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, which depends on the Blumenthal-Getoor index for d = 1 and is equal to log T T for d = 2. Secondly, we show that is not possible to find an estimator with faster rates of estimation. Indeed, we get some lower bounds with the same rates { 1 T , log T T } in the mono and bi-dimensional cases, respectively. Finally, we obtain the asymptotic normality of the estimator in the one-dimensional case.

Introduction

Solutions to Lévy-driven stochastic differential equations have recently attracted a lot of attention in the literature due to its many applications in various areas such as finance, physics, and neuroscience. Indeed, it includes some important examples from finance such as the well-known Kou model in [START_REF] Kou | A Jump-Diffusion Model for Option Pricing[END_REF], the Barndorff-Nielsen-Shephard model ( [START_REF] Barndorff-Nielsen | Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics[END_REF]), and the Merton model ( [START_REF] Merton | Option pricing when underlying stock returns are discontinuous[END_REF]) to name just a few. An important example of application of jump-processes in neuroscience is the stochastic Morris-Lecar neuron model presented in [START_REF] Ditlevsen | The MorrisLecar neuron model embeds a leaky integrate-and-fire model[END_REF]. As a consequence, statistical inference for jump processes has recently become an active domain of research.

We consider the process (X t ) t≥0 solution to the following stochastic differential equation with jumps:

X t = X 0 + t 0 b(X s )ds+ t 0 a(X s )dB s + t 0 R d 0 γ(X s -)z(ν(ds, dz)-F (z)dzds), (1) 
where (B t ) t≥0 is a d-dimensional Brownian motion and ν is a Poisson random measure on R + ×R d associated to a Lévy process (L t ) t≥0 with Lévy density function F . We focus on the estimation of the invariant density µ associated to the jumpprocess solution to [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF] in low dimension, which is for d = 1 and d = 2. In particular, assuming that a continuous record of (X t ) t∈[0,T ] is available, our goal is to propose a non-parametric kernel estimator for the estimation of the stationary measure and to discuss its convergence rate for large T .

The same framework has been considered in some recent papers such as [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF], [START_REF] Dexheimer | Mixing it up: A general framework for Markovian statistics beyond reversibility and the minimax paradigm[END_REF] (Section 5.2), and [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF]. In the first paper, it is shown that the kernel estimator achieves the following convergence rates for the pointwise estimation of the invariant density: log T T for d = 2 and (log T ) (2-(1+α)
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T for d = 1 (where α is the Blumenthal-Getoor index). We recall that, in the absence of jumps, the optimal convergence rate in the one-dimensional case is 1 T , while the one found in [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF] depends on the jumps and belongs to the interval ( log T T , (log T ) 3 2

T

). In this paper, we wonder if such a deterioration on the rate is because of the presence of jumps or the used approach. Indeed, our purpose is to look for a new approach to recover a better convergence rate in the one-dimensional case (hopefully the same as in the continuous case) and to discuss the optimality of such a rate. This new approach will also lead to the obtaining of the asymptotic normality of the proposed estimator. After that, we will discuss the optimality of the convergence rate in the bi-dimensional case. This will close the circle of the analysis of the convergence rates for the estimation of the invariant density of jump-diffusions, as the convergence rates and their optimality in the case d ≥ 3 have already been treated in detail in [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF].

Beyond these works, to our best knowledge, the literature concerning nonparametric estimation of diffusion processes with jumps is not wide. One of the few examples is given by Funke and Schmisser: in [START_REF] Funke | Adaptive nonparametric drift estimation of an integrated jump diffusion process[END_REF] they investigate the non parametric adaptive estimation of the drift of an integrated jump diffusion process, while in [START_REF] Schmisser | Non parametric estimation of the diffusion coefficients of a diffusion with jumps[END_REF], Schmisser deals with the non-parametric adaptive estimation of the coefficients of a jumps diffusion process. To name other examples, in [START_REF] Dion | Nonparametric drift estimation for diffusions with jumps driven by a Hawkes process[END_REF] the authors estimate in a non-parametric way the drift of a diffusion with jumps driven by a Hawkes process, while in [START_REF] Amorino | On the nonparametric inference of coefficients of self-exciting jump-diffusion[END_REF] the volatility and the jump coefficients are considered.

On the other hand, the problem of invariant density estimation has been considered by many authors (see e.g. [START_REF] Nguyen | Density estimation in a continuous-time Markov processes[END_REF], [START_REF] Delecroix | Sur lestimation des densités dun processus stationnaire emps continu[END_REF], [START_REF] Bosq | Nonparametric Statistics for Stochastic Processes[END_REF], [START_REF] Van Zanten | Rates of convergence and asymptotic normality of kernel estimators for ergodic diffusion processes[END_REF], and [START_REF] Banon | Nonparametric identification for diffusion processes[END_REF]) in several different frameworks: it is at the same time a long-standing problem and a highly active current topic of research. One of the reasons why the estimation of the invariant density has attracted the attention of many statisticians is the huge amount of numerical methods to which it is connected, the MCMC method above all. An approximation algorithm for the computation of the invariant density can be found for example in [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF] and [START_REF] Panloup | Recursive computation of the invariant measure of a stochastic differential equation driven by a Lévy process[END_REF]. Moreover, invariant distributions are essential for the analysis of the stability of stochastic differential systems (see e.g. [START_REF] Hasminskii | Stability of differential equations[END_REF] and [START_REF] Banon | Nonparametric identification for diffusion processes[END_REF]).

In [START_REF] Banon | Nonparametric identification for diffusion processes[END_REF], [START_REF] Banon | Recursive estimation in diffusion model[END_REF], and [START_REF] Bosq | Minimax rates of density estimators for continuous time processes[END_REF] some kernel estimators are used to estimate the marginal density of a continuous time process. When µ belongs to some Hölder class whose smoothness is β, they prove under some mixing conditions that their pointwise L 2 risk achieves the standard rate of convergence T 2β 2β+1 and the rates are minimax in their framework. Castellana and Leadbetter proved in [START_REF] Castellana | On smoothed probability density estimation for stationary processes[END_REF] that, under the following condition CL, the density can be estimated with the parametric rate 1 T by some non-parametric estimators (the kernel ones among them).

CL: u → g u ∞ is integrable on (0, ∞) and g u (•, •) is continuous for each u > 0.
In our context, g u (x, y) = µ(x)p u (x, y) -µ(x)µ(y), where p u (x, y) is the transition density. More precisely, they shed light to the fact that local irregularities of the sample paths provide some additional information. Indeed, if the joint distribution of (X 0 , X t ) is not too close to a singular distribution for |t| small, then it is possible to achieve the superoptimal rate 1 T for the pointwise quadratic risk of the kernel estimator. Condition CL can be verified for ergodic continuous diffusion processes (see [START_REF] Veretennikov | On Castellana-Leadbetters condition for diffusion density estimation[END_REF] for sufficient conditions). The paper of Castellana and Leadbetter led to a lot of works regarding the estimation of the common marginal distribution of a continuous time process. In [START_REF] Bosq | Parametric rates of nonparametric estimators and predictors for continuous time processes[END_REF], [START_REF] Bosq | Nonparametric Statistics for Stochastic Processes[END_REF], [START_REF] Cheze-Payaud | Nonparametric regression and prediction for continuous-time processes[END_REF], [START_REF] Kutoyants | Some problems of nonparametric estimation by observations of ergodic diffusion process[END_REF], and [START_REF] Blanke | Estimation de la densité pour des trajectoires non directement observables[END_REF] several related results and examples can be found.

An alternative to the kernel density estimator is given by the local time density estimator, which was proposed by Kutoyants in [START_REF] Kutoyants | Efficient density estimation for ergodic diffusion processes[END_REF] in the case of diffusion processes and was extended by Bosq and Davydov in [START_REF] Bosq | Local time and density estimation in continuous time[END_REF] to a more general context. The latest have proved that, under a condition which is mildly weaker than CL, the mean squared error of the local time estimator reaches the full rate 1 T . Leblanc built in [START_REF] Leblanc | Density estimation for a class of continuous time processes[END_REF] a wavelet estimator of a density belonging to some general Besov space and proved that, if the process is geometrically strong mixing and a condition like CL is satisfied, then its L p -integrated risk converges at rate 1 T as well. In [START_REF] Comte | Super optimal rates for nonparametric density estimation via projection estimators[END_REF] the authors built a projection estimator and showed that its L 2 -integrated risk achieves the parametric rate 1 T under a condition named WCL, which is blandly different compared to CL. WCL: There exists a positive integrable function k (defined on R) such that

sup y∈R ∞ 0 g u (x, y)du ≤ k(x),
for all x ∈ R.

In this paper, we will show that our mono-dimensional jump-process satisfies a local irregularity condition WCL1 and an asymptotic independence condition WCL2 (see Proposition 1), two conditions in which the original condition WCL can be decomposed. In this way, it will be possible to show that the L 2 risk for the pointwise estimation of the invariant measure achieves the superoptimal rate 1 T , using our kernel density estimator. Moreover, the same conditions will result in the asymptotic normality of the proposed estimator. Indeed, as we will see in the proof of Theorem 2, the main challenge in this part is to justify the use of dominated convergence theorem, which will ensured by conditions WCL1 and WCL2. We will find in particular that, for any collection (x i ) 1≤i≤m of real numbers, we have

√ T (μ h,T (x i ) -µ(x i ), 1 ≤ i ≤ m) D -→ N (m) (0, Σ (m) ) as T → ∞,
where μh,T is the kernel density estimator and

Σ (m) := (σ(x i , x j )) 1≤i,j≤m , σ(x i , x j ) := 2 ∞ 0 g u (x i , x j )du.
We remark that the precise form of the equation above allows us to construct tests and confidence sets for the density.

We have found the convergence rate 1 T , log T T for the risk associated to our kernel density estimator for the estimation of the invariant density for d = 1 and d = 2. Then, some questions naturally arise: are the convergence rates the best possible or is it possible to improve them by using other estimators? In order to answer, we consider a simpler model where both the volatility and the jump coefficient are constant and the intensity of the jumps is finite. Then, we look for a lower bound for the risk at a point x ∈ R d defined as in equation ( 9) below. The first idea is to use the two hypothesis method (see Section 2.3 in [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]). To do that, the knowledge of the link between the drift b and the invariant density µ b is essential. If in absence of jumps such link is explicit, in our context it is more challenging. As shown in [START_REF] Delattre | Rate of Estimation for the Stationary Distribution of Stochastic Damping Hamiltonian Systems with Continuous Observations[END_REF] and [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF], it is possible to find the link knowing that the invariant measure has to satisfy A * µ b = 0, where A * is the adjoint of the generator of the considered diffusion. This method allows us to show that the superoptimal rate 1 T is the best possible for the estimation of the invariant density in d = 1, but it fails in the bi-dimensional case (see Remark 1 below for details). Finally, we use a finite number of hypotheses to prove a lower bound in the bi-dimensional case. This requires a detailed analysis of the Kullback divergence between the probability laws associated to the different hypotheses. Thanks to that, it is possible to recover the optimal rate log T T in the two-dimensional case. The paper is organised as follows. In Section 2 we give the assumptions on our model and we provide our main results. Section 3 is devoted to state and prove some preliminary results needed for the proofs of the main results. To conclude, in Section 4 we give the proof of Theorems 1, 2, 3, and 4, where our main results are gathered.

Model assumption and main results

We consider the following stochastic differential equation with jumps We consider the following assumptions on the coefficients and on the Lévy density F : A1 The functions b(x), γ(x) and aa T (x) are globally Lipschitz and bounded.

X t = X 0 + t 0 b(X s )ds+ t 0 a(X s )dB s + t 0 R d 0 γ(X s -)z(ν(ds, dz)-F (z)dzds), ( 2 
)
where t ≥ 0, d ∈ {1, 2}, R d 0 = R d \ {0}, the initial condition X 0 is a R d -valued random variable, the coefficients b : R d → R d , a : R d → R d ⊗
Moreover, inf x∈R aa T (x) ≥ cId, for some constant c > 0, where Id denotes the d × d identity matrix and inf x∈R det(γ(x)) > 0.

A2 x, b(x) ≤ -c 1 |x| + c 2 , for all |x| ≥ ρ, for some ρ, c 1 , c 2 > 0.

A3 Supp(F ) = R d 0 and for all z ∈ R d 0 , F (z) ≤ c 3 |z| d+α , for some α ∈ (0, 2), c 3 > 0.

A4 There exist 0 > 0 and c 4 > 0 such that

R d 0 |z| 2 e 0 |z| F (z)dz ≤ c 4 .
A5 If α = 1, r<|z|<R zF (z)dz = 0, for any 0 < r < R < ∞.

Assumption A1 ensures that equation ( 2) admits a unique càdlàg adapted solution X = (X t ) t≥0 satisfying the strong Markov property, see e.g. [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF]. Moreover, it is shown in [2, Lemma 2] that if we further assume Assumptions A2-A4, then the process X is exponentially ergodic and exponentially β-mixing. Therefore, it has a unique invariant distribution π, which we assume it has a density µ with respect to the Lebesgue measure. Finally, Assumption A5 ensures the existence of the transition density of X denoted by p t (x, y) which satisfies the following upper bound (see [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF]Lemma 1]): for all T ≥ 0, there exists c 0 > 0 and λ 0 > 0 such that for any t ∈ [0, T ] and x, y ∈ R d ,

p t (x, y) ≤ c 0 t -d/2 e -λ 0 |y-x| 2 t + t (t 1/2 + |y -x|) d+α . (3) 
We assume that the process is observed continuously X = (X t ) t∈[0,T ] in a time interval [0, T ] such that T tends to ∞. In the paper [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF] cited above, the nonparametric estimation of µ is studied via the kernel estimator which is defined as follows. We assume that µ belongs to the Hölder space H d (β, L) where β = (β 1 , . . . , β d ), β i > 1 and L = (L 1 , . . . , L d ), L i > 0, which means that for all i ∈ {1, . . . , d}, k = 0, 1, . . . , β i and t ∈ R,

D (k) i µ ∞ ≤ L and D ( β i ) i µ(. + te i ) -D ( β i ) i µ(.) ∞ ≤ L i |t| β i -β i , where D (k) i
denotes the kth order partial derivative of µ w.r.t the ith component, β i is the integer part of β i , and e 1 , . . . , e d is the canonical basis of R d . We set μh,T (x) = 1

T d i=1 h i T 0 d i=1 K x i -X i t h i dt =: 1 T T 0 K h (x -X t )dt, where x = (x 1 , . . . , x d ) ∈ R d , h = (h 1 , . . . , h d ) is a bandwidth and K : R → R is a kernel function satisfying R K(x)dx = 1, K ∞ < ∞, supp(K) ⊂ [-1, 1], R K(x)x i dx = 0, for all i ∈ {0, . . . , M } with M ≥ max i β i .
We first consider equation ( 2) with d = 1 and show that the kernel estimator reaches the optimal rate T -1 , as it is for the stochastic differential equation (2) without jumps. For this, we need the following additional assumption on F .

A6 F belongs to C 1 (R) and for all z ∈ R, |F (z)| ≤ c 5
|z| 2+α , for some c 5 > 0.

Theorem 1. Let X be the solution to (2) on [0, T ] with d = 1. Suppose that Assumptions A1-A6 hold and µ ∈ H 1 (β, L). Then there exists a constant c > 0 independent of T and h such that for all x ∈ R,

E[|μ h,T (x) -µ(x)| 2 ] ≤ c(h 2β + 1 T ). (4) 
In particular, choosing h(T ) = 1 T a with a > 1 2β , we conclude that

E[|μ h,T (x) -µ(x)| 2 ] ≤ c T .
Theorem 1 improves the upper bound obtained in [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF] which was of the form

(log T ) (2-1+α
2 )∨1

T

. As in that paper, we will use the bias-variance decomposition (see [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF]Proposition 1])

E[|μ h,T (x) -µ(x)| 2 ] ≤ c h 2β + T -2 Var T 0 K(x -X t )dt . ( 5 
)
Then in [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF] bounds on the transition semigroup and on the transition density (see (3) above) give an upper bound for the variance depending on the bandwidth. Here, we use the same approach as in [START_REF] Castellana | On smoothed probability density estimation for stationary processes[END_REF] and [START_REF] Comte | Super optimal rates for nonparametric density estimation via projection estimators[END_REF] to obtain a bandwidth-free rate for the variance of smoothing density estimators (which include the kernel estimator). For Markov diffusions, the sufficient conditions can be decomposed into a local irregularity condition WCL1 plus an asymptotic independence condition WCL2:

WCL1: R 1 0 sup y∈R |g u (x, y)| du dx < ∞, WCL2: R ∞ 1 sup y∈R |g u (x, y)| du dx < ∞,
where g u (x, y) := µ(x)p u (x, y) -µ(x)µ(y). In order to show these conditions, an upper bound of the second derivative of the transition density p t (x, y) is obtained (see Lemma 1 below), for which the additional condition A6 is needed. As shown in [START_REF] Bosq | Asymptotic normality for density kernel estimators in discrete and continuous time[END_REF], conditions WLC1 and WLC2 are also useful to show the asymptotic normality of the kernel density estimator, as proved in the next theorem.

Theorem 2. Let X be the solution to (2) on [0, T ] with d = 1. Suppose that Assumptions A1-A6 hold and µ ∈ H 1 (β, L). Then, for any collection

(x i ) 1≤i≤m of distinct real numbers √ T (μ h,T (x i ) -E[μ h,T (x i )], 1 ≤ i ≤ m) D -→ N (m) (0, Σ (m) ) as T → ∞, (6) 
where

Σ (m) := (σ(x i , x j )) 1≤i,j≤m , σ(x i , x j ) := 2 ∞ 0 g u (x i , x j )du.
Furthermore,

√ T (μ h,T (x i ) -µ(x i ), 1 ≤ i ≤ m) D -→ N (m) (0, Σ (m) ) as T → ∞. (7) 
We are also interested in obtaining lower bounds in dimension d ∈ {1, 2}. For this, we consider the particular case of equation ( 2):

X t = X 0 + t 0 b(X s )ds + aB t + t 0 R d 0 γz(ν(ds, dz) -F (z)dzds), (8) 
where a and γ are d × d invertible matrices and b is a Lipschitz and bounded function satisfying Assumption A2. We assume that F satisfies Assumptions A3-A5 and

R d F (z)dz < ∞.
Then, the unique solution to equation ( 8) admits a unique invariant measure π b , which we assume has a density µ b with respect to the Lebesgue measure. We denote by P We say that a bounded and Lipschitz function b belongs to Σ(β, L) if the unique invariant density µ b belongs to

H d (β, L) for some β, L ∈ R d , β i > 1, L i > 0.
We define the minimax risk at a point x ∈ R d by

R x T (β, L) := inf μT R(μ T (x)) := inf μT sup b∈Σ(β,L) E (T ) b [(μ T (x) -µ b (x)) 2 ], (9) 
where the infimum is taken on all possible estimators of the invariant density.

The following lower bounds hold true.

Theorem 3. Let X be the solution to (8) on [0, T ] with d = 1. We assume that a and γ are non-zero constants. There exists T 0 > 0 and c > 0 such that, for all

T ≥ T 0 , inf x∈R R x T (β, L) ≥ c T .
Theorem 4. Let X be the solution to (8) on [0, T ] with d = 2. Assume that for all i ∈ {1, 2} and j = i,

|(aa T ) ij (aa T ) -1 jj | ≤ 1 2 . ( 10 
)
There exists T 0 > 0 and c > 0 such that, for T ≥ T 0 ,

inf μT sup b∈Σ(β,L) E (T ) b sup x∈R 2 (μ T (x) -µ b (x)) 2 ≥ c log T T .
Comparing these lower bounds with the upper bound of Theorem 1 for the case d = 1 and Proposition 4 in [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF] for the two-dimensional case, we conclude that the convergence rate { 1 T , log T T } are the best possible for the kernel estimator of the invariant density in dimension d ∈ {1, 2}.

The proof of Theorem 3 follows along the same lines as that of Theorem 2 in [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF], where a lower bound for the kernel estimator of the invariant density for the solution to (8) for d ≥ 3 is obtained. The proof is based on the two hypotheses method, explained for example in Section 2.3 of [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]. However, this method does not work for the two-dimensional case as explained in Remark 1 below. Instead, we use the Kullback's version of the finite number of hypotheses method as stated in Lemma C.1 of [START_REF] Strauch | Adaptive invariant density estimation for ergodic diffusions over anisotropic classes[END_REF], see Lemma 2 below. Observe that this method gives a slightly weaker lower bound as we get a sup x inside the expectation, while the method in [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF] provides an inf x outside the expectation.

Preliminary results

The proof of Theorems 1 and 2 will use the following upper bound on the second partial derivative of the transition density. Lemma 1. Let X be the solution to (2) on [0, T ] with d = 1. Suppose that Assumptions A1-A6 hold. For all T > 0, there exist two constants λ 1 > 0 and c > 0 such that for any x, y ∈ R and t ∈ [0, T ]

∂ 2 ∂x 2 p t (x, y) ≤ c t -3/2 e -λ 1 |y-x| 2 t + 1 (t 1/2 + |x -y|) 1+α .
Proof. We apply the estimate in Theorem 3.5(v) of [START_REF] Chen | Heat kernels for non-symmetric diffusion operators with jumps[END_REF]. We remark that, in [START_REF] Chen | Heat kernels for non-symmetric diffusion operators with jumps[END_REF], the authors assumed d ≥ 2. After inspection of the proof it is possible to see that the result can be extended to the case d = 1: it was stated for d ≥ 2 for the convenience in describing the Kato class function (for the drift). We also remark that the sufficient conditions Theorem 3.5(v) of [START_REF] Chen | Heat kernels for non-symmetric diffusion operators with jumps[END_REF] are the same as that to obtain the upper bound for the transition density (3) (which hold under Assumptions A1-5), together with the following additional condition: there exist c > 0 and δ ∈ (0, 1) such that for all x, y, z ∈ R,

|b(x) -b(y)| + |k(x, z) -k(y, z)| ≤ c|x -y| δ , (11) 
where

k(x, z) = 1 γ(x) |z| 1+α F ( z γ(x)
). Thus, we only need to show [START_REF] Bosq | Minimax rates of density estimators for continuous time processes[END_REF]. As b is bounded and Lipschitz, it satisfies [START_REF] Bosq | Minimax rates of density estimators for continuous time processes[END_REF]. In fact, when x and y are such that |x -y| > 1, thanks to the boundedness of b we have, for each δ ∈ (0, 1),

|b(x) -b(y)| ≤ |b(x)| + |b(y)| ≤ 2c ≤ 2c|x -y| δ .
Instead, when x and y are such that |x -y| ≤ 1, the Lipschitz continuity gives

|b(x) -b(y)| ≤ L|x -y| = L|x -y| 1-δ |x -y| δ ≤ L|x -y| δ .
Concerning k, we write

|k(x, z) -k(y, z)| = |z| 1+α 1 γ(x) F z γ(x) - 1 γ(y) F z γ(y) = |z| 1+α |γ(x)| F z γ(x) -F z γ(y) + |z| 1+α F z γ(y) 1 γ(x) - 1 γ(y) . (12) 
From the intermediate value theorem and defining z ∈

[ z γ(x) , z γ(y) ] (assuming WLOG that γ(x) > γ(y), otherwise z ∈ [ z γ(y) , z γ(x) ]
), the first term in the r.h.s above is bounded by

|z| 1+α |γ(x)| |F (z)| z γ(x) - z γ(y) ≤ |z| 1+α |γ(x)| c |z| 2+α |z| |γ(x)γ(y)| |γ(y) -γ(x)| ≤ c γ 2+α max γ 3 min |γ(x)γ(y)|,
where we have used A6 in the first inequality and γ max := sup x |γ(x)| and γ min := inf x |γ(x)|. Moreover, by A3, the second term in the r.h.s of ( 12) is bounded by

|z| 1+α c|γ(y)| 1+α |z| 1+α 1 |γ(x)γ(y)| |γ(y) -γ(x)| ≤ c γ α max γ min |γ(y) -γ(x)|.
Thus, we have shown that

|k(x, z) -k(y, z)| ≤ c γ 2+α max γ 3 min + γ α max γ min |γ(y) -γ(x)|.
Finally, as γ is Lipschitz and bounded, we conclude that [START_REF] Bosq | Minimax rates of density estimators for continuous time processes[END_REF] holds. This concludes the proof of the lemma.

The key point of the proof of Theorem 1 consists in showing that conditions WCL1 and WCL2 hold true, which is proved in the next proposition.

Proposition 1. Let X be the solution to (2) on [0, T ] with d = 1. Suppose that Assumptions A1-A6 hold. Then, conditions WCL1 and WCL2 are satisfied.

Proof. We start considering WCL1. The density estimate (3) yields

p t (x, y) ≤ ct -1 2 + ct 1-α 2 ≤ ct -1 2 0 < t ≤ 1, (13) 
which combined with sup y∈R µ(y) < ∞ gives WCL1. In order to show WCL2, we set ϕ(λ) := E[exp(iλX t )] and ϕ x (λ, t) := E[exp(iλX t )|X 0 = x] and we claim that here exists c 1 > 0 such that

|ϕ(λ)| ≤ c 1 (1 + |λ| -2 ). ( 14 
)
Moreover, for all t ≥ 2, there exists c 2 > 0, such that for all x ∈ R,

|ϕ x (λ, t)| ≤ c 2 (1 + |λ| -2 ). ( 15 
)
Recall from Lemma 2 in [START_REF] Amorino | Invariant density adaptive estimation for ergodic jump diffusion processes over anisotropic classes[END_REF] that the process X is exponentially β-mixing, which implies that β X (u) ≤ ce -γ 1 u , where β X (u) is the β-mixing coefficient defined in Section 1.3.2 of [START_REF] Doukhan | Mixing: properties and examples[END_REF]. It follows that, for any p > 0, ∞ 0 β p X (u)du < ∞. Thus, by Proposition 10 of [START_REF] Comte | Super optimal rates for nonparametric density estimation via projection estimators[END_REF], inequalities [START_REF] Cheze-Payaud | Nonparametric regression and prediction for continuous-time processes[END_REF] and [START_REF] Castellana | On smoothed probability density estimation for stationary processes[END_REF] and the integrability of the β-mixing coefficient imply WCL2. Therefore, we are left to show [START_REF] Cheze-Payaud | Nonparametric regression and prediction for continuous-time processes[END_REF] and [START_REF] Castellana | On smoothed probability density estimation for stationary processes[END_REF]. We start showing [START_REF] Castellana | On smoothed probability density estimation for stationary processes[END_REF]. Integrating by parts and using Lemma 1 it yields

|ϕ x (λ, t)| = R exp(iλy)p t (x, y)dy = |λ| -2 R exp(iλy) ∂ 2 ∂y 2 p t (x, y)dy = |λ| -2 R exp(iλy) ∂ 2 ∂y 2 R p t-1 (x, z)p 1 (z, y) dy ≤ |λ| -2 R R p t-1 (x, z) ∂ 2 ∂y 2 p 1 (z, y) dz dy ≤ c|λ| -2 R R p t-1 (x, z) e -λ 1 2 |x-y| 2 + 1 (1 + |x -y|) 1+α dy dz. As α ∈ (0, 2), the integral in dy is finite. Since R p t-1 (x, z)dz < c, we get |ϕ x (λ, t)| ≤ c|λ| -2 ≤ c(1 + |λ| -2 ),
which proves [START_REF] Castellana | On smoothed probability density estimation for stationary processes[END_REF]. Similarly,

|ϕ(λ)| = R exp(iλy)µ(y)dy = |λ| -2 R exp(iλy) ∂ 2 ∂y 2 R µ(z)p 1 (z, y) dy ≤ |λ| -2 R R µ(z) ∂ 2 ∂y 2 p 1 (z, y) dz dy ≤ c(1 + |λ| -2 ),
which gives [START_REF] Castellana | On smoothed probability density estimation for stationary processes[END_REF]. The proof of the proposition is now completed.

Theorem 2 is an application of the following central limit theorem for discrete stationary sequences. Let Y n = (Y n,i , i ∈ Z), n ≥ 1 be a sequence of strictly stationary discrete time R m valued random process. We define the α-mixing coefficient of Y n by α n,k := sup A∈σ(Y n,i , i≤0), B∈σ(Y n,i , i≥k)

P(A ∩ B) -P(A)P(B)
and we set α k := sup n≥1 α n,k (see also Section 1 in [START_REF] Doukhan | Mixing: properties and examples[END_REF]). We denote by Y (r) the r-th component of an m dimensional random vector Y .

Theorem 5 (Theorem 1.1 [START_REF] Bosq | Asymptotic normality for density kernel estimators in discrete and continuous time[END_REF]). Assume that

(i) E[Y (r) n,i ] = 0 and |Y (r) n,i | ≤ M n for every n ≥ 1, i ≥ 1 and 1 ≤ r ≤ m, where M n is a constant depending only n. (ii) sup i≥1,1≤r≤m E[(Y (r) n,i ) 2 ] < ∞.
(iii) For every 1 ≤ r, s ≤ m and for every sequence b n → ∞ such that b n ≤ n for every n ≥ 1, we have

lim n→∞ 1 b n E bn i=1 Y (r) n,i bn j=1 Y (s) n,j = σ r,s . (iv) There exists a ∈ (1, ∞) such that k≥1 kα a-1 a k < ∞.
(v) For some constant c > 0 and for every n ≥ 1, M n ≤ cn a 2 (3a-1)(2a-1) .

Then,

n i=1 Y n,i √ n D -→ N (0, Σ) as n → ∞,
where Σ = (σ r,s ) 1≤r,s≤m .

The proof of Theorem 4 is based on the following Kullback version of the main theorem on lower bounds in [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF], see Lemma C.1 of [START_REF] Strauch | Adaptive invariant density estimation for ergodic diffusions over anisotropic classes[END_REF]: Lemma 2. Fix β, L ∈ (0, ∞) 2 and assume that there exists f 0 ∈ H 2 (β, L) and a finite set J T such that one can find {f j , j ∈ J T } ⊂ H 2 (β, L) satisfying

f j -f k ∞ ≥ 2ψ > 0 ∀j = k ∈ J T . (16) 
Moreover, denoting P j the probability measure associated with f j , ∀j ∈ J T , P (T ) j P (T ) 0

and

1 |J T | j∈J T KL(P (T ) j , P (T ) 0 ) = 1 |J T | j∈J T E (T ) j log dP (T ) j dP (T ) 0 (X T ) ≤ γ log(|J T |) (17)
for some γ ∈ (0, 1 8 ). Then, for q > 0, we have

inf μT sup µ b ∈H 2 (β,L) (E (T ) b [ψ -q μT -µ b q ∞ ]) 1/q ≥ c(γ) > 0,
where the infimum is taken over all the possible estimators μT of µ b .

4 Proof of the main results

Proof of Theorem 1

By the symmetry of the covariance operator and the stationarity of the process,

T Var(μ h,T (x)) = 1 T T 0 T 0 Cov(K h (x -X t ), K h (x -X s ))ds dt = 2 T T 0 (T -u)Cov(K h (x -X u ), K h (x -X 0 ))du = 2 T 0 (1 - u T ) R R K h (x -y)K h (x -z)g u (y, z)dy dz du ≤ R R K h (x -y)K h (x -z) ∞ 0 g u (y, z)dy dz du ≤ c,
where in the last inequality we have used Proposition 1. Then, from the biasvariance decomposition (5) we obtain (4), which concludes the desired proof.

Proof of Theorem 2

We aim to apply Theorem 5. First of all we split the interval [0, T ] into n small intervals whose length is ∆ n as follows: [0, T ] = ∪ n i=1 [t i-1 , t i ), with t 0 = 0 and t n = T and, for any i ∈ {1, . . . , n}, t i -t i-1 = ∆ n . By construction, it clearly holds that n∆ n = T .

For each n ≥ 1 and 1 ≤ r ≤ m, we consider the sequence (Y

n,i ) i≥1 defined as

Y (r) n,i := 1 √ ∆ n t i t i-1 K h (x r -X u )du -E t i t i-1 K h (x r -X u )du ,
for x r ∈ R. We denote by Y n,i the R m valued random vector defined by Y n,i = (Y

n,i , . . . , Y

n,i ). By construction,

n i=1 Y n,i √ n = √ T (μ h,T (x) -E[μ h,T (x)]),
where μh,T (x) -E[μ h,T (x)] is the vector

(μ h,T (x 1 ) -E[μ h,T (x 1 )], . . . , μh,T (x m ) -E[μ h,T (x m )]).
It is clear that E[Y n,i ] = 0 for all n ≥ 1 and i ≥ 1. Moreover, for all i ≥ 1, 1 ≤ r ≤ m and n ≥ 1 we have

|Y (r) n,i | ≤ 1 √ ∆ n K h ∞ ∆ n ≤ c h(T ) ∆ n =: M n .
Hence, assumption (i) holds true. Concerning assumption (ii) we remark that, for any i ≥ 1 and any 1 ≤ r ≤ m,

E[(Y (r) n,i ) 2 ] = Var 1 √ ∆ n ∆n 0 K h (x r -X u )du = Var( ∆ n μh,∆n (x r )) = ∆ n Var(μ h,∆n (x r )) ≤ ∆ n c ∆ n = c,
where in the last inequality we have used (4.1). We next check condition (iii). Let b n be a sequence of integers such that b n → ∞ and b n ≤ n for every n. For every 1 ≤ r ≤ m and 1 ≤ s ≤ m, we have

1 b n E bn i=1 Y (r) n,i bn j=1 Y (s) n,j = 1 b n bn 0 bn 0 Cov(K h (x r -X u ), K h (x s -X v ))du dv = 2 bn 0 (1 - u b n ) R R K h (x r -z 1 )K h (x s -z 2 )g u (z 1 , z 2 )dz 1 dz 2 du = 2 R R bn 0 (1 - u b n )K(w 1 )K(w 2 )g u (x r -h(T )w 1 , x s -h(T )w 2 )du dw 1 dw 2 ,
where we have used Fubini's theorem and the change of variables w 1 := xr-z 1 h(T ) , w 2 := xs-z 2 h(T ) . Using dominated convergence and the fact that h(T ) → 0 for T → ∞, we obtain

lim n→∞ 1 b n E bn i=1 Y (r) n,i bn j=1 Y (s) n,j = 2 R K(w 1 ) R K(w 2 ) ∞ 0 g u (x r , x s )du dw 2 dw 1 = 2 ∞ 0 g u (x r , x s )du =: σ(x r , x s ),
which proves (iii). Remark that it possible to use dominated convergence theorem as we have shown in Proposition 1 that

∞ 0 g u ∞ du < ∞.
In particular, we have

|(1 - u b n )K(w 1 )K(w 2 )g u (x r -h(T )w 1 , x s -h(T )w 2 )1 [0,bn] (u)1 R 2 (w 1 , w 2 )| ≤ g u ∞ |K(w 1 )K(w 2 )| ∈ L 1 (R + × R 2 ).
We now check (iv). We remark that if a process is β-mixing, then it is also α-mixing and the following estimation holds (see Theorem 3 in Section 1.2.2 of [START_REF] Doukhan | Mixing: properties and examples[END_REF])

α k ≤ β Y n,i (k) = β X (k) ≤ ce -γ 1 k .
Therefore, we it suffices to show that there exists a ∈ (1, ∞) such that

c k≥1 ke -kγ 1 (a-1) a < ∞,
which is true for any a > 1, so (iv) is satisfied.

We are left to show (v). Set f (a) := a 2 (3a-1)(2a-1) . We want to show that there exists a > 1 such that, for some c > 0 and for any n ≥ 1,

√ ∆ n h(T ) ≤ cn f (a) . ( 18 
)
For any > 0, we can choose h(T ) = ( 1 T )

1 2β
+ which still achieves the rate optimal choice of Theorem 1. Recalling that T = n∆ n and replacing it in [START_REF] Comte | Super optimal rates for nonparametric density estimation via projection estimators[END_REF], we get .

c ∆ n (n∆ n ) 1 2β + ≤ n f (a) ,
This condition is satisfied if for some > 0,

∆ n ≤ cn 2βf (a)-1 β+1 -.
We can always find an > 0 such that this last condition holds true. In fact, it is easy to see that for any β > 1 there exists a > 1 such that f (a) > 1 2β so that 2βf (a)-1 β+1

> 0. Thus, condition (v) is satisfied. We can then apply Theorem 5 which directly leads us to [START_REF] Banon | Recursive estimation in diffusion model[END_REF]. We next turn to the proof of [START_REF] Blanke | Estimation de la densité pour des trajectoires non directement observables[END_REF]. In the proof of Theorem 1 we have shown that

|E[μ h,T (x i )] -µ(x i )| ≤ h(T ) β .
where h(T ) = ( 1T ) ā, with ā > 1 2β . Thus,

√ T |E[μ h,T (x i )] -µ(x i )| ≤ cT 1 2 T -āβ ,
which converges to zero. This proves [START_REF] Blanke | Estimation de la densité pour des trajectoires non directement observables[END_REF] and concludes the desired proof.

Proof of Theorem 3

The proof of of Theorem 3 follows as the proof of the lower bound for d ≥ 3 obtained in Theorem 3 of [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF]. Therefore, we will only explain the main steps and the principal differences.

Step 1 The first step consists in showing that given a density function f , we can always find a drift function b f such that f is the unique invariant density function of equation ( 8) with drift coefficient b = b f . We give the statement and proof in dimension d = 1, as in Propositions 2 and 3 of [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF] it is only done for d ≥ 2. Proposition 2. Let f : R → R be a C 2 positive probability density satisfying the following conditions 1. lim y→±∞ f (y) = 0 and lim y→±∞ f (y) = 0.

2. There exists 0 < < 0 |γ| , where 0 is as in Assumption A4 such that, for any y, z ∈ R, f (y ± z) ≤ ĉ1 e |z| f (y).

3. For > 0 as in 2. there exists ĉ2 ( ) > 0 such that Then there exists a bounded Lipschitz function b f which satisfies A2 such that f is the unique invariant density to equation [START_REF] Barndorff-Nielsen | Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics[END_REF] with drift coefficient b = b f . Proof. Let A d be the discrete part of the generator of the diffusion process X solution of (8) and let A * d its adjoint. We define b f as

sup y<0 1 f (y) y -∞ f (w)dw < ĉ2 and sup y>0 1 f (y) ∞ y f (w)dw < ĉ2 .
b f (x) = 1 f (x) x -∞ ( 1 2 a 2 f (w) + A * d f (w))dw, if x < 0; -1 f (x) ∞ x 1 2 a 2 f (x)(w) + A * d f (w)dw, if x > 0,
where

A * d f (x) = R [f (x -γz) -f (x) + γzf (x)]F (z)dz.
Then, following Proposition 3 in [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF], one can check that b f is bounded, Lipschitz, and satisfies A2. Moreover, if we replace b by b f in equation ( 8), then f is the unique invariant density.

Step 2 The second step consists in defining two probability density functions f 0 and f 1 in H 1 (β, L).

We first define f 0 (y) = c η f (η|y|), where η ∈ (0, 1 2 ), c η is such that f 0 = 1, and

f (x) =      e -|x| , if |x| ≥ 1 ∈ [1, e -1 ], if 1 2 < |x| < 1 1, if |x| ≤ 1 2 . (19) 
Moreover, f is a C 2 function such that for any x ∈ R,

1 2 e -|x| ≤ f (x) ≤ 2e -|x| , |f (|x|)| ≤ 2e -|x| , and |f (|x|)| ≤ 2e -|x| .
It is easy to see that η can be chosen small enough so that f 0 ∈ H 1 (β, L). Moreover, f 0 satisfies the assumptions of Proposition 2 with ĉ1 = 4, = η, ĉ2 = 4 η , R = 1 η , ĉ3 = 4, and ĉ4 = 16. In order for the condition on ˜ in assumption 4. to be satisfied we need c 4 < a 2 2γ 2 4 4 . This means that the jumps have to integrate an exponential function. The bound depends on the coefficients a and γ and so it depends only on the model.

Therefore, b 0 := b f 0 belongs to Σ(β, L). Recall that b 0 belongs to Σ(β, L) if and only if f 0 belongs to H 1 (β, L) and b 0 is bounded, Lipschitz and satisfies the drift condition A2.

We next define

f 1 (x) = f 0 (x) + 1 M T K x -x 0 H(T ) , (20) 
where

x 0 ∈ R is fixed and K : R → R is a C ∞ function with support on [-1, 1] such that K(0) = 1, 1 -1 K(z)dz = 0.
M T and H(T ) will be calibrated later and satisfy that M T → ∞ and H(T ) → 0, as T → ∞.

Then it can be shown as in [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF]Lemma 3] that if there exists > 0 small enough such that for all T sufficiently large,

1 M T ≤ H(T ) β and 1 H(T ) = o(M T ) (21) 
as T → ∞, then b 1 := b f 1 belongs to Σ(β, L) for T sufficiently large.

Step 3 As b 0 , b 1 ∈ Σ(β, L), we can write

R(μ T (x 0 )) ≥ 1 2 E (T ) 1 [(μ T (x 0 ) -f 1 (x 0 )) 2 ] + 1 2 E (T ) 0 [(μ T (x 0 ) -f 0 (x 0 )) 2 ],
where

E (T ) i
denotes the expectation with respect to b i . Then, following as in [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF], using Girsanov's formula, we can show that if sup

T ≥0 T 1 M 2 T H(T ) < ∞, (22) 
then for sufficiently large T ,

R(μ T (x 0 )) ≥ C 8λ 1 M 2 T , (23) 
where the constants C and λ are as in Lemma 4 of [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF] and they do not depend on the point x 0 . We finally look for the larger choice of 1 Remark 1. The two hypothesis method used above does not work to prove the 2dimensional lower bound of Theorem 4. Indeed, following as above, we can define

f 1 (x) = f 0 (x) + 1 M T K x -x 0 H 1 (T ) K x -x 0 H 2 (T ) .
Then, it is possible to show that (23) still holds and, therefore, we should take M T such that 1

M 2 T = log T T .
On the other hand, condition [START_REF] Kutoyants | Efficient density estimation for ergodic diffusion processes[END_REF] now becomes

sup T ≥0 T 1 M 2 T H 2 (T ) H 1 (T ) + H 1 (T ) H 2 (T ) < ∞.
The optimal choice of the bandwidth is achieved for

H 2 (T ) = H 1 (T ) which yields to sup T ≥0 T 1 M 2 T < ∞, which is clearly not satisfied when 1 M 2 T = log T T .

Proof of Theorem 4

We will apply Lemma 2 with ψ := v log T T , where v > 0 is fixed. As above we divide the proof into three steps.

Step 1 As in the one-dimensional case, the first step consists in showing that given a density function f , we can always find a drift function b f such that f is the unique invariant density function of equation ( 8) with drift coefficient b = b f , which is proved in Propositions 2 and 3 of [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF]. We remark that condition [START_REF] Bosq | Nonparametric Statistics for Stochastic Processes[END_REF] is needed in Proposition 3 to ensure that the terms on the diagonal of the volatility coefficient a dominate on the others, which is crucial to get that b f satisfies the drift condition A2.

Step 2 We next define the probability density f 0 ∈ H 2 (β, L), the finite set J T , and the set of probability densities {f j , j ∈ J T } ⊂ H 2 (β, L) needed in order to apply Lemma 2.

We first define f 0 as π 0 in Section 7.2 of [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF], which is the two-dimensional version of f 0 defined in the proof of Theorem 3, that is,

f 0 (x) = c η f (η(aa T ) -1 11 |x 1 |)f (η(aa T ) -1 22 |x 2 |), x = (x 1 , x 2 ) ∈ R 2 , ( 24 
)
where f is as in [START_REF] Delattre | Rate of Estimation for the Stationary Distribution of Stochastic Damping Hamiltonian Systems with Continuous Observations[END_REF]. The density f 0 belongs to H 2 (β, L) by construction.

We then set

J T := 1, . . . , 1 √ H 1 × 1, . . . , 1 √ H 2 , (25) 
where H 1 := H 1 (T ) and H 2 := H 2 (T ) are two quantities that converge to 0 as T → ∞ and need to be calibrated. Finally, for j := (j 1 , j 2 ) ∈ J T , we define x j := (x j,1 , x j,2 ) = (j 1 H 1 , j 2 H 2 ) and we set

f j (x) := f 0 (x) + v log T T K x 1 -x j,1 H 1 K x 2 -x j,2 H 2 ,
where recall that v > 0 is fixed and K is as in [START_REF] Delecroix | Sur lestimation des densités dun processus stationnaire emps continu[END_REF]. Acting as in Lemma 3 of [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF], recalling that the rate 1 M T therein is now replaced by log T T (see also points 1. and 3. in the proof of Proposition 3 below), it is easy to see that if there exists > 0 sufficiently small such that for large T ,

log T T ≤ H β 1 1 , log T T ≤ H β 2 2 , (26) 
then, for any j ∈ J T and large T , b j ∈ Σ(β, L). In particular, f j ∈ H 2 (β, L). Therefore, {f j , j ∈ J T } ⊂ H 2 (β, L) and, by construction,

f j -f k ∞ ≥ 2 v log T T K 2 ∞ = 2 v log T T ,
which proves the first condition of Lemma 2.

Step 3 We are left to show the remaining conditions of Lemma 2. The absolute continuity P Girsanov formula, as in Lemma 4 of [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF]. We have,

KL(P (T ) j , P (T ) 0 ) = E (T ) j log f j f 0 (X T ) + 1 2 E (T ) j T 0 |a -1 (b 0 (X u ) -b j (X u ))| 2 du ,
where the law of X T = (X t ) t∈[0,T ] under P (T ) j

is the one of the solution to equation ( 8) with b = b 0 .

By the definition of the f j 's it is easy to see that the first term is o(1) as T → ∞. In fact, as K is supported in [-1, 1],

E (T ) j log f j f 0 (X T ) = R 2 log 1 + v log T T K x 1 -x j,1 H 1 K x 2 -x j,2 H 2 f 0 (x) f 0 (x)dx ≤ log 1 + c * v log T T K 2 ∞ ,
which tends to zero as T → ∞, where c * := 4 cη e 4η k , c η is the constant of normalization introduced in the definition of f 0 , and k := max i=1,2 (aa T ) -1

ii . In fact, this follows from the definition of f 0 in [START_REF] Dion | Nonparametric drift estimation for diffusions with jumps driven by a Hawkes process[END_REF]. Since f (x) ≥ 1 2 e -|x| , we obtain 1

f 0 (x) ≤ 1 c η 2 e -η(aa T ) -1 11 |x 1 | 2 e -η(aa T ) -1 22 |x 2 | ≤ 4 c η e ηk(|H 1 |+|x j,1 |+|H 2 |+|x j,2 |) ,
where we have also used the fact that, as K is supported in [-1, 1], we have

x ∈ [x j,1 -H 1 , x j,1 + H 1 ] × [x j,2 -H 2 , x j,2 + H 2 ]
. Finally, by the definition of x j and the fact that H i → 0 as T → ∞ for i = 1, 2 (and so for T large enough they are smaller than 1), we get

1 f 0 (x) ≤ 4 c η e 4ηk for any x ∈ [x j,1 -H 1 , x j,1 + H 1 ] × [x j,2 -H 2 , x j,2 + H 2 ]. (27) 
Regarding the second term, using the stationarity of the process X T , we have

E (T ) j T 0 |a -1 (b 0 (X u ) -b j (X u ))| 2 du = T R 2 |a -1 (b 0 (x) -b j (x))| 2 f 0 (x)dx.
Then, the following asymptotic bound will be proved at the end of this Section.

Proposition 3. For T large enough,

R 2 |a -1 (b 0 (x) -b j (x))| 2 f 0 (x)dx ≤ 64 e 8ηk c 2 η k 2 v 2 H 1 H 2 1 H 1 + 1 H 2 2 log T T .
Taking the optimal choice for the bandwidth in Proposition 3, which is

H 1 = H 2 , we get that R 2 |a -1 (b 0 (x) -b j (x))| 2 f 0 (x)dx ≤ 64 e 8ηk c 2 η k 2 v 2 4 log T T .
In particular, after having ordered

β 1 ≤ β 2 , we choose H 1 = H 2 = ( log T T ) a with a ≤ 1 2β 2 = ( 1 2β 1 ∧ 1 2β 
2 ) so that condition (26) is satisfied. We therefore get

KL(P (T ) j , P (T ) 0 ) ≤ 128 e 8ηk c 2 η k 2 v 2 log T ≤ 128 e 8ηk c 2 η a k 2 v 2 log(|J T |),
being the last estimation a consequence of the fact that, by construction,

log(|J T |) ≥ a log T log T = a log(T )(1 + o(1)).
It is therefore enough to choose v such that 128

e 8ηk c 2 η a k 2 v 2 < 1 8 (ie v 2 < c 2 η a
1024 k 2 e 8ηk ) and apply Lemma 2 to conclude the proof of Theorem 4.

Proof of Proposition 3

The proof of Proposition 3 follows similarly as Proposition 4 of [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF]. Indeed, we first define the set

K j T := [x j,1 -H 1 , x j,1 + H 1 ] × [x j,2 -H 2 , x j,2 + H 2 ]
and then show the following points for T large enough:

1. For any x ∈ K j c T and i ∈ {1, 2}:

|b i j (x) -b i 0 (x)| ≤ c v log T T .
2. For any i ∈ {1, 2}:

K j c T |b i j (x) -b i 0 (x)|f 0 (x)dx ≤ c v log T T H 1 H 2 .
3. For any x ∈ K j T and i ∈ {1, 2}:

|b i j (x) -b i 0 (x)| ≤ 8 cη e 4ηk kv log T T 1 H 1 + 1 H 2 .
The proof of the first two points follows exactly the one in Proposition 4 of [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF], remarking that

d T (x) := π 1 (x) -π 0 (x) = 1 M T d l=1 K x l -x l 0 h l (T )
in [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF] is now replaced by

d j T (x) := f j (x) -f 0 (x) = v log T T K x 1 -x j,1 H 1 K x 2 -x j,2 H 2 ,
and the set

K T := [x 1 0 -h 1 (T ), x 1 0 + h 1 (T )] × • • • × [x d 0 -h d (T ), x d 0 + h d (T )]
introduced in the d-dimensional framework is now replaced by K j T . We recall that K and K are exactly the same kernel function. The proof of Proposition 4 of [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF] is based on the fact that d T (x) and its derivatives are null for x ∈ K c T . In the same way, d j T (x) and its derivatives are null for x ∈ K j c T . Then, acting as in [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF], it is easy to see that the first two points above hold true.

Comparing the third point above with the third point of Proposition 4 of [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF], it is clear that our goal is to make explicit the constant c. Keeping the notation in [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF], we first introduce the following quantities:

Ĩi 1 [f 0 ](x) := 1 2 2 j=1 (aa T ) ij ∂f 0 ∂x j (x), Ĩi 2 [f 0 ](x) = x i -∞
A * d,i f 0 (w i )dw.

We moreover introduce the notation

Ĩi [f 0 ](x) = Ĩi 1 [f 0 ](x) + Ĩi 2 [f 0 ](x).
According with the definition of b, we have

b i 0 (x) = 1 f 0 (x) Ĩi [f 0 ](x), b i j (x) = 1 f j (x)
Ĩi [f j ](x).

Since the operator f → Ĩi [f ] is linear, we deduce that

b i j (x) = 1 f j (x) Ĩi [f j ](x) = 1 f j (x) Ĩi [f 0 ](x) + 1 f j (x) Ĩi [d j T ](x). (28) 
Therefore,

b i j -b i 0 = ( 1 f j - 1 f 0 ) Ĩi [f 0 ] + 1 f j Ĩi [d j T ] = f 0 -f j f j 1 f 0 Ĩi [f 0 ] + 1 f j Ĩi [d j T ] = d j T f j b i 0 + 1 f j Ĩi [d j T ].
We need to evaluate such a difference on the compact set K j T . For this, we will use that fact that f j = f 0 + d j T , and obtain a lower bound away from 0. Specifically, from the definition of d j T , we get

d j T ∞ ≤ v log T T K 2 ∞ = v log T T . (29) 
In particular,

f j ≥ f 0 -|d j T | ≥ f 0 -v log T T ≥ f 0 2 ,
since log T T → 0 as T → ∞, so for T large enough we have v log T T ≤ f 0 2 . Then, for any x ∈ K j T , using [START_REF] Funke | Adaptive nonparametric drift estimation of an integrated jump diffusion process[END_REF] we have

1 f j (x) ≤ 2 f 0 ≤ 8 c η e 4ηk .
Moreover, as b 0 is bounded, we deduce that for all x ∈ K j T ,

|b i j (x) -b i 0 (x)| ≤ 8v c η e 4ηk b i 0 ∞ log T T + 8e 4ηk c η Ĩi [d j T ](x). ( 30 
)
We therefore need to evaluate Ĩi [d j T ](x) = Ĩi 1 [d j T ](x) + Ĩi 2 [d j T ](x) on K j T . As

∂d j T ∂x j ∞ ≤ v H j log T T , (31) 
it clearly follows that Ĩi

1 [d T ] j (x) ≤ kv log T T 1 H 1 + 1 H 2 . ( 32 
)
Regarding Ĩi 2 [d j T ](x), we can act exactly as in the third point of Proposition 4 of [START_REF] Amorino | Minimax rate of estimation for the stationary distribution of jump-processes over anisotropic Hölder classes[END_REF]. As x ∈ K j T , x i ∈ [x j,i -H i , x j,i + H i ] for i = 1, 2. Therefore, using also the definition of d j T , the first integral is between x j,i -H i and x i . We enlarge the domain of integration to [x j,i -H i , x j,i + H i ] and then, appealing to [START_REF] Kou | A Jump-Diffusion Model for Option Pricing[END_REF] and [START_REF] Leblanc | Density estimation for a class of continuous time processes[END_REF] F (z)dz)

x j,i +H i

x j,i -H i

d j T ∞ dw + x j,i +H i x j,i -H i R 2 R 2 |(γ • z) i | ∂d j T ∂x i ∞ F (z)dzdw ≤ cH i log T T + cH i H i log T T ,
for some c > 0. Using this together with [START_REF] Lamberton | Recursive computation of the invariant distribution of a diffusion[END_REF] and [START_REF] Merton | Option pricing when underlying stock returns are discontinuous[END_REF] it follows that, for any x ∈ K j T ,

|b j (x) -b 0 (x)| ≤ c log T T + 8e 4ηk c η kv log T T 1 H 1 + 1 H 2 + cH i log T T + c log T T ≤ 8e 4ηk c η kv log T T 1 H 1 + 1 H 2 ,
where the last inequality is a consequence of the fact that, ∀i ∈ {1, 2}, H i → 0 as T → ∞ and so, for T large enough, all the terms are negligible when compared to the second one. Hence, the three points listed at the beginning of the proof hold true. We deduce that 

≤ c v 2 log T T H 1 H 2 + 64e 8ηk c 2 η k 2 v 2 log T T 1 H 1 + 1 H 2 2 |K j T |.
We recall that |K j T | = H 1 H 2 and that, as T → ∞, H i → 0. Thus, the first term is negligible compared to the second one. The desired result follows.

  b the law and expectation of the solution (X t ) t∈[0,T ] .

4 . 2 2γ 2

 422 There exists 0 < ˜ < a c 4 ĉ2 ĉ4 ĉ1 and R > 0 such that for any |y| > R,f (y) f (y) ≤ -˜ sgn(y), where c 4 is as in Assumption A4. Moreover, there exists ĉ3 such that for any y ∈ R, |f (y)| ≤ ĉ3 f (y).

5 .

 5 For any y ∈ R and ˜ as in 4. |f (y)| ≤ ĉ4 ˜ 2 f (y).

M 2 T

 2 for which both[START_REF] Kutoyants | Some problems of nonparametric estimation by observations of ergodic diffusion process[END_REF] and[START_REF] Kutoyants | Efficient density estimation for ergodic diffusion processes[END_REF] hold true. It suffices to choose M T = √ T and H(T ) a constant, to conclude the proof of Theorem 3.

R 2 |b 0

 20 (x) -b j (x)| 2 f 0 (x)dx = K j T |b 0 (x) -b j (x)| 2 f 0 (x)dx + K j c T |b 0 (x) -b j (x)| 2 f 0 (x)dx

  R d and γ : R d → R d ⊗R d are measurable functions, (B t ) t≥0 is a d-dimensional Brownian motion, and ν is a Poisson random measure on R + ×R d associated to a Lévy process (L t ) t≥0 with Lévy density function F . All sources of randomness are mutually independent.

  and the fact that the intensity of the jumps is finite, we get

	| Ĩi 2 [d j T ](x)| ≤	x j,i +H i x j,i -H i	R 2	|d j T ( wi ) -d j T ( wi-1 ) + (γ • z) i	∂ ∂x i	d j T (w i )|F (z)dzdw
	≤ 2 (				
		R 2				
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