.



11

Lifetime None 120’ 60’ 40’ 20’ 10’
nb broadcast events 2004 2004 2004 2004 2004 2004
nb receive events 106580 98610 94329 85301 50365 21571
nb co-delivery events 108580 100614 96331 87304 52364 23572
co-delivery ratio 100% 100% 100% 100% 99.99% 99.99%
nb expiry events N/A 0 0 0 5 3
expiry ratio N/A 0% 0% 0% 0.01% 0.01%

Table II: Statistics about message processing in the city bus scenario

Lifetime tdelay (transmission delay) ltcy (co-delivery latency) codlvdelay = tdelay+ ltcy
None 4 ms / 11h47’ / 43’50” / 1h22” 1 ms / 39’13” / 13” / 1’03” 5 ms / 11h47” / 44’04” / 1h22’
120’ 4 ms / 1h59’56” / 23’18” / 17’55” 1 ms / 34’53” / 2” / 27” 5 ms / 2h / 23’20” / 17’57”
60’ 4 ms / 59’57” / 20’43” / 13’05” 1 ms / 39’20” / 1” / 18” 4 ms / 59’57” / 20’44” / 13’06”
40’ 2 ms / 39’54” / 17’50” / 10’04” 1ms / 15’41” / 0.5” / 9” 2 ms / 39’55” / 17’51” / 10’04”
20’ 2 ms / 19’53” / 10’47” / 5’27” 1 ms / 13’19” / 0.2” / 6” 2 ms / 19’53” / 10’47” / 5’27”
10’ 2 ms / 9’51” / 5’27” / 3’02” 1 ms / 3’39” / 62 ms / 2” 2 ms / 9’51” / 5’27” / 3’02”

Table III: Statistics about transmission and co-delivery delays in the city bus scenario (all quadruplets show min / max / avg
/ stdev values)

0

20

40

60

80

100

00:00 02:00 04:00 06:00 08:00 10:00 12:00

C
D

F
 (

%
)

Transmission delay (hh:mm)

No lifetime

10' lifetime

20' lifetime

40' lifetime

60' lifetime

120' lifetime

(a) Transmission delays

0

20

40

60

80

100

00:00 00:10 00:20 00:30 00:40 00:50 01:00

C
D

F
 (

%
)

Delivery latency (mm:ss)

No lifetime

10' lifetime

20' lifetime

40' lifetime

60' lifetime

120' lifetime

(b) co-delivery latencies

Figure 5: Cumulated distribution functions of transmission
delays and co-delivery latencies in the city bus scenario

Actually, the longest co-delivery latency observed during this
experiment is 39’13” (as shown in Table III). Such a late co-
delivery can typically be observed when a node u receives
message m1 during a contact with another node v, while m1
depends causally on m2, which has not been received yet, and
will not be received for a while. This may happen for example
when a contact between two nodes is disrupted before they
have finished exchanging messages. In such a situation node
u, which misses m2, must wait for the next opportunity to
obtain that message. Meanwhile m1 must remain in its cache,
pending co-delivery.

Figure 6a shows how the registries maintained by a node
evolve during the experiment. In that case we focus on the
registries of a single node we selected. This node’s id is L01-
1, which simply means that this is bus #1 in the bus line
#01. We verified that the registries on other nodes evolved
approximately the same way as what is presented here for node
L01-1. It can be observed that the size of the causal_barrier
registry keeps growing as L01-1 receives messages (from as
yet unheard-of nodes), and shrinks to 1 whenever it broadcasts
a message. Notice that although the network considered in that
scenario includes 60 nodes, the causal_barrier registry never
contains as many entries. The size of the pending registry
also keeps growing during the experiment, for node L01-1
has to keep messages in this registry until they can be co-
delivered. Yet, although 2004 messages are broadcast during
the experiment, L01-1 never has to maintain more than a
few dozen messages simultaneously in its pending registry.
Finally, it can be observed that the size of the co-delivered
registry keeps growing all day long, as the node receives
messages from source nodes it had so far never heard of
(so any discovery of a new source yields the creation of a
new entry in the co-delivered registry). Of course, if the same
population of nodes continued running in the evening, the size
of the co-delivered registry would stabilize once each node has
been heard of at least once. On the contrary, the co-delivered
registry would keep growing if new nodes kept joining the
network.

Δ-causal broadcast (i.e., with bounded lifetimes).
Let us now consider the results obtained when running



12

0

10

20

30

40

50

60

06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00

R
eg

is
tr

y 
si

ze
 (

i.e
., 

nb
 o

f e
nt

rie
s)

hh:mm

causal barrier registry

delivered registry

pending registry

(a) No lifetime

0

5

10

15

20

25

30

35

40

45

06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00

R
eg

is
tr

y 
si

ze
 (

i.e
., 

nb
 o

f e
nt

rie
s)

hh:mm

causal barrier registry

delivered registry

pending registry

(b) 20’ lifetime

Figure 6: Evolution of the size of the registries maintained on
a node (while running the city bus scenario)

the same scenario with the Δ-causal broadcast algorithm de-
scribed in Section V. Several experiments have been conducted
with that algorithm, with message lifetimes ranging from 10
minutes up to 120 minutes. Considering Table II again, we can
observe that the number of broadcast messages is of course
the same in all experiments, since we replayed every time the
same application scenario. The number of messages received
by all nodes however decreases as their lifetime gets shorter.
This is perfectly normal, as a message with a short lifetime
cannot necessarily reach all possible nodes before it expires.
Besides, we have already seen that in this scenario some nodes
only run for a short time in the afternoon. These nodes can
hardly be reached by messages that are broadcast early in the
morning, with lifetimes that do not exceed a few hours.

Figure 4b shows a plot of the co-delivery latency against the
transmission delay, based on data recorded with a 20’ lifetime.
Notice that in this figure the units in the x and y scales are
different. This time the transmission delay of a message and
its co-delivery latency are both bounded by the lifetime, and
the sum of both metrics (which corresponds to the age of

a message when it is co-delivered) is also bounded by the
lifetime. In other words, a message can be neither received
nor co-delivered after it has expired. This is confirmed by the
maximal values shown in Table III.

In Fig. 4b it can be observed that although the transmission
delay can take several minutes (up to 20’ in that case), the
co-delivery latency is only a few seconds for most message
co-deliveries. This is confirmed by the cumulated distribution
functions shown in Figure 5. With a 20’ lifetime, for example,
the co-delivery latency is less than 1.2 seconds for 99% of the
messages. With a 40’ lifetime, it is less than 3.4 seconds for
99% of the messages.

Figure 6b shows how the registries maintained by node
L01-1 (the same node as in Fig. 6a) evolved during the
experiment involving messages with a 20 minute lifetime.
The main difference with Fig. 6a is that the size of the co-
delivered registry does not grow all day long. Instead it grows
and shrinks continuously, as L01-1 receives messages from
nodes it has not heard of recently, and forgets these nodes
again after a while. This possibility for L01-1 to expunge any
reference to not-recently heard-of nodes from its co-delivered
registry is an important feature of our Δ-causal broadcast
algorithm, as it makes it possible for this algorithm to run
in OppNets with very high churn ratios. This is illustrated
further in Section VI-B.

Overall, the experiments conducted with the city bus sce-
nario confirm that causal and Δ-causal broadcast can be
obtained in an OppNet, with a high co-delivery ratio if the
dynamics of the network allows messages to disseminate
properly. They also show that although transmission delays
can be quite long in such a network, the additional latency
incurred by the nodes in order to ensure the causally ordered
co-delivery of messages is often negligible.

The city bus network considered in this section is just an
example of an OppNet. This particular network runs for a
limited duration (about 14 hours), with a limited population
of nodes, and exhibiting only moderate churn. This is the
reason why disseminating messages with no bounded lifetime
is possible, and therefore why the causal broadcast algorithm
(which assumes no message lifetime) can be used in such a
scenario. In other kinds of networks, assigning each message
a bounded lifetime is required. In such networks Δ-causal
broadcast would be the only option to co-deliver broadcast
messages in causal order. This is exemplified in the next
section.

B. Δ-causal broadcast in an opportunistic network with high
churn

Let us now consider an OppNet exhibiting a high churn
ratio. In this particular network the mobile nodes are devices
carried by pedestrians, which wander in the streets of the
Östermalm district in downtown Stockholm. This is referred
to as the Östermalm scenario in the following lines.

a) Mobility and contacts scenario: The dataset describ-
ing the mobility of these pedestrians is available in the
CRAWDAD database [29]. It has been designed using the



13

Figure 7: Snapshot of the Östermalm scenario

Metrics Values (* = min / max / avg / stdev values)
Duration of the scenario 5h
Nb of nodes 2092 (total) / 57 (max. active simultaneously)
Activity duration per node 7.8” / 32’16” / 5’25” / 4’09” (*)
Number of contacts 14807
Durations of contacts 0.6” / 8’12” / 45” / 39” (*)

Table IV: Statistics about the Östermalm scenario

Legion Studio mobility simulator3, in order to illustrate a
typical OppNet with churn [30]. Nodes (i.e., pedestrians) enter
the Östermalm area according to a Poisson process, and each
node traverses this area at a speed that is chosen from a
truncated normal distribution (0.6–2.0) with a mean speed of
1.3 m/s. Several tracesets are actually available in this dataset.
For our experiment we used traceset ostermalm_001_1, which
defines a scenario with an entry rate of 0.01 node/s.

This scenario describes the mobility of nodes over an
interval of five hours. During that interval, 2092 nodes traverse
the area. Figure 8 shows the activity periods of the 140 first
nodes that enter the Östermalm area at the beginning of this
scenario (we did not cover the 5 hour scenario here, to keep
the figure readable). It is obvious in this figure that the time
spent by a node in the Östermalm area is variable. The average
traversal time over the five hours of the whole scenario is
5’25”, but this time actually ranges from 7.8” to 32’16”, as
shown in Table IV. Besides, the number of nodes that are
present simultaneously in the area changes continuously, but
this number never exceeds 57 nodes. These figures confirm
that the mobile nodes considered in this scenario together
compose an OppNet with high churn.

Since the dataset available on the CRAWDAD database only
provides information about the mobility of the nodes, we cal-
culated radio contacts between them, assuming a transmission
range of 50 meters. With this range, 14.807 radio contacts

3Legion Studio software http://www.legion.com/legion-studio.

0

20

40

60

80

100

120

140

00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40

N
od
es

hh:mm

Figure 8: Running intervals of the nodes entering the area
during the first 20 minutes of the Östermalm scenario (each
horizontal line represents the period during which a node
traverses the area)

occur between pairs of nodes in the scenario, with an average
contact duration of 45”. The resulting mobility and contacts
scenario can be played by LEPTON. A snapshot collected
while running this scenario is presented in Figure 7. A video
is also available on our website2.

b) Application scenario: We consider an application sce-
nario, whereby each node broadcasts a message every minute
while traversing the area, starting 20 seconds after entering
the area. Overall, 10557 messages are broadcast by the whole
population of nodes during the 5 hour interval.

c) Experimental procedure and metrics considered: We
followed the same experimental procedure, and considered
the same metrics, as for the city bus scenario. The only
difference is that we did not attempt to run the causal
broadcast algorithm (with unbounded message lifetime) with
the Östermalm scenario, as this would not make much sense.
We therefore assumed that the messages must systematically
have a bounded lifetime in such a scenario, and the Δ-causal
broadcast algorithm was thus used in each experiment.

d) Results: Several experiments have been conducted,
with message lifetimes ranging from 5 minutes up to 20
minutes. Table V shows how many messages were processed
by the nodes in each experiment, and Table VI provides
statistical measures about transmission delays and co-delivery
latencies.

The number of messages received and co-delivered by
the nodes get lower as the lifetime of these messages is
shorter. Indeed, the number of messages that disseminate in the
network at any time is larger with a longer lifetime. Therefore,
the shorter the lifetime, the lesser a node is likely to receive
many messages while traversing the Östermalm area. The co-
delivery ratio observed with this scenario is not as good as with
the city bus scenario, but it remains quite good anyway. Even
with a 20’ lifetime, more than 95% of the messages received
by the nodes eventually get co-delivered to the application
layer. Interestingly, the number of messages that expire before

http://www.legion.com/legion-studio


14

Lifetime 20’ 15’ 10’ 5’
nb broadcast events 10557 10557 10557 10557
nb receive events 1,475,328 1,192,205 884,810 539,652
nb co-delivery events 1,414,438 1,169,382 883,120 545,018
co-delivery ratio 95.19% 97.22% 98.63% 99.06%
nb expiry events 1573 1074 724 716
expiry ratio 0.11% 0.09% 0.08% 0.13%

Table V: Statistics about message processing in the Östermalm
scenario

being co-delivered is higher in that scenario. Remember that
these are messages that, after being received by a node, are
deposited in its pending registry, and eventually get expunged
from this registry (because their lifetime is over) instead
of being co-delivered. The last line in Table V shows that
the expiry ratio remains very low, though. An overwhelming
majority of messages get co-delivered before expiring.

You may have noticed that the sum of the co-delivery ratio
and of the expiry ratio is not 100%. This is because when a
node leaves the network (which happens very frequently in that
scenario) its pending registry may still contain messages that
have not expired yet, and that have not yet been co-delivered
either. These messages are neither accounted for in the co-
delivery ratio, nor in in the expiry ratio.

Figure 9 shows plots of the co-delivery latency observed for
each message against its transmission delay, in the experiments
conducted with 5’ and 20’ lifetimes. Again it can be observed
that a message can often be received by a node several minutes
after having been sent in the network, but that the additional
time it takes to co-deliver this message is usually far shorter.
This is confirmed by the average values shown in Table VI, and
by the cumulated distribution functions presented in Figure 10.
Notice that in Figure 10b the range along the x axis has been
cut at 90 seconds, which makes the figure easier to read. The
longest co-delivery latency observed during this experiment
was actually 18’09” with a 20’ lifetime, as shown in Table VI.

By comparing Fig. 10a and Fig. 10b it can be observed that
the co-delivery latency remains globally negligible compared
to the transmission delays. Whatever the lifetime considered,
the transmission of a message (from its source to a receiver)
usually takes several minutes, while the co-delivery latency
is usually well under one minute. For example, with a 10’
lifetime the transmission delay is over 5 minutes for 58% of
the messages, while the co-delivery latency is under 25” for
95% of the messages, and under 10.7” for 80% of them.

Figure 11 shows how the registries maintained by a par-
ticular node (node N777 in that case) evolved during the
experiments conducted with 5’ and 20’ lifetimes. Node N777
enters the network around 01h49’, and leaves the network
5 minutes later. During these five minutes, it publishes 5
messages in both experiments. In the 5’ lifetime experiment
it receives 269 messages, and co-delivers 274 messages to the
application layer. In the 20’ lifetime experiment it receives
760 messages, and co-delivers 764 messages. Thanks to the
Δ-causal broadcast algorithm, the size of the co-delivered
registry on node N777 does not grow as long as it stays in the
network. In fact this registry grows rapidly when N777 enters
the network, and then its size remains quite stable afterwards.

(a) 5’ lifetime

(b) 20’ lifetime

Figure 9: Transmission delay vs co-delivery latency in the
Östermalm scenario

The pending registry also grows rapidly at first, but it rapidly
shrinks down. The rapid growth of both registries when N777
enters the network can easily be explained. Soon after entering
the network, node N777 gets in radio contacts with several
other nodes. Most of these nodes have already “lived” in the
network for a while, so they are carrying many messages in
their cache. N777 can therefore rapidly obtain a fair number
of messages, most of which have been broadcast even before it
entered the network. These messages are received in any order
by the opportunistic networking layer, though, so they cannot
necessarily be co-delivered immediately to the application
layer. They are therefore first put in the pending registry
(whose size grows rapidly), until the Δ-causal broadcast
algorithm manages to co-deliver them to the application layer.
In Fig. 6b we can see that when N777 enters the network,
almost 400 messages are received and deposited in its pending
registry in only a few seconds. Over the same laps of time
the size of the co-delivered registry reaches up to 150 entries,
which means that at least some of the newly received messages
are co-delivered almost immediately to the application layer,



15

Lifetime tdelay (transmission delay) ltcy (co-delivery latency) codlvdelay = tdelay+ ltcy
20’ 2 ms / 19’59” / 9’03” / 5’59” 1 ms / 18’09” / 19 ” / 30” 2 ms / 20’ / 9’22” / 6’02”
15’ 3 ms / 14’59” / 6’40” / 4’27” 1 ms / 13’08” / 13” / 23” 3 ms / 15’ / 6’53” / 4’30”
10’ 4 ms / 10’ / 4’23” / 2’55” 1 ms / 8’48” / 7” / 16” 4 ms / 10’ / 4’31” / 2’56”
5’ 3 ms / 5’ / 2’16” / 1’28” 1 ms / 4’39” / 2” / 10” 3 ms / 5’ / 2’19” / 1’28”

Table VI: Statistics about transmission and co-delivery delays in the Östermalm scenario (all quadruplets show min / max /
avg / stdev values)

and these messages come from 150 different sources. Most
of the other messages are rapidly expunged from the pending
registry, though, as they get co-delivered to the application
layer. After this initial surge of receive and co-delivery events,
the size of the co-delivered registry does not keep growing,
even though new nodes keep entering the network. This is
because at the same time other nodes leave the network,
and are thus “forgotten” by the Δ-causal broadcast algorithm
which does not hear of them anymore. Finally, as expected
the size of the causal_barrier registry varies up and down
as messages are co-delivered and broadcast by node N777 as
long as it remains in the network.

Similar observations can be made when examining Fig. 11a.
The registries do no grow as much as in Fig. 6b, though,
because with a shorter lifetime the number of messages that
disseminate in the network is of course far smaller.

Overall, these results confirm that our Δ-causal broadcast
algorithm can indeed run in a network exhibiting a very high
churn ratio, while avoiding that the data space used to maintain
dependency information on each node grows monotonically.

VII. CONCLUSION

In this paper we have proposed two algorithms that make it
possible to ensure causal broadcast and Δ-causal broadcast in
opportunistic networks (OppNets). Both algorithms are derived
from [11] and [12] respectively, but they have been adjusted
so as to take into account the peculiarities of OppNets. Most
notably, they can run in a network in which the population of
nodes is unknown, and can change continuously. Experimental
results produced by running these algorithms in an emulated
environment, using realistic mobility and contact scenarios,
confirm that causal broadcast can indeed be ensured in an
OppNet, with a ratio of delivered messages that remains close
to 100%. The delivery latency of a message (i.e., the time
required to deliver this message once it has been received) is
usually negligible compared to its transmission delay. Finally,
when using Δ-causal broadcast algorithm in an OppNet with
a high churn ratio, the data space occupied on each node
to maintain dependency information does not monotonically
increase as nodes join and leave the network over time.

FUNDING

This work was supported by the French ANR (Agence
Nationale de la Recherche) under grant number ANR-16-
CE25-0005-02.

0

20

40

60

80

100

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00

C
D

F
 (

%
)

Transmission delay (mm:ss)

5' lifetime

10' lifetime

15' lifetime

20' lifetime

(a) Transmission delays

0

20

40

60

80

100

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30

C
D

F
 (

%
)

Delivery latency (mm:ss)

5' lifetime

10' lifetime

15' lifetime

20' lifetime

(b) co-delivery latencies

Figure 10: Cumulated distribution functions of transmission
delays and co-delivery latencies in the city bus scenario

REFERENCES

[1] Ken Birman. Replication and Fault-Tolerance in the ISIS System. In
ACM SIGOPS Operating Systems Review, volume 19, pages 79–86, 12
1985.

[2] Kenneth P. Birman and Thomas A. Joseph. Reliable Communication
in the Presence of Failures. ACM Transactions on Computer Systems,
5(1):47–76, January 1987.

[3] Luciana Pelusi, Andrea Passarella, and Marco Conti. Opportunistic Net-
working: Data Forwarding in Disconnected Mobile Ad Hoc Networks.
IEEE Communications Magazine, 44(11):134–141, November 2006.

[4] Kevin Fall. Messaging in Difficult Environments. Technical Report
IRB-TR-04-019, Intel Research Berkeley, 2004.

[5] Chiara Boldrini, Marco Conti, and Andrea Passarella. Autonomic
Behaviour of Opportunistic Network Routing. Inderscience Interna-



16

0

10

20

30

40

50

60

01:50 01:50 01:51 01:51 01:52 01:52 01:53 01:53 01:54 01:54 01:55

R
eg

is
tr

y 
si

ze
 (

i.e
., 

nb
 o

f e
nt

rie
s)

hh:mm

causal barrier registry

delivered registry

pending registry

(a) 5’ lifetime

0

50

100

150

200

250

300

350

400

01:50 01:50 01:51 01:51 01:52 01:52 01:53 01:53 01:54 01:54 01:55

R
eg

is
tr

y 
si

ze
 (

i.e
., 

nb
 o

f e
nt

rie
s)

hh:mm

causal barrier registry

delivered registry

pending registry

(b) 20’ lifetime

Figure 11: Evolution of the size of the registries maintained
on node N777 (while running the Östermalm scenario)

tional Journal of Autonomous and Adaptive Communications Systems,
1(1):122–147, 2008.

[6] Maurice J. Khabbaz, Chadi M. Assi, and Wissam F. Fawaz. Disruption-
Tolerant Networking: A Comprehensive Survey on Recent Develop-
ments and Persisting Challenges. IEEE Communications Surveys and
Tutorials, 14(2):607–640, 2012.

[7] Hoang Anh Nguyen and Silvia Giordano. Routing in Opportunistic
Networks. International Journal of Ambient Computing and Intelligence
(IJACI), 1(3):19–38, 2009.

[8] Alicia Triviño Cabrera and S. Cañadas Hurtado. Survey on Opportunistic
Routing in Multihop Wireless Networks. International Journal of
Communication Networks and Information Security (IJCNIS), 3(2):170–
177, August 2011.

[9] Zhensheng Zhang. Routing in Intermittently Connected Mobile Ad
Hoc Networks and Delay Tolerant Networks: Overview and Challenges.
IEEE Communications Surveys and Tutorials, 8(1):24–37, January 2006.

[10] Zhensheng Zhang and Qian Zhang. Delay/disruption tolerant mobile
ad hoc networks: latest developments. Wireless Communications and
Mobile Computing, 7(10):1219–1232, May 2009.

[11] Ravi Prakash, Michel Raynal, and Mukesh Singhal. An Efficient Causal
Ordering Algorithm Suited to Mobile Computing Environments. In 16th
International Conference on Distributed Computing Systems (ICDCS),
pages 744–751, Honk Kong, May 1996. IEEE.

[12] Roberto Baldoni, Ravi Prakash, Michel Raynal, and Mukesh Singhal.
Efficient Delta-Causal Broadcasting. International Journal of Computer
Systems Science and Engineering, 13:263–271, 1998.

[13] Colin J. Fidge. Timestamps in Message-Passing Systems that Preserve
the Partial Ordering. In 11th Australian Computer Science Conference,
volume 10 of Australian Computer Science Communications, pages 56–
66, 1988.

[14] Friedemann Mattern. Virtual Time and Global States of Distributed
Systems. In Parallel and Distributed Algorithms: Proceedings of the
International Workshop on Parallel and Distributed Algorithms, pages
215–226, Château de Bonas, France, October 1989. North-Holland.

[15] Ken Birman, André Schiper, and Pat Stephenson. Lightweight Causal
and Atomic Group Multicast. ACM Transactions on Computer Systems,
9(3):272–314, 08 1991.

[16] Mukesh Singhal and Ajay Kshemkalyani. An Efficient Implementation
of Vector Clocks. Information Processing Letters, 43:47–52, 08 1992.

[17] Chafika Benzaid and Nadjib Badache. An Optimal Causal Broadcast
Protocol in Mobile Dynamic Groups. In International Symposium on
Parallel and Distributed Processing with Applications, ISPA 2008, pages
477–484, 12 2008.

[18] Achour Mostefaoui and Stéphane Weiss. Probabilistic Causal Message
Ordering. In 14th International Conference on Parallel Computing
Technologies (PaCT 2017), volume 10421 of LNCS, pages 315–326,
Nizhni Novgorod, Russia, September 2017. Springer.

[19] Brice Nédélec, Pascal Molli, and Achour Mostefaoui. Breaking the
Scalability Barrier of Causal Broadcast for Large and Dynamic Systems.
In 37th IEEE International Symposium on Reliable Distributed Systems
(SRDS), pages 51–60, Salvador de Bahia, Brazil, October 2018. IEEE.

[20] Brice Nédélec, Pascal Molli, and Achour Mostefaoui. Causal Broadcast:
How to Forget? In 22nd International Conference on Principles of
Distributed Systems (OPODIS), volume 125 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 20:1–20:16, Hong-Kong,
December 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[21] Achour Mostefaoui, Matthieu Perrin, Michel Raynal, and Cao Jiannong.
Crash-Tolerant Causal Broadcast in O(n) Messages. Information Pro-
cessing Letters, 151:105837, 2019.

[22] Mihail Costea, Radu-Ioan Ciobanu, Radu-Corneliu Marin, Ciprian Do-
bre, Constandinos X. Mavromoustakis, and George Mastorakis. Causal
and Total Order in Opportunistic Networks, chapter Emerging Innova-
tions in Wireless Networks and Broadband Technologies, pages 221–
262. IGI Global, 2016.

[23] Mihail Costea, Radu-Ioan Ciobanu, Radu-Corneliu Marin, Ciprian Do-
bre, Constandinos X. Mavromoustakis, George Mastorakis, and Fatos
Xhafa. Total Order in Opportunistic Networks. Concurrency and
Computation: Practice and Experience, 29(10), 2017.

[24] Amin Vahdat and David Becker. Epidemic Routing for Partially
Connected Ad Hoc Networks. Technical Report CS-200006, Duke
University, Durham, USA, April 2000.

[25] Anwitaman Datta, Silvia Quarteroni, and Karl Aberer. Autonomous
Gossiping: a Self-Organizing Epidemic Algorithm for Selective Infor-
mation Dissemination in Mobile Ad-Hoc Networks. In 1st International
Conference on Semantics of a Networked World (ICSNW’04), number
3226 in LNCS, pages 126–143, Paris, France, June 2004.

[26] Julien Haillot, Frédéric Guidec, Serge Corlay, and Jacques Turbert.
Disruption-Tolerant Content-Driven Information Dissemination in Par-
tially Connected Military Tactical Radio Networks. In 28th IEEE
Military Communication Conference (MILCOM’2009), pages 2326–
2332, Boston, USA, October 2009. IEEE CS.

[27] Julien Haillot and Frédéric Guidec. A Protocol for Content-Based
Communication in Disconnected Mobile Ad Hoc Networks. Journal
of Mobile Information Systems, 6(2):123–154, 2010.

[28] Adrián Sánchez-Carmona, Frédéric Guidec, Pascale Launay, Yves
Mahéo, and Sergi Robles. Filling in the missing link between simulation
and application in opportunistic networking. Journal of Systems and
Software, 142:57–72, August 2018.

[29] Sylvia Todorova Kouyoumdjieva, Ólafur Ragnar Helgason, and Gunnar
Karlsson. CRAWDAD dataset kth/walkers (v. 2014-05-05). CRAWDAD
wireless network data archive (https://crawdad.org), May 2014.

[30] Ljubica Pajevic and Gunnar Karlsson. Modeling Opportunistic Commu-
nication with Churn. Computer Communications, 96:123–135, 2016.

https://crawdad.org

	Introduction
	Related work
	System model
	A causal broadcast algorithm for opportunistic networks
	Data structures maintained by each mobile host
	Algorithm
	Considerations about communication and storage overheads

	A D-causal broadcast algorithm for opportunistic networks
	Motivation
	Additions to the system model
	Algorithm
	Considerations on communication and storage overheads

	Experimentation
	Causal and D-causal broadcast in a city bus network
	D-causal broadcast in an opportunistic network with high churn

	Conclusion
	References

