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SI Dielectric functions of

materials

Figures S1 and S2 show the UV-visible range
of dielectric functions, respectively, of all the
metals and the substrates used in the present
study. The loss functions of the two absorb-
ing substrates ZnO and TiO2 are displayed in
Figure S3.

SII Oscillator characteris-

tics of spheroid reso-

nances

As given in the text (Eq 6), the polarizability
components of a full spheroid of volume V along
its main axis:4�6

α‖,⊥(ω) =
εa(ε− εa)V

εa + L‖,⊥(ε− εa)
, (S1)

are functions of the depolarization factors L =
L‖,⊥ de�ned along the directions perpendicular
and parallel to the rotation axis of the spheroid.
ε and εa are respectively the dielectric functions

of the particle and ambient medium. After a
demonstration of the oscillator behavior in the
case of a Drude metal, L = L‖,⊥ are detailed
in what follows, for free-standing and for sup-
ported spheroids in Conventional Dipole Ap-
proximation and in the more accurate Spheroid
Dipole Approximation (SDA).

SII.1 Resonant frequency and os-
cillator strength

As mentioned in the main text, the dielectric
function of a Drude metal with a plasma fre-
quency ωD and a damping ΓD is given by the
following expression:

ε(ω) = εD −
ω2
D

ω2 + iωΓD
. (S2)

Inserting Eq S2 in Eq S1, a straightforward al-
gebra shows that Eq S1 can be recasted into the
form of a damped oscillator:

α(ω) =
2

π

ωRFR
ω2
R − ω2 − iωΓD

, (S3)
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Figure S1: Used dielectric functions ε(ω) of metals: (a) Ag, (b) Au, (c) Zn, (d) Cr, and (e) Ni. Left
scale/blue squares: Re(ε); Right scale/red circles: Im(ε). Values are extracted from the compilation
of Ref. 1 except for Zn (Ref. 2). For optically anisotropic media, the symmetry averaged values
are used. Colored rectangles correspond to the estimated range, in which resonant modes parallel
(green) and perpendicular (yellow) to the substrate are expected for particles with aspect ratio
1 . Ar . 6.
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Figure S2: Used dielectric functions of substrates: (a) Al2O3, (b) SiO2, (c) KBr, (d) ZnO, and (e)
TiO2. Same labels as in Figure S1. Data are extracted from Ref. 1 except for ZnO (Ref. 3).

a) ZnO b) TiO2
0.4

0.3

0.2

0.1

0.0

 R
e
[1

/(
ε
-1

)]

54321

Photon energy (eV)

0.4

0.3

0.2

0.1

0.0

| lm
[1

/(
ε-1

)] |

0.20

0.15

0.10

0.05

0.00

 R
e
[1

/(
ε
-1

)]

54321

Photon energy (eV)

0.20

0.15

0.10

0.05

0.00

| lm
[1

/(
ε-1

)] |

Figure S3: Surface loss-functions 1
ε(ω)−1 of (a) ZnO and (b) TiO2 obtained from Figure S2. Same

color code as in Figure S1.
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(i) when ω is close to its resonant frequency ωR
de�ned by εR(ωR) = εa(1− 1/L) i.e.:

ωR = ωD

√
L

εa + L(εd − εa)
, (S4)

and (ii) when ΓD � ωR < ωD. The oscilla-
tor strength FR of the spheroid polarizability is
given by:

FR =
π

2

V ωD
√
εa√

L[1 + L(εD/εa − 1)]3/2
. (S5)

Its damping is that of the Drude dielectric
function ΓD. The peculiar case εa = εD = 1 is
informative since ωR = ωD

√
L and FR = π

2
ωD√
L

evolve in opposite directions with the depolar-
ization factor. The resonance frequencies used
in Figures 3-4 of the main text are normalized
to the Drude frequency i.e. ωR

ωD
. The corre-

sponding normalized oscillator strengths are
de�ned by 2FR

π V ωD
√
εa
.

SII.2 Depolarization factors of
supported oblate/prolate
spheroids

Oblate/prolate spheroids (Figure S4) are built
through the rotation of an ellipse of focus a
around its small/large axis and are character-
ized by a �attening parameter ξ0. The diam-

� �
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�

�
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Figure S4: Used geometry of supported
oblate/prolate full spheroid. εa, εs, ε are the di-
electric functions of the ambient medium, sub-
strate and particle, respectively.

eters parallel D‖ and perpendicular D⊥ to the
substrate surface, the aspect ratio Ar = D‖/D⊥
and the volume V of the spheroid are given by:

D‖,o = 2a
√
ξ20 + 1;D⊥,o = 2aξ0

Vo =
4

3
πa3ξ0(1 + ξ20);Ar,o =

√
1 +

1

ξ20

D‖,p = 2a
√
ξ20 − 1;D⊥,p = 2aξ0 (S6)

Vp =
4

3
πa3ξ0(ξ

2
0 − 1);Ar,p =

√
1− 1

ξ20

for oblate (o index) and prolate (p index) ob-
jects. Since 0 < ξ0 < +∞ for an oblate
spheroid, 1 < Ar,o < +∞. For a prolate
one, 1 < ξ0 < +∞ and 0 < Ar,p < 1. The
limit (ξ0 → +∞, Ar → 1) corresponds to a
full sphere, that of (ξ0 → 0;Ar → ∞) for
an oblate spheroid to a �at disk and that of
(ξ0 → 0;Ar → 0) for a prolate spheroid to a
needle.

The depolarization factors of a free-standing
oblate/prolate spheroid have been calculated in
Refs. 5,7 as a function of the �attening param-
eter ξ0:

L∞⊥,o = (1 + ξ20)

[
1− ξ0 arctan

(
1

ξ0

)]
L∞‖,o =

1

2
(1 + ξ20)

[
ξ0 arctan

(
1

ξ0

)
− ξ20

1 + ξ20

]
L∞⊥,p = (1− ξ20)

[
1− 1

2
ξ0 ln

(
ξ0 + 1

ξ0 − 1

)]
(S7)

L∞‖,p =
1

2
(1− ξ20)

[
ξ20

1 + ξ20
+

1

2
ξ0 ln

(
ξ0 + 1

ξ0 − 1

)]
Notice that L‖ + 2L⊥ = 1 and L‖ = L⊥ = 1/3
for a sphere.

For an object standing at a distance d = aξ1
from the substrate surface, the depolarization
factors can be calculated within the Conven-
tional Dipole Approximation (CDA)5,7,8 which
replaces the object by its equivalent dipole
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screened by the image �eld:

Lcda⊥,o = L∞⊥,o +
1

12

(
εa − εs
εa + εs

)
(1 + ξ20)

ξ0
ξ31

Lcda‖,o = L∞‖,o +
1

24

(
εa − εs
εa + εs

)
(1 + ξ20)

ξ0
ξ31

Lcda⊥,p = L∞⊥,p −
1

12

(
εa − εs
εa + εs

)
(1− ξ20)

ξ0
ξ31

Lcda‖,p = L∞‖,p −
1

24

(
εa − εs
εa + εs

)
(1− ξ20)

ξ0
ξ31
(S8)

where come into play the dielectric functions
in the image term A = εa−εs

εa+εs
. But more accu-

rate expressions compared to multipolar calcu-
lations are given in the Spheroidal Dipole Ap-
proximation (SDA).5,7,9 It consists in restricting
to dipolar order the ful�llment of the boundary
conditions of direct/image multipole potential
expansion at the surface of the spheroid. The
SDA depolarization factors read:

Lsda⊥,o = L∞⊥,o −
(
εa − εs
εa + εs

)
(1 + ξ20)

ξ0
ξ1

[(
3

2
+ ξ21

)
ξ21 ln

(
1 +

1

ξ21

)
− ξ1 arctan

(
1

ξ1

)
− ξ21

]
Lsda‖,o = L∞‖,o +

1

2

(
εa − εs
εa + εs

)
(1 + ξ20)

ξ0
ξ1

[
−
(

3

2
+ ξ21

)
ξ21 ln

(
1 +

1

ξ21

)
+ ξ1 arctan

(
1

ξ1

)
+ ξ21

]
Lsda⊥,p = L∞⊥,p +

(
εa − εs
εa + εs

)
(1− ξ20)

ξ0
ξ1

[(
3

2
+ ξ21

)
ξ21 ln

(
1− 1

ξ21

)
+

1

2
ξ1 ln

(
ξ1 + 1

ξ1 − 1

)
− ξ21

]
Lsda‖,p = L∞‖,p +

1

2

(
εa − εs
εa + εs

)
(1− ξ20)

ξ0
ξ1

[(
3

2
− ξ21

)
ξ21 ln

(
1− 1

ξ21

)
+

1

2
ξ1 ln

(
ξ1 + 1

ξ1 − 1

)
− ξ21

]

As seen in Figure S5 in which depolarization
factors are represented as a function of the ad
hoc variable Sr = 1/(1 + Ar), where Ar is the
aspect ratio, SDA strongly di�ers from CDA
in the oblate case even for the modest image
�eld of the chosen substrate (εs = 3,A = −0.5).
The failure of CDA to describe image e�ects,
clearly evidenced by the comparison to the cal-
culation of exact polarizabilities at multipolar
order, roots into the poor description of the
boundary conditions of potential and displace-
ment �eld at the surface of the spheroid.5,7,10,11

Therefore, the modeling of the optical response
of particles is herein restricted to SDA.

SIII Renormalized polariz-

abilities in assemblies

of supported particles

In assemblies of supported particles, the inter-
particle coupling leads to a renormalization of
the polarizabilities of the isolated object α‖, α⊥.

For particles organized in a regular lattice of
period P , the renormalized polarizabilities at
dipolar order read:5,7,8

αc‖(ω)
α‖(ω)

1 + S+
20α‖(ω)/(

√
20πεaP 3)

αc⊥(ω)
α⊥(ω)

1− 2S−20α⊥(ω)/(
√

20πεaP 3)
, (S9)

where

S±20 = S20 ±
εa − εs
εa + εs

Sr20 (S10)

are the direct and the image lattice sums that
depend only on the ratio d/P of the distance
of the dipole to the substrate to the lattice pe-
riod. Their expressions can be found in Ref.
5. The dipolar approximation was proved to be
satisfactory with respect to quadrupolar order
up to a surface coverage of more than 0.512,13

while, above that limit, percolating �lms escape
anyway the present truncated sphere/spheroid
models. A square lattice, whose surface cover-
age is de�ned as Θ = πD2

‖/4P
2, is used here-

after to illustrate the case since no signi�cant
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Figure S5: Depolarization factors L‖ (red lines)
and L⊥ (blue lines) of oblate/prolate spheroids
calculated as a function of the ad hoc vari-
able Sr = 1/(1 + Ar) for a spheroid touching
the substrate. Several calculation frameworks
are compared: (a) free-standing (thick lines),
(b) Conventional Dipole Approximation (dot-
ted lines), (c) Spheroidal Dipole Approximation
(thin lines). 0 < Sr ≤ 1/2, 1 ≤ Ar < +∞
(1/2 < Sr < 1, 0 < Ar ≤ 1 respectively) corre-
sponds to oblate (prolate) particles. Both ob-
jects have a revolution axis along the direction
perpendicular to the substrate.

di�erence was found between lattice geometries
(random, square, hexagonal).12 Plugging Eq S1
for a spheroid in dipolar interaction with the
substrate into Eq S9 yields the expressions of
the depolarization factors that accounts for di-
rect/image interaction with neighbors:

Lc‖ = L∞‖ +
1

2
√

5π
S+
20

V

P 3

Lc⊥ = L∞⊥ −
1

2
√

5π
S−20

V

P 3
(S11)

where L∞‖,⊥ stand for corresponding expressions
for the free-standing spheroid.

SIV Spectral representation

of truncated particle

polarizabilities and ab-

sorption modes

The polarizability of a supported particle
mainly depends on both the particle shape
and the substrate-induced break of symme-
try, namely the image e�ect.6,14,15 The cases of
supported truncated sphere and spheroid have
been treated in great details.5,10,16 Solving the
underlying Laplace equation through a direct
and image multipolar expansion of the poten-
tial leads to a linear system of equations17,18

whose �rst coe�cients are proportional to the
sought α‖, α⊥ quantities. In the limit of poor
damping,19�21 an expansion to �rst order of the
matrix system around each mode19,21,22 leads to
the approximate spectral representation of the
polarizabilities in terms of damped oscillators
which is given in the main text (Eq. 8):

α(ω) = αbk(ω) +
∑
i

2

π

Fiωi
ω2
i − ω2 − iωΓi

. (S12)

For truncated spheres or oblate spheroids
(Ar > 1.5), dipole-like modes (see Figure S6;
modes A‖, A⊥) dominate the polarizability
along both directions and contribute to most
of the line shape.11,19�21 This overwhelming be-
havior, similar to the case of the full spheroid
(Section SII) calls for a more detailed com-
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parison to that case. Once the exact polar-
izabilities of the truncated object are calcu-
lated,5,10,16,23�25 complex e�ective depolariza-
tion factors Le can be deduced from Eq S1
corresponding to the equivalent free-standing
spheroid. The e�ective Le is plotted in Fig-
ure S6 for a Drude metal and for truncated
particles with representative aspect ratios
Ar = 0.5, 1, 2, 4 and given values of tr (trun-
cation parameter de�ned in the main text).
For the particle shape not too close to the
full sphere (Ar > 1.5), α is dominated by
modes whose patterns of polarization charges
are dipole-like. Their e�ective depolarization
factor Le being nearly constant close to the
resonance (see dash-dotted vertical lines in Fig-
ure S6), they behave actually as oscillators.
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Figure S6: Truncated particles: (a),(c),(e),(g) calculated Im(α‖)/V (red line) and Im(α⊥)/V (blue
line) at multipolar order M = 16; (b),(d),(f),(h) corresponding e�ective complex depolarization
factors Le,‖ (red) and Le,⊥ (blue) (real part/full lines/left scale and imaginary part/dotted line/right
scale). Potential maps at the resonance frequencies of the main peaks of α are plotted on the top.
Hemi-spheroid with aspect ratios of Ar = 0.5, 2, 4 (tr=0) and full sphere Ar = 1 (tr=1) are compared
(see drawings on top). Particles are made of Drude metal εD = 1,ΓD = 0.02ωD and are standing
on a εs = 3 substrate (εa = 1).
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of
∫
Re[α‖]Im

[
1

εs−εs

]
dω/

∫
Im[α‖]Re

[
1

εs−εs

]
dω

over the 1.5-5 eV energy range for the indi-
cated systems. For Ar < 2 (Ar > 2, re-
spectively) truncated spheres (truncated hemi-
spheroids, respectively) are used to compute the
polarizabilities at multipolar order M = 16.
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