
HAL Id: hal-03111634
https://hal.science/hal-03111634

Submitted on 15 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Samples Classification Analysis Across DNN Layers with
Fractal Curves

Adrien Halnaut, Romain Giot, Romain Bourqui, D. Auber

To cite this version:
Adrien Halnaut, Romain Giot, Romain Bourqui, D. Auber. Samples Classification Analysis Across
DNN Layers with Fractal Curves. ICPR 2020’s Workshop Explainable Deep Learning for AI, Jan
2021, Milano (virtual), Italy. �hal-03111634�

https://hal.science/hal-03111634
https://hal.archives-ouvertes.fr

Samples Classification Analysis Across DNN
Layers with Fractal Curves

Adrien Halnaut1, Romain Giot1[0000−0002−0638−7504], Romain
Bourqui1[0000−0002−1847−2589], and David Auber1[0000−0002−1114−8612]

Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France
{firstname,lastname}@u-bordeaux.fr

Abstract. Deep Neural Networks are becoming the prominent solution
when using machine learning models. However, they suffer from a black-
box effect that renders complicated their inner workings interpretation
and thus the understanding of their successes and failures. Information
visualization is one way among others to help in their interpretability
and hypothesis deduction. This paper presents a novel way to visualize a
trained DNN to depict at the same time its architecture and its way of
treating the classes of a test dataset at the layer level. In this way, it is
possible to visually detect where the DNN starts to be able to discriminate
the classes or where it could decrease its separation ability (and thus
detect an oversized network). We have implemented the approach and
validated it using several well-known datasets and networks. Results show
the approach is promising and deserves further studies.

Keywords: Deep Learning · Visualization · Explainable Artificial Intel-
ligence Glyph Definition.

1 Introduction

Deep-learning [20] based approaches are used in various contexts and dominate
most historical methods, especially for classification problems. Even when datasets
are not large enough to train Deep Neural Networks (DNN), it is possible to use
transfer learning with a pre-trained DNN by fine-tuning [10] it, or by extracting
features and feeding them to a conventional classifier [35]. Any DNN corresponds
to a graph of computational blocks: each block processes the output of one or
several previous ones through a simple function parametrized by many weights.
Such weights are data-dependent and computed during the training phase.

The black-box feeling is one of the largest issues. Indeed, even if each block
is individually well understood mathematically, its behavior depends mainly on
the training data (i.e., their impact on the learned weights). As a consequence,
one cannot know what treatment these blocks are doing. However, it is well
admitted that the first layers extract low-level features, while the latest ones
extract high-level features specific to the application problem [8]. Two non-
exclusive strategies can help to open this black box. (i) Explainable deep-learning
where the architecture of the DNN emphasizes its explainability [40], even if

2 Halnaut et al.

it could negatively impact its performance, and (ii) Interpretable deep-learning
where additional processes extract information by computing a more explainable
model [41], computing some saliency information [5,2] or using information
visualization techniques [14].

This paper presents a new method for interpretable deep-learning based
on information visualization techniques. The task to solve corresponds to the
analysis of the data classification over layers. It aims at analyzing how all input
samples of a dataset are globally treated by any part of the network. In opposite
to most papers of the literature on attribution-based methods, the focus is not
for a specific sample. The method allows focusing on successive layers that better
(or worst) discriminate the samples. It also displays the complete network and
the data behavior for each of its computational blocks.

It originality relies on the fact it focuses on both all samples and full architec-
ture and has the advantages of (i) using less screen space than existing methods
despite the amount of information to display; (ii) fitting to any network that can
be represented as a directed acyclic graph; (iii) using the same encoding for input
data, inner blocks and final result.

The remaining of the paper is organized as follows. Section 2 presents related
works in visualization for CNN and space filling curves. Section 3 describes the
proposed method. Section 4 provides the details of the experimental protocol.
Section 5 discusses the results and provide directions for future work. We finally
draw conclusions in Section 6.

2 Previous Works

Our proposed method aims at visually interpreting how DNN behave using a
space-efficient method. For this reason, this section firstly presents previous works
on deep neural networks visualization then focus on dense pixel oriented methods.

2.1 Visualization for the Interpretation of Deep Neural Networks

Visualization plays an important role in the tools used to help to explain or
interpret how deep models work and to reduce their black-box feeling [14].
Different purposes have been achieved in the literature.

Some works focus on single views that can be reused in other works or
embedded in more complex applications. GradCam [30] aims at generating a
heatmap for a single input to highlight the spatial location that greatly supports
the final decision. It is computed thanks to the gradients from the logit of a
target class up to the latest convolutional layer and can be straightforwardly
visualized and understood with a heatmap when the input feature is an image.
Other methods rely on different concepts to achieve the same objective such as
LRP [5] on the concept of relevance or other work [2] that only uses information
collected during the forward pass. Instead of focusing on a single input sample,
it is also possible to focus on the complete dataset. Some use Sankey-diagram
analogy [11] to highlight the processing flows. Others project activations obtained

Fractal Curves for CNN Interpretation 3

at a specific layer in a 2d space to verify how the network sees the data at this
specific point [28]. Such an approach is also common in the literature using T-SNE
projection [24]; however, an important drawback remains: the representation is
not space efficient and there is no guarantee that overlap does not occur. Our
proposed method solves these two issues.

Other works create applications for educational purpose to visually explain
how some specific deep systems perform. For example, Tensorflow playground [33]
focuses on simple DNN, CNN 101 [37] focuses on CNN, Ganlab [16] focuses on
Gan system and Adversarial Playground [27] illustrates the concept of adversarial
examples. Even if they are visually appealing, these systems can hardly be used
for industrial scenarios.

In opposite, several complete tools treat industrial problems. Some of them
are generalist enough to be used in almost any scenario, such as Activis [15] (that
focuses on the visualization and comparison of activation of a single selected layer),
while some others are restricted to some specific networks or evaluation scenarios.
CNNVIS [23] is tailored for CNN and uses a visualization that relies on aggregation
of layers (not all layers are depicted), filters (filters that behave similarly are
grouped) and data (a subset of the samples are depicted). DQNVIZ [36] has been
designed for Deep Q-Network explanation in the specific context of Atari play.

2.2 Hilbert Curve in Information Visualization

Dense pixel-oriented methods aim at improving both the data-ink ratio and
the visualization size by displaying a unit of information on a single pixel while
avoiding unused pixels. Keim reviewed various pixel-oriented visualizations [18]
and asserts that space-filling curves, such as the Hilbert one [13], are among the
bests to project ordered elements in a screen space while preserving the distance
of the one-dimensional ordering in the two-dimensional arrangement. Blanchard
et al. [6] have shown that to display images, reduced to a one pixel representation,
on an Hilbert curve produces coherent and identifiable clusters. Auber et al.
[3] have also shown the interest of such visualization, when complemented by
tailored interaction techniques, to explore datacubes of several dozen of millions
of elements. Since these previous successes, we have selected the Hilbert curve to
project our data in a square; a curve of order n contains 4n elements [3].

3 Proposed Method

Fig. 1 describes the proposal with the “Nested blocks and guidelines model” [25]
among various description levels: domain (who is concerned by which problem),
abstraction (which data is used or generated to solve which task), technique
(which methods are used) and algorithms (how these methods are implemented).

Additionally, Fig. 2 lists the successive steps involved in the method. The
requirements of the proposed method are: to be space efficient (R1) while
displaying information from all samples (R2) in all layers (R3) of the network to
solve the task “classification quality analysis over layers” (R4).

4 Halnaut et al.

Visualization aspects

Architecture display Database over layers display

Interpretable deep learning

Developers
&

builders

Models users

Non
experts

Data: trained network

Architecture

Data: tensors

Network input

Inner layers activations

Network output

DAG drawing

Fractal curve
drawing

Samples
ordering

VAT
Sugiyama

Hilbert curve

Absolute
coloring

Relative
coloring

D
o

m
a

in
A

b
st

ra
ct

io
n

Te
ch

n
iq

u
e

A
lg

o
ri

th
m

s

Preprocessing

LRP, zscore, ...

Network
simplification

Visual
quality

Tailored
fractal quality

metric

Task: classification quality
over layers

Class highlight

Samples
filtering

Fig. 1. Nested blocks and guidelines [25] representation of the proposed method. Dotted
italic blocks corresponds to existing ones; plain straight blocks are defined in the work.

3.1 Domain Level

The proposed method fits the needs of networks designers and trainers that want
to verify how the data is grouped by the various layers of their classification
network. From the analysis of these groupings, they could infer hypotheses that
aim at being verified with other techniques. Such hypotheses are related to input
sample properties and network errors. Non experts would better understand how
DNN work by looking at the representation of simple networks and datasets.

3.2 Abstraction Level

The proposed method considers an already trained DNN N with a compatible test
dataset Dtest. N is a network (i.e., graph) of operations (i.e., nodes) N = (O,E).
Its sources s• ∈ O are the identity function on data input (i.e., samples) and its
sinks t• ∈ O are its outputs (i.e., classes probability). N has multiple sources for
a multi-modal system, but always a single sink as we are restricted the use case
of standard classification. The other nodes o• ∈ O \ {s• ∪ t•} correspond to any
operations (e.g., convolution, pooling, etc) that compose N ; operations related to
optimization (e.g., dropout) are not included. The edges E = O ×O model the
flow of data over the operations of the network (i.e., they link successive layers).

Each sample di ∈ Dtest is fed into the network and the output (i.e., activations)
of each operation oj is stored in aji ; we assume operations are ordered depending
on the execution flow. These activations consist of tensors whose order depends
on the underlying operation and whose dimensions size depends on the input
data of the network. Each operation oj consumes at least one result aki |k < j

Fractal Curves for CNN Interpretation 5

O
0

s
0

O
1

s
1

o
3

o
2

o
4 o

5

e
0,2

e
0,3

e
2,4

e
3,4

e
4,5

O
6

t
0

e
5,6

a
0

a
1

a
2

a
3

a
4

a
5

a
6

C
o

m
p

u
ta

ti
o

n
al

 g
ra

p
h

N

D
ac

ti
va

ti
o

n
s

p
0

p
1

p
2

p
3

p
4

p
5

p
6

D
p

re
p

ro
c

e
s

s

1. Application of N on D
(propagation)

one activation map per sample and
layer 2. (optional) Activations

preprocessing to make
them comparable

arr
0 3. Maximum Linear Arrangement

(VAT)
For each layer, order the samples
according to their preprocessed

activations

S
o

rt
ed

sa

m
p

le
s arr

2

arr
1

arr
3

arr
4

arr
5 arr

6

4. Rendering
Draw samples along the fractal
curve. The color corresponds

to their groundtruth

5. Interaction
(here mouse over on one class in

the legend)

S
ta

n
d

ar
d

re

p
re

se
n

ta
ti

o
n

F
ilt

e
ri

n
g

 o
f

o
n

e
 c

la
ss

Fig. 2. Summary of the proposed method. Dataset D is fed to the network N . All
activations are collected, eventually preprocessed, and finally ordered at each layer. The
ordered samples are drawn along a fractal curve at each operation of the network that
is placed on the screen using a graph drawing method.

computed by a previous operation except for the sources where a•i corresponds to
the raw data (of the targeted modality in a multimodal scenario). Thus, a sample
di is represented by a set of activations Ai = ∪j{aji} and the complete dataset
Dtest is represented by an ensemble of sets of activations Dactivations = ∪i{Ai}.

The activations can be optionally preprocessed to fall within compatible do-

mains as their domain is not controlled: Dpreprocess =
⋃

i

⋃
j

{
Preprocessed

(
aji

)}
.

This preprocessing method is a parameter of the workflow.

3.3 Technique Level

As the method aims at displaying (a) the dataset and its groundtruth (R2), (b)
the architecture of the network (R3) and (c) its impact on the complete dataset
(R4), we propose an encoding relying on both Dpreprocess and N .

Groundtruth encoding. The groundtruth of the dataset is depicted with a
legend where each class is represented by a colored rectangle followed by a black
text. Obviously, the text is the name of the class and the color represents this
class in the samples encoding.

Network Encoding. It is straightforward to layout N operations with a graph-
drawing algorithm tailored for Directed Acyclic Graphs (networks are always
DAG). Such technique is common in the literature [15,38] and aims at computing

6 Halnaut et al.

the coordinates of each node (operation) in a plane while emphasizing the order
of operations in the computing flow. Each node is depicted by a glyph that
represents the whole dataset as viewed by the network at this specific operation.
Thus, a specific encoding is used to map the activations

⋃
i{Preprocessed(aji)}

of each node oj in the screen space.
Like Ganlab [17], a dotted line is drawn between nodes that represents

consecutive operations; the flow of data is revealed by the dots moving in flow
direction. Some networks can be very deep with successive layers that do not
bring additional information because they consist of data reordering. We allow the
user to request the visualization of a simplified network where the corresponding
nodes are removed (thus, their successors are linked to their predecessors), as
such information brings noise to the representation. No special encoding is used
to represent this information shrinking.

Samples encoding. As already explained, we have chosen a pixel-oriented
technique that relies on fractal curves (R1). For a given node oj , a maximal linear
arrangement method is used to order the representation aji of each sample di in
such a way that close samples are positioned closely in the ordering according to a
distance function. We assume close samples in the output space of oj corresponds
to samples treated similarly by the network (i.e., considered to be similar). Once
the samples are ordered, they are projected into a discrete pixel grid using a
fractal curve that respects proximity relations. This way, screen space usage can
be maximized (1 pixel per sample) and we are assured that close samples are
drawn closely on the screen (however close pixels on the screen are not necessarily
close in data space). Two visual encodings can represent this curve. The first
one, absolute coloring, explicitly draws samples of each class with the same color.
The second one, relative coloring, uses a gray-scale to emphasize label difference
between adjacent nodes and identify zones where different labels are present. It
can be used de facto when the number of classes is higher than the number of
discernable colors by a human. When using the absolute coloring scheme, the user
can choose to only visualize a specific class to analyze the spread of its samples
over the layer. The name of the layer is written above its fractal representation,
and a quality metric (see later) is written below it.

3.4 Algorithms Level

The model topology is drawn using the well-known Sugiyama [34] algorithm
and each node is depicted with a specific fractal-based glyph that represents
the ordered samples. The Euclidean distance is used to compare the activations
generated for all the samples on the same operation. It reflects the dissimilarity
between samples in the Euclidean space; we consider that each neuron activation
has the same impact as others in the full network processing. These distances
are then compiled into a n × n sized distance-matrix, n being the number of
compared samples. In real use case, some neurons have more impact on the
final prediction than others. Some pre- or post-processing methods, such as

Fractal Curves for CNN Interpretation 7

the LRP [5] methods as done in [11], can be applied to the activation maps in
order to reflect that behavior. However, we decided not to apply those methods
because of the unsure interpretation on model topologies using branches, such
as ResNet [12] or our chimeric DoubleLeNet5 (section 4.1). Using dissimilarity
matrix ordering methods [4], data can be ordered in a queue with similar elements
placed next to each other using their dissimilarity matrix. By using the VAT
algorithm [31] on the dissimilarity matrices, we found a progressive definition of
the clusters (or “black squares” as shown in the original paper) reflecting the
progressive recognition by the model over the layers we attempt to show. The
order computed by this algorithm can then be applied on a 1d-space to display
similar data indexes next to each other. Using a fractal curve, we transformed
this 1d-space into a 2d-space which is more suitable for data visualization. The
fractal curve chosen to map each sample into a pixel-grid is the Hilbert curve
[13] because of its ability to place points in a discrete space (this is not the case
of Gosper curve [9]) and the absence of “jumps” in the curve (this is not the
case of the Z-order curve [26]) which ensures that two consecutive samples are
adjacent. The order in which each sample is positioned is following the same
order computed by VAT on the previous step. When the number of test samples
is lower than the number of pixels available in the curve, we skip half of the
missing positions in the beginning of the curve (and thus half of the missing
positions at the end of the curve); which gives a hole in the curve.

In the absolute coloring, each pixel sample is being colored according to its
ground-truth class, which is different for each class. In the relative coloring, the
colors depend on the number of similar labels for the pixel of interest in its sample
ordering. That gives three possible values (0 for an outlier with no neighbors
of the same class, 1 for a previous or next label different, and 2 when the three
successive samples are of the same class). The absolute colors come from a palette
of diverging colors while the relative colors or black (0), gray (1) and white (2).
Computing in the ordering space instead of the picture allows to no highlight the
visual border inherent to the fractal curve. Placing the cursor on a class in the
legend selects this specific class and draws only its samples with the appropriate
absolute color.

The machine learning community provides various evaluation metrics (e.g.,
accuracy or cross-entropy) to evaluate the quality of the network by comparing
its output to a ground-truth. By definition, they cannot be applied at each layer,
but we still need to provide hints to the user of their efficiency. We have defined a
quality metric, based on the quality of the visual representation of a layer, which
counts the number of neighbors of a given pixel that are of the same color (i.e.,
the number of samples that belong to the same class). We normalized it between
0 and 1 to ease its comparison (however, as the normalization does not consider
the mandatory borders, 1 is an unreachable value). We assume that to quantify
the quality of the visualization is strongly related to the ability of the layer to
separate data.

8 Halnaut et al.

Table 1. Number of layers, parameters and activations per sample for each network.

Network Layers Parameters Activations

LeNet5 10 1 182 006 26 378
DoubleLeNet5 18 1 646 370 54 570
VGG16 18 14 714 688 308 244

4 Experimental Protocol

Several scenarios, that rely on a test dataset and a trained network (Table 1),
illustrate the efficiency of the proposed method.

4.1 Scenarios

Datasets.

– Mnist [19] is a standard dataset used in handwritten recognition from 28×28
grayscale images. Even simple networks are able to perform almost perfectly
on this 10-class dataset. We use it to illustrate what happens with an easy
dataset.

– FashionMnist [39] shares a similar distribution than Mnist and is composed
of images of clothes instead of digits. Classification performance is usually
lower than with Mnist . We use it to illustrate what happens with an average
difficulty dataset.

Both datasets are composed of 60 000 samples to train the model and 10 000
samples to evaluate the model.

Networks.

– LeNet5 [21] is a simple and historical CNN that provides good accuracy
results on Mnist . Its topology is simple enough to get a grasp on how data
is being transformed across the model. It is also easy to train with its low
parameter count, but that simplicity comes at the cost of lower accuracy
results in more complex recognition tasks.

– DoubleLeNet5 is a chimeric network we have created to illustrate the ability
of the system to handle networks with several branches. It consists of two
LeNet5 -like networks that process in parallel two versions of the given input
data, one as-is and one with image rotation applied. Those sub-models are
concatenated after the reduction to a 128-values long vector by a Dense-type
layer from each branch. This model targets the same kinds of data as LeNet5 ,
with a minor performance gain.

– VGG16 [32] is a deep CNN usually used on complex datasets composed of
large color images, with a thousand recognizable classes [29]. Its robustness
allows it to reach fairly good accuracy results on target tasks, but comes with
a heavy computation cost and cannot be trained in a reasonable amount of

Fractal Curves for CNN Interpretation 9

time on standard computers. In this paper, the convolutional layers of the
VGG16 model are already pre-trained with the ImageNet dataset, and are
not altered when training the prediction layers.

Couples of Network and Dataset. We have selected meaningful combinations
of network and dataset.

– Easy scenario: LeNet5 uses Mnist which illustrates a well performing system.

– Generalization scenario: LeNet5 uses FashionMnist which illustrates a system
with more errors.

– Problematic scenario: LeNet5 predicts FashionMnist but is trained with
Mnist which illustrates a system that does not perform well.

– Simplification scenario: VGG16 is processing Mnist . It illustrates the use of
a complex network to solve a simple task.

– Realistic scenario: DoubleLeNet5 predicts FashionMnist which illustrates a
network with branches. It illustrates the correct usage of transfert learning
for a simpler task.

4.2 Implementation and Execution Infrastructure

The TensorFlow framework is solicited along with Keras to train the studied
models with said datasets. [7,1] The intermediate computations between each
layer, seen as high-dimensional vectors leading to potentially very large data,
are saved into a 52-machines large cluster handling the dissimilarity matrix
computation, which makes use of a large pool of memory (around 2 Terabytes in
our infrastructure). The resulting matrices are small enough (for our experiments)
to fit and be processed on a recent laptop, equipped with a 9th generation
Intel i9 CPU, a nVIDIA Quadro T1000 GPU and 16GB of RAM capacity. The
matrix manipulations of the original VAT algorithm are implemented using the
ArrayFire library for their efficient matrix computation abilities. This part of
the process only produces the data for the visualization tool and thus can be
seen as a backend infrastructure. Fractal images are then generated by relying
on the Rust hilbert library. The visual and interactive part corresponds to an
HTML application written in Typescript relying on D3.js for the visualization,
D3-dag for the Sugiyama implementation and webpack for the build system.

5 Results and discussion

The complete results are accessible and best viewed online (images are strongly
undersized in the paper where 1 pixel represents several samples) at the fol-
lowing address: https://pivert.labri.fr/frac/index.html. Fig 3 depicts
still-resized representations of the proposed method for several scenarios, while
their confusion matrices are presented in 4.

https://pivert.labri.fr/frac/index.html

10 Halnaut et al.

(a) Easy scenario: LeNet5 , Mnist (accuracy=98.96%)

(b) Simplification scenario: VGG16 + Mnist (accuracy=97%)

(c) Generalization scenario: LeNet5 + FashionMnist (accuracy=73.44.5%)

(d) Realistic scenario: DoubleLeNet5 + FashionMnist (accuracy=73.75%)

Fig. 3. Illustration of results on some scenarios. The simplified version of the network is
drawn. The confusion matrices are presented in 4 for comparison with a standard visual
evaluation method. Larger images are available here: https://pivert.labri.fr/frac/.

Results. The accuracy for the system of the easy scenario is 98.96%. This
appears clearly in the latest Hilbert curve where clusters appear neatly. Looking
at the successive operations that correspond to activation functions (01-relu0,
03-relu1, 06-relu2, 09-prediction), we observe an improvement in the quality
of the representation, which means the network improves its discriminability
ability over layers. Classes 1 and 0 seem to be highly differentiable since the
beginning of the network, as well as a subset of 6, 7, 8. Discriminability improves
greatly at layer 05-dense0.

The accuracy in the generalization scenario reduces to 73.44%. This perfor-
mance reduction is observed with the latest curve that is saltier as well as the
representation of the inner operations. T-shirt and Trouser classes start to be
differentiable at the beginning of the network while Ankle boots or Sandal are
differentiable only at the end of the network.

The problematic scenario provides noisy representations associated to the
worst quality measures as the network is unable to classify properly. Cluster
tendencies may appear because samples of the same class can be somehow

https://pivert.labri.fr/frac/

Fractal Curves for CNN Interpretation 11

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

Accuracy: 98.96%

0.0

0.2

0.4

0.6

0.8

(a) LeNet5 , Mnist

0 1 2 3 4 5 6 7 8 9
Predicted label

0

1

2

3

4

5

6

7

8

9

Tr
ue

 la
be

l

Accuracy: 97.00%

0.0

0.2

0.4

0.6

0.8

(b) VGG16
(base), Mnist

Ts
hir

t/t
op

Tr
ou

se
r

Pu
llo

ve
r

Dre
ss
Co

at

Sa
nd

al
Sh

irt

Sn
ea

ke
r
Bag

Ank
le

bo
ot

Predicted label

Tshirt/top
Trouser
Pullover

Dress
Coat

Sandal
Shirt

Sneaker
Bag

Ankle boot

Tr
ue

 la
be

l

Accuracy: 73.44%

0.0

0.2

0.4

0.6

0.8

(c) LeNet5 ,
FashionMnist

Ts
hir

t/t
op

Tr
ou

se
r

Pu
llo

ve
r

Dre
ss
Co

at

Sa
nd

al
Sh

irt

Sn
ea

ke
r
Bag

Ank
le

bo
ot

Predicted label

Tshirt/top
Trouser
Pullover

Dress
Coat

Sandal
Shirt

Sneaker
Bag

Ankle boot

Tr
ue

 la
be

l

Accuracy: 73.75%

0.0

0.2

0.4

0.6

0.8

(d) DoubleLeNet5 ,
FashionMnist

Fig. 4. Confusion matrices of the systems presented in Fig. 3.

transformed similarly. The simplification scenario has the accuracy of 97% (so
lower than LeNet5). As a consequence, the cluster frontiers of the latest Hilbert
curve is less neat. There is a succession of improvement/decreasing of drawing
quality over time. We assume they come from several reasons: they are pre-trained
and not specialized for the task, and they are too deep and redundant.

The realistic scenario illustrates the ability to draw networks with branches.
We observe the same tendencies in both branches with an initial increase in the
drawing quality then a decrease. They are also confident on the same classes.

Discussion. We observe easily the efficient use of the screen space (remember
each sample is drawn once per layer) in comparison to a T-SNE projection
[28]. Pixels usage is maximized; but not all points of the curves are used; black
pixels correspond to unused pixels because test datasets are smaller than what
is technically possible with such display size. It is possible to evaluate larger
datasets without using more space on the screen. Another observation is the
effectiveness of samples projection over the fractal curve to depict the classification
performance over layers. Usually, dataset representation is less and less salty
over layers which means the network is better and better at separating classes
of samples. FashionMnist which is a problem more difficult than Mnist is also
saltier than the later one: we are able to visually represent this fact.

By construction, the very first node corresponds to the projection of the raw
dataset; the noisier it is, the more complex it is to distinguish its samples without
extracting additional features. The representation clearly depicts this point and
its quality metric is worst for FashionMnist than Mnist . The very last node
corresponds to the projection of the softmax values; the noisier it is, the worst
the accuracy is. The final representation is complementary of a confusion matrix
(see Fig. 4) as it provides more information.

A labeled dataset is currently needed to color the pixels. It limits the use of
the method to a test dataset and not a real world unlabeld dataset. However,
it is still possible to use the predicted labels instead of the groundtruth ones to
obtain a view of how the network interprets the data.

Fig 5 compares the absolute and relative color schemes for one operation
able to differentiate the samples and another one yet not able to differentiate
them. Thanks to the color, the absolute one allows to clearly see which classes is
subject to more noise than the others, while the relative one allows to better see

12 Halnaut et al.

(a) Good system,
absolute coloring

(b) Good system,
relative coloring

(c) Bad system,
absolute
coloring

(d) Bad system,
relative coloring

Fig. 5. Comparison of the absolute and relative color schemes. No data is depicted in
black for absolute and light blue for relative color schemes.

Fig. 6. Analysis of the spread of samples of class 2 over layers. Such representation
could indicated an oversizing of the network by looking at the separation effect around
layer 17.

the relative quantity of errors. The relative one is also able by construction to
handle many classes.

Focusing on a specific class helps to track the evolution of the treatment of
samples for that chosen class over layers. Fig. 6 illustrates a possible oversizing
of the network by observing that samples of selected class tend to be considered
similar around layer 9, whereas it is not the case anymore around layer 17.

Future Work. The method is resource consuming, mainly due to the need of
storing dissimilarity matrices in memory. As a future work, it would be interesting
to study whether one could use smaller part, or estimation, of the dissimilarities
to approach a similar visualization. Additionally, the ordering of the samples
highly depend on the Euclidean distance that is known to not be efficient in high
dimensional spaces. Other metrics need to be compared.

The approach is satisfactory using interaction, but is not yet self-sufficient.
Indeed, it provides a good overview of how the classification is handled but lacks
of interactions to track the progression of a single sample or group of samples (in
opposite to our previous work that specifically focus on this point [11]) in the
network. Such investigations have to be held.

The Hilbert curve is very efficient to place the samples in its reserved space.
However, there is a high probability that the number of elements in the dataset
to visualize is lower than what is possible with the curve (in our experiment,
47 − 10 000 pixels are lost, which is roughly 39% of the picture for each layer). It
would be interesting to implement additional interactions that use this additional
space; or use grid-based projection methods instead of fractal ones. To subsample
or sample with replacement the dataset with a number of samples equals to the
curve length, and that follows data distribution, could also be interesting. The
standard Sugiyama algorithm does not consider the screen space size; a modified

Fractal Curves for CNN Interpretation 13

method should be used in order to project the graph on the screen in a way that
does not necessitate to horizontally scroll the screen to see it [22].

6 Conclusion

Deep learning classifiers are progressively replacing handcrafted and understood
standard classifiers for various fields. This performance gain is counterbalanced
by a difficulty in understanding how and why they perform well. Information
visualization is one solution to this lack of interpretability. We have presented a
pipeline consuming a trained network and a dataset and producing an interactive
representation depicting both the network’s architecture and the behaviors of the
test samples at each layer. Such system allows to visually analyze the classification
quality over layers of a dataset and could be used to visually detect patterns in
the data and propose a hypothesis about the performance of the network. Such
hypothesis would need then to be verified by other means.

This approach has been validated on various scenarios and shows its interest
and limits that will be overcome in the future. It will be extended with various
specific interaction methods to also focus on individual data and, subsampling or
dense pixel based method that do not “lost” screen space.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems
(2015), https://www.tensorflow.org/, software available from tensorflow.org

2. Asif Fuad, K.A., Martin, Pierre-Etienne andGiot, R., Bourqui, R., Benois-Pineau,
J., Zemmari, A.: Features understanding in 3d cnns for actions recognition in video.
In: The tenth International Conference on Image Processing Theory, Tools and
Applications (IPTA 2020). p. 6 (2020)

3. Auber, D., Novelli, N., Melançon, G.: Visually mining the datacube using a pixel-
oriented technique. In: 2007 11th International Conference Information Visualization
(IV’07). pp. 3–10. IEEE (2007)

4. Behrisch, M., Bach, B., Henry Riche, N., Schreck, T., Fekete, J.D.: Matrix reordering
methods for table and network visualization. Computer Graphics Forum 35(3),
693–716 (2016)

5. Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R., Samek, W.: Layer-wise
relevance propagation for neural networks with local renormalization layers. Lecture
Notes in Computer Science, vol. 9887, pp. 63–71. Springer Berlin / Heidelberg
(2016)

6. Blanchard, F., Herbin, M., Lucas, L.: A new pixel-oriented visualization technique
through color image. Information Visualization 4(4), 257–265 (2005)

7. Chollet, F., et al.: Keras (2015), https://keras.io
8. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features

of a deep network. Tech. rep., University of Montreal (2009)
9. Gardner, M.: Mathematical games–in which “monster” curves force redefinition of

the word “curve”. Scientific American 235(6), 124–133 (1976)

https://www.tensorflow.org/
https://keras.io

14 Halnaut et al.

10. Ghazi, M.M., Yanikoglu, B., Aptoula, E.: Plant identification using deep neural
networks via optimization of transfer learning parameters. Neurocomputing 235,
228–235 (2017)

11. Halnaut, A., Giot, R., Bourqui, R., Auber, D.: Deep dive into deep neural networks
with flows. In: 15th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications. pp. 231–239 (2020)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

13. Hilbert, D.: Über die stetige abbildung einer linie auf ein flächenstück. In: Drit-
ter Band: Analysis· Grundlagen der Mathematik· Physik Verschiedenes, pp. 1–2.
Springer (1935)

14. Hohman, F., Kahng, M., Pienta, R., Chau, D.H.: Visual analytics in deep learning:
An interrogative survey for the next frontiers. IEEE transactions on visualization
and computer graphics 25(8), 2674–2693 (2018)

15. Kahng, M., Andrews, P.Y., Kalro, A., Chau, D.H.: Activis: Visual exploration of
industry-scale deep neural network models. IEEE Transactions on Visualization
and Computer Graphics 24(1), 88–97 (2018)

16. Kahng, M., Thorat, N., Chau, D.H.P., Viégas, F.B., Wattenberg, M.: Gan lab:
Understanding complex deep generative models using interactive visual experi-
mentation. IEEE transactions on visualization and computer graphics 25(1), 1–11
(2018)

17. Kahng, M., Thorat, N., Chau, D.H.P., Viégas, F.B., Wattenberg, M.: Gan lab:
Understanding complex deep generative models using interactive visual experi-
mentation. IEEE transactions on visualization and computer graphics 25(1), 1–11
(2018)

18. Keim, D.A.: Designing pixel-oriented visualization techniques: Theory and appli-
cations. IEEE Transactions on visualization and computer graphics 6(1), 59–78
(2000)

19. LeCun, Y.: The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998)

20. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444
(2015)

21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

22. Liu, M., Liu, S., Su, H., Cao, K., Zhu, J.: Analyzing the noise robustness of
deep neural networks. In: 2018 IEEE Conference on Visual Analytics Science and
Technology (VAST). pp. 60–71. IEEE (2018)

23. Liu, M., Shi, J., Li, Z., Li, C., Zhu, J., Liu, S.: Towards better analysis of deep
convolutional neural networks. IEEE transactions on visualization and computer
graphics 23(1), 91–100 (2017)

24. Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal of machine learning
research 9, 2579–2605 (2008)

25. Meyer, M., Sedlmair, M., Quinan, P.S., Munzner, T.: The nested blocks and
guidelines model. Information Visualization 14(3), 234–249 (2015)

26. Morton, G.M.: A computer oriented geodetic data base and a new technique in file
sequencing. Tech. rep., International Business Machines Company New York (1966)

27. Norton, A.P., Qi, Y.: Adversarial-playground: A visualization suite showing how ad-
versarial examples fool deep learning. In: Visualization for Cyber Security (VizSec),
2017 IEEE Symposium on. pp. 1–4. IEEE (2017)

Fractal Curves for CNN Interpretation 15

28. Rauber, P.E., Fadel, S.G., Falcao, A.X., Telea, A.C.: Visualizing the hidden activity
of artificial neural networks. IEEE transactions on visualization and computer
graphics 23(1), 101–110 (2017)

29. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpa-
thy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition
challenge. International journal of computer vision 115(3), 211–252 (2015)

30. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
2017 IEEE International Conference on Computer Vision (ICCV). p. 618–626 (2017)

31. d. Silva, L.E.B., Wunsch, D.C.: A study on exploiting vat to mitigate ordering
effects in fuzzy art. In: 2018 International Joint Conference on Neural Networks
(IJCNN). pp. 1–8 (2018)

32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. preprint arXiv:1409.1556 (2014)

33. Smilkov, D., Carter, S., Sculley, D., Viégas, F.B., Wattenberg, M.: Direct-
manipulation visualization of deep networks. arXiv preprint arXiv:1708.03788
(2017)

34. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Transactions on Systems, Man, and Cybernetics
11, 109–125 (1981)

35. Tang, Y.: Deep learning using linear support vector machines. In: In ICML (2013)
36. Wang, J., Gou, L., Shen, H.W., Yang, H.: Dqnviz: A visual analytics approach

to understand deep q-networks. IEEE transactions on visualization and computer
graphics 25(1), 288–298 (2019)

37. Wang, Z.J., Turko, R., Shaikh, O., Park, H., Das, N., Hohman, F., Kahng, M., Chau,
D.H.: Cnn 101: Interactive visual learning for convolutional neural networks. In:
Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing
Systems. pp. 1–7 (2020)

38. Wongsuphasawat, K., Smilkov, D., Wexler, J., Wilson, J., Mane, D., Fritz, D.,
Krishnan, D., Viégas, F.B., Wattenberg, M.: Visualizing dataflow graphs of deep
learning models in tensorflow. IEEE transactions on visualization and computer
graphics 24(1), 1–12 (2017)

39. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

40. Zhang, Q., Nian Wu, Y., Zhu, S.C.: Interpretable convolutional neural networks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 8827–8836 (2018)

41. Zhang, Q., Yang, Y., Ma, H., Wu, Y.N.: Interpreting cnns via decision trees. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 6261–6270 (2019)

	Samples Classification Analysis Across DNN Layers with Fractal Curves

