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Estimating Individual Treatment Effects through Causal Populations Identification

Estimating the Individual Treatment Effect from observational data, defined as the difference between outcomes with and without treatment or intervention, while observing just one of both, is a challenging problems in causal learning. In this paper, we formulate this problem as an inference from hidden variables and enforce causal constraints based on a model of four exclusive causal populations. We propose a new version of the EM algorithm, coined as Expected-Causality-Maximization (ECM) algorithm and provide hints on its convergence under mild conditions. We compare our algorithm to baseline methods on synthetic and real-world data and discuss its performances.

Introduction

Estimating Individual Treatment Effect (ITE) from observational data is central in many application domains. For instance in healthcare, where the treatment is a proper medical treatment and the desired effect is the recovery of the patient. Being able to target accurately and demonstrably the population responding to a treatment has strong beneficial consequences in terms of public health by boosting personalized medicine. That would indeed allow a precise distribution of drugs to the profile of patients they can address, whereas at present, such drug may be prohibited because it does not demonstrate a positive effect at the whole population level through the lens of current standard testings. In the vein of the Rubin's causality framework [START_REF] Rubin | Estimating causal effects of treatments in randomized and nonrandomized studies[END_REF][START_REF] Guido | Bayesian inference for causal effects in randomized experiments with noncompliance[END_REF], we cast this counterfactual learning problem as an inference problem with incomplete data. We consider X the Xvalued random variable (X ⊆ R d ) representing the features of an individual and T the treatment assignment binary indicator stating whether the treatment was assigned (T = 1) or not (T = 0). We denote Y i (1) the binary outcome that would be observed if we assigned the treatment to individual i and Y i (0) the one that would be observed if we did not (e.g. Y i (1) = 1 meaning that an effect was observed after treating individual i). ITE of individual X i = x is defined as the conditional mean difference in potential outcomes, τ (

x) = E[Y i (1) -Y i (0) | X i = x].
The fundamental problem is that for any individual i, we only observe the factual outcome Y i (t) corresponding to the outcome of the assignment, whereas the counterfactual Y i (1 -t) remains unknown [START_REF] Guido | Bayesian inference for causal effects in randomized experiments with noncompliance[END_REF]. As summarized in Table 1, from each couple Y i = {Y i (0), Y i (1)}, called the potential outcome, we can define four mutually exclusive categories of response to the treatment [START_REF] Wasserman | Causal Inference[END_REF]: responders who display a positive outcome only when treated, anti-responders who display a positive outcome only when they are not treated, doomed and survivors, who respectively never and always display a positive outcome. Based on this typology of behaviors, we write the counterfactual learning problem as a parametric estimation of latent variables constrained by the causal groups properties. In this holistic approach, not only do we efficiently evaluate the ITE, but we are able to identify under mild assumptions the causality classes.

Responder (R) Doomed (D) Survivor (S) Anti-responder (A) {Y (1) = 1, Y (0) = 0} {Y (1) = 0, Y (0) = 0} {Y (1) = 1, Y (0) = 1} {Y (1) = 0, Y (0) = 1}

Related Work

The literature on causal inference is abundant, and it is beyond the scope of this paper to cover it exhaustively, although [START_REF] Pearl | Causality: Models, Reasoning and Inference[END_REF] is a good reference for a broad overview of this topic. Within Rubin's framework, baseline approaches consist in using treatment as a feature, or in learning two independent classifiers on the control and on the test datasets. This latter approach has the advantage of simplicity and versatility, but may lead to a selection bias. To overcome this problem, more sophisticated methods have been proposed. A first group on method consists in adaptations of classical machine learning methods. Examples are: (i) an SVM-like approach [START_REF] Zaniewicz | Support vector machines for uplift modeling[END_REF] where two hyperplanes are introduced and properly optimized to separate class behaviors. (ii) a parametric Bayesian method [START_REF] Ahmed | Bayesian inference of individualized treatment effects using multi-task gaussian processes[END_REF] for learning the treatment effects using a multi-task Gaussian process. (iii) several random forest-based approaches with split criteria specifically adapted to the problem [START_REF] Wager | Estimation and inference of heterogeneous treatment effects using random forests[END_REF]. Deep learning methods have also been put to good use with examples such as: (i) a deep neural network architecture [START_REF] Shalit | Estimating individual treatment effect: generalization bounds and algorithms[END_REF] able to learn classifiers on the test and control populations while enforcing the minimization of an integral probability metric between the distributions of these classifiers. This work builds upon [START_REF] Johansson | Learning representations for counterfactual inference[END_REF] where counterfactual inference has been tackled from the perspective of domain adaptation and representation learning. (ii) A number of methods using neural networks have also recently emerged [START_REF] Yoon | Ganite: Estimation of individualized treatment effects using generative adversarial nets[END_REF][START_REF] Louizos | Causal effect inference with deep latent-variable models[END_REF]. Interestingly, when the test and control populations have the same size, it is shown in [START_REF] Jaskowski | Uplift modeling for clinical trial data[END_REF] that a variable change could be used, leading to the estimation of a unique probability distribution (allowing the straightforward use of classical methods).

Our approach is different from the ones above. In our case, with binary treatment and outcome, the population has a clear causal structure. We use this fact and model the population as a mixture of four causal groups. Then, from the general knowledge of the causal structure obtained by our method, we can derive the ITE and thus compare our results with ITE-specific methods.

A Parametric Model for Causal Populations

We model the whole population as a mixture of mutually exclusive causal groups coined as responders (R), doomed (D), survivors (S) and anti-responders (A). We denote their respective distributions as {f k (.|θ k )} k∈{R,D,S,A} , and π k their mixing probability.

For an individual, the specific group to which he belongs is determined by his outcome with and without treatment. Since we can never observe both simultaneously, we introduce Z i = {z ik } k∈{R,D,S,A} the discrete latent variable that represents the class probability of individual i.

Our model implies several constraints on the distribution of this latent variable, obviously excluding two causal populations according to the factual outcome and the assigned treatment. For example, it appears from Table 1 that an individual i with Y i (0) = 0 cannot be a survivor or an anti-responder. The probability distribution of these two classes can then be set to zero (z iS = z iA = 0). Similar constraints can be applied for every value of the factual outcomes and are summarized in Table 2. Our goal is to estimate the latent distribution, from which we can in particular derive the ITE.

Y i (0) = 0 Y i (0) = 1 Y i (1) = 0 Y i (1) = 1
Causality constraints 

z iS = z iA = 0 z iR + z iD = 1 z iR = z iD = 0 z iS + z iA = 1 z iR = z iS = 0 z iD + z iA = 1 z iD = z iA = 0 z iR + z iS = 1
τ (x) = (l R (x) + l S (x))E[1 Yi(1)=1 ] -(l S (x) + l A (x))E[1 Yi(0)=1 ] (1) 
where

l C (x) = π C f C (Xi=x|θ C ) G∈{R,D,S,A} π G f G (Xi=x|θ G ) , C ∈ {R, D, S, A}. Proof. E[Y i (1) = 1|X i = x] = E[Xi(1)=x|Yi(1)=1]P (Yi(1)=1) P (Xi=x)
.

= E[Xi(1)=x|Xi∈{R,S}]P (Yi(1)=1)

P (Xi=x) = C∈{R,S} π C f C (Xi=x|θ C )P (Yi(1)=1) C∈{R,D,S,A} π C f C (Xi=x|θ C )

ECM Algorithm

Our learning problem amounts to estimate the mixing coefficients {π k } k∈{R,D,S,A} , the distributions parameters θ = {θ k } k∈{R,D,S,A} and the latent distribution q(z). For that matter, we consider the Expectation-Maximization (EM) algorithm, originally introduced in [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF], which is known to be an appropriate optimization algorithm for estimating the data distribution of hidden variables. We provide the EM algorithm with extra information about the possible groups for every observation (in spirit similarly to [START_REF] Ambroise | Em algorithm for partially known labels[END_REF] where a concept of authorized label set is used or to [START_REF] Côme | Learning from partially supervised data using mixture models and belief functions[END_REF] which uses partial information). However, contrary

ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2.

Available from http://www.i6doc.com/en/.

Algorithm 1 Expectation-Causality-Maximisation Initialisation: initialise q 0 and compute π 0 and θ (M-step).

While(Not Converged) do Expected step: q t+1 = arg max q (L(q, θ t , π t )) Causality step: Constraints on q t+1 with C * (Table 2) Maximization step: (θ t+1 , π t+1 ) = arg max θ,π (L(q t+1 , θ, π)) End While to [START_REF] Ambroise | Em algorithm for partially known labels[END_REF][START_REF] Côme | Learning from partially supervised data using mixture models and belief functions[END_REF], we enrich this extra information with causal constraints derived from the structure of the problem.

In Algorithm 1, the Expectation step estimates the latent variables, the Causality step projects the solution on the causality constraints2 displayed in Table 2, while the Maximization step maximises the likelihood L(q, θ, π) as if the latent variables were not hidden. For a faster convergence, we initialize q 0 with a probability of half on each of the two remaining causal populations. Our algorithm converges as by construction it necessarily increases the log-likelihood at each iterations and remains bounded by an evidence lower bound similar to EM given by z|q(z|x,θ,π) =0 q(z|x, θ, π) log p(x,z|θ,π) q(z|x,θ,π) . Note that without information on the input features X, the distribution q(z) is uniformly distributed between the two authorized groups. In addition, the causality constraints enforce that two population labels are ruled out as they are not admissible. Under some specific assumptions, we can do even better and recover the true label (cf Proposition 2). Thanks to this true label, the maximum likelihood problem is cast into four decoupled single-density maximum likelihood problems. Under concavity of the likelihood for every distribution in the mixture, the log-likelihood converge not only locally but to a unique global maximum (corollary 1). We can summarize these findings by saying that the unsupervised learning problem, implied by our model of mixture, is transformed into a semi-supervised problem.

Proposition 2. Under causality constraints which excludes two populations (depending on treatment and observed outcome), and assuming the feature distribution conditionally to the group is the same and independent of the treatment (i.e. p(x|t, y) = p(x)), each group will be identified to a unique causal population.

Proof. (sketch) Under only the information of the causal constraints, q(z|y, t) is distributed with the probability 1 2 between the two possible populations. If we note p(.) = p(.|θ, π), then q(z|x, y, t) = p(x|z,y,t)q(z|y,t) p(x|y,t) ∝ p(x|z) p(x) under causal constraints and assumption of uniform features.

Corollary 1. Under causality constraints, if the log-likelihood of the distribution for a single mixture is concave, the ECM algorithm reaches the global optimum.

Proof. (sketch) Preserving the properties of the EM algorithm, ECM converges to a local maximum. As a result of the identifiability (Prop. 2) and the concavity for a single mixture, the local optimum is also global.

Experiments

Gaussian distributions (for which parameters are the mean and variance denoted by θ (µ, Σ)) are a natural choice for a mixture model. Once the model is learned, interpreting the µ k as average elements of each causal population could be of great interest and could help to answer questions like "what does an average anti-responder looks like?" to improve treatment policies. Because of the fundamental impossibility to access the true counterfactual label of any given observation, the true ITE cannot be known and thus it is unclear how to best assess the relevance of any model in real-world conditions. Hence, we need to test our model on synthetic and semi-synthetic datasets.

We first designed a synthetic dataset with two covariates distributed as a mixture of four overlapping Gaussian distributions. We use two metrics standard for causal problems: the P EHE [START_REF] Jennifer | Bayesian nonparametric modeling for causal inference[END_REF] the AUUC (Area Under the Uplift Curve) [START_REF] Diemert | A large scale benchmark for uplift modeling[END_REF]. We compute these metrics for the optimal model (since it does not necessarily score maximally according to these metrics) and compare its values to the ones of the models we test. We also use the IHDP semi-synthetic dataset, compiled for causal effect estimation in [START_REF] Jennifer | Bayesian nonparametric modeling for causal inference[END_REF]. Here the underlying distribution of each causal population remains unknown, but the outcomes with and without treatment are both available. In that case, we use our model to predict the most likely counterfactual of any individual.

The results are reported out of a sample over 20 trials and a Wilcoxon signedrank test (with a confidence level of 5%) is used to confirm the significance of the results. We compare our method to standard baselines that provide competitive results with respect to the state of the art [START_REF] Alaa | Limits of estimating heterogeneous treatment effects: Guidelines for practical algorithm design[END_REF]: the approach using two separate classification models (LR2), the approach using the treatment variable as feature (LR1) and the model based on the class variable transformation [START_REF] Jaskowski | Uplift modeling for clinical trial data[END_REF] (LRZ), each using logistic regressions as classifiers. 

Synthetic dataset IHDP

Results and Conclusion

Compared to the baselines, our results are clearly the ones closest to optimality on both synthetic and real datasets. Moreover, our model is intrinsically more interpretable than the compared baselines as the parameters of the distributions ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. Available from http://www.i6doc.com/en/.

Table 1 :

 1 Potential outcome of each causal population

Table 2 :

 2 The causality constraints (C

* ) Proposition 1. Knowing the latent distribution , ITE writes as

Table 3 :

 3 EHE Experimental results on synthetic and real datasets.

		AUUC	P EHE	AUUC
	Ref. 0.24	1488	.	3149
	LR1 0.57 +/-0.08	742 +/-175	0.66 +/-0.08	2202 +/-625
	LR2 0.79 +/-0.08	943 +/-206	0.67 +/-0.07	2168 +/-618
	LRZ .	939 +/-208	.	2191 +/-558
	ECM 0.27 +/-0.04 1512 +/-203 0.59 +/-0.09 2226 +/-580

Forcing to zero the probabilities z ik of the two impossible groups and normalizing the sum.ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. Available from http://www.i6doc.com/en/.

of the causal groups provide information about the causal mechanism at play. Finally, our model versatile and can be adapted to multiple treatments [START_REF] Frölich | Programme evaluation with multiple treatments[END_REF], non-compliance to treatment cases [START_REF] Guido | Bayesian inference for causal effects in randomized experiments with noncompliance[END_REF] or separate labels [START_REF] Yamane | Uplift modeling from separate labels[END_REF].