
A Blockchain-based Key Management Protocol for Secure
Device-to-Device Communication in the Internet of Things

Mohamed Ali Kandi1, Djamel Eddine Kouicem1, Hicham Lakhlef1, Abdelmadjid Bouabdallah1 and Yacine Challal2
1Sorbonne Université, Université de Technologie de Compiègne, CNRS, UMR7253 Heudiasyc-CS 60319-60203 Compiègne Cedex, France

2Laboratoire de Méthodes de Conception de Systèmes, École nationale Supérieure d’Informatique, Algiers, Algeria
Email: {mohamed− ali.kandi, djamel − eddine.kouicem, hicham.lakhlef,madjid.bouabdallah}@hds.utc.fr, y challal@esi.dz

Abstract—The Internet of Things (IoT) is an emerging technol-
ogy that aims to extend connectivity to all everyday devices. One
of the main challenges that are slowing down its development
is how to secure the Device-to-Device communication. Among
all the security issues, the Key Management (KM) is one of the
most challenging. The difficulty lies in the fact that most of the
IoT devices suffer from a lack of resources. Although different
protocols were proposed, most of them do not consider the
dynamic nature of the IoT. Other solutions rely on a centralized
entity to distribute the new keys upon a change in the network.
However, this entity becomes a single point of failure and the
main target of attacks. We propose a novel blockchain-based
decentralized KM protocol. In addition to being resilient, scalable
and dynamic, our solution uses the blockchain technology to
securely distribute the KM on several entities.

Index Terms—Internet of Things, Device-to-Device communi-
cation, Security, Key Management, Blockchain.

I. INTRODUCTION

The Internet of Things (IoT) consists of extending con-
nectivity beyond standard devices (such as computers, tablets
and smartphones) to all everyday objects. These objects can
then automatically communicate in a peer-to-peer manner.
This increases their functionalities and allows them to offer
new services for the benefit society, which until then were
not able to provide. The IoT is an emerging technology that
has the potential to improve our daily lives in a number of
ways. Smart homes, for example, involve using smart devices
to ensure comfort, convenience and energy efficiency to the
homeowners. Autonomous vehicles are able to automatically
exchange data to maintain traffic flow, avoid crashes and
improve the environment.

Although some of the IoT applications are currently avail-
able, many challenges are slowing down their development.
Securing Device-to-Device communication is one of the main
problems facing the IoT [7]. This is because most of its
devices suffer from a lack of resources in terms of storage,
computation, communication and energy. Among all the se-
curity issues, the Key Management (KM ) is one of the most
challenging. The KM is the core of secure communication.
Its main role is to provide the network members with secret
cryptographic keys that are used to encrypt and decrypt
the exchanged data. Although different KM protocols were
proposed to secure Device-to-Device communication, each of
them presents its own limitations.

The existing solutions rarely consider the dynamic nature of
the IoT. Based on key pre-distribution, they store the keys in
the nodes’ memory before their deployment. It is therefore dif-
ficult to add new nodes to the network afterwards. To be able
to update the keys upon a change in the network, a centralized
entity is required. However, it becomes a single point of failure
and the main target of attacks. If the central entity fails, the
entire system will stop operating and if it is attacked, the whole
network will be compromised. To address these issues, we
propose a novel KM protocol. In addition to being resilient,
scalable and flexible, our solution is decentralized using the
blockchain technology and smart contracts. A blockchain is a
decentralized and secure storage technology. It first appeared
in Nakamoto’s Bitcoin paper describing a new decentralized
cryptocurrency [14]. This technology is used today in various
applications, including the KM .

Thanks to the blockchain features (decentralization, im-
mutability and traceability [13]), we show that our solution
allows to spread the cryptographic material across several
entities. The aim is to avoid a single point of failure and to
make it more difficult to access or modify this secret material.
Moreover, a captured entity cannot modify the cryptographic
keys without the consent of others. The blockchain also
makes it possible to trace the actions of a compromised
entity. Finally, being implemented on the IoT gateways, the
blockchain management does not involve any additional cost
on nodes, except those imposed by the KM .

The remainder of this paper is organized as follows: in
Section II, we discuss the related works. In Section III, we
detail our solution. In Section IV, we present the security
analysis. In Section V, we evaluate the performance of our
solution. In Section VI, we conclude our work.

II. RELATED WORKS

Although different KM protocols were proposed to secure
Device-to-Device communication, each of them presents its
own weaknesses. According to the encryption technique used,
the KM approaches can be classified into two categories:
symmetric and asymmetric. Symmetric schemes involve the
use of the same key for encryption and decryption, while
asymmetric approaches use two different keys. Asymmetric
protocols usually imply intensive computing, which makes
them impractical on most of the IoT constrained devices [20].
For this reason, we focus in this work on symmetric schemes.



A. Key Management schemes

Most of the symmetric KM systems proposed to se-
cure Device-to-Device communication are based on pre-
distribution. The keys are stored in the nodes’ memory before
their deployment. These protocols can in turn be classified into
two categories. Deterministic schemes [1, 6, 17] establish a di-
rect secure link between each pair of nodes. These approaches
guarantee a total connectivity coverage at the expense of
storage. They are therefore not scalable. Probabilistic schemes
[2, 4, 15, 21, 22] store fewer keys on nodes, but do not
guarantee a secure connectivity between each two neighbor-
ing communicators. Intermediate nodes may be necessary to
establish secure links between them. This lack of connectivity
involves additional calculation and communication and thereby
more energy consumption [21]. Pre-distributed schemes are
motivated by the fact that they do not require a third party to
assign keys to nodes. However, it is difficult to add new nodes
to the network afterwards. These protocols are more suitable
for static networks, whose members do not change frequently.

In previous works [9, 10], we proposed a KM solution
for dynamic network such as the IoT. It allows nodes to
securely join and leave the network at any time. Keys are then
automatically distributed on the other members. Also, unlike
the above-mentioned protocols, our previous solution provides
a good compromise between scalability and connectivity. To
achieve this balance, the network members are distributed into
logical sets. A device shares then a distinct pairwise key with
each member of its set and a unique pairwise set key with
the members of each of the other sets. The drawback of this
solution is that it relies on a centralized entity and is subject
to the problem of single point of failure. We then propose a
novel decentralized KM protocol based on the blockchain.

B. Blockchain solutions

A blockchain is a decentralized and secure storage tech-
nology. Its name derives from the fact that it is composed of
blocks of transactions, each storing a cryptographic hash of
the previous one. A blockchain relies on cryptography, smart
contracts and consensus algorithms to securely replicate an
application on several entities. Consensus algorithms (such as
Proof of Work -PoW- [14], Proof of Stake -PoS- [18] and
Practical Byzantine Fault Tolerance Algorithm -PBFT- [3])
guarantee that each entity records the same transactions in the
same order. Smart contracts are functions that are defined be-
forehand and stored in the blockchain. They are automatically
run by its participants when they receive transactions.

The blockchain first appeared in Nakamoto’s Bitcoin paper
describing a new decentralized cryptocurrency [14]. Recently,
researchers began to use the blockchain to decentralize the
KM . The authors of [11, 12] proposed a blockchain-based
KM to secure group communication in intelligent transporta-
tion systems. In [13], a blockchain was used to distribute the
KM for Hierarchical Access Control in the IoT. These works
do not consider Device-to-Device communication and use the
PoW consensus algorithm. Our solution is based on PBFT,
which is more efficient and less energy intensive [19].

III. OUR SOLUTION

Our solution is organized into two layers (Figure 1). The
node layer uniformly distributes the network members into
logical sets and provides them with secret cryptographic keys.
A node shares a distinct pairwise key with each member of
its set and a pairwise set key with the members of each of the
other sets. The blockchain layer manages the blockchain and
its participants. The aim is to securely decentralize the KM . It
guarantees that the system continues to operate even if some
of its participants fail or are the target of malicious attacks.
It also ensures that the compromise of a participant does not
jeopardize the security of the entire network. The blockchain
is implemented on powerful IoT gateways and is separated
from the constrained devices. The aim is to not involve any
additional cost on them, except those imposed by layer 1. Due
to space constraints, we briefly present layer 1. Fore more
details, please refer to our previous work [9].

Fig. 1: Architecture of our solution.

A. Layer 1: Node Management

Layer 1 manages two types of keys: Data Encryption Keys
(DEKs) and Key Encryption Keys (KEKs). The DEKs are
symmetric pairwise keys that are used by nodes to encrypt
the data exchanged between them. A node holds two types of
DEKs: a pairwise node key (for each member of its set) and a
pairwise set Key (for each set of the network). The KEKs are
used to secure the communications between the KM and the
nodes to protect the DEKs . A node stores two KEKs: a node
and a set keys. The storage cost on a node is proportional to
the sum of its set’s size and the number of sets in the network.

1) Set Management: the set management consists of dis-
tributing nodes on sets while minimizing the number of keys
they store. To have the same number of keys stored on each
member, we opted for a uniform distribution (i.e. the n nodes
of the network are distributed into

√
n sets of

√
n members

each). For this purpose, two algorithms are used: Assignment
and Reorder. The Assignment Algorithm is run when nodes
join the network and assigns them to the right sets. This
algorithm takes as input the size of the network and outputs
the ID of the selected set. The Reorder Algorithm is run, after
a node leaving, to keep the distribution of nodes uniform. The
algorithm takes as input the size of the network and tries to
merge or remove sets when it is possible.



Fig. 2: Decentralized rekeying upon a network change using a blockchain.

2) Rekeying upon a network change: When a node joins
the network, the KM runs the Assignment Algorithm to select
a set and return its ID. The KM generates then a node ID,
a secret code, a node key and a pairwise node key for each
member of its set. Next, the KM randomly generates a refresh
key, which is used with a key derivation function to update
the selected set key and the pairwise set keys known by its
members. Finally, the KM distributes these new keys on the
appropriate nodes after ciphering them using the KEKs . When
a node receives a rekeying message, it decrypts it using its
node or set key. It then stores the new keys and updates some
of those it knows. Similarly, if a node leaves the network
or is evicted because it is compromised, the KM runs the
Reorder Algorithm if a set removal or merging is possible.
Next, the KM removes the node’s key and all the pairwise
keys associated to it. The same steps as for node joining are
followed to update the keys known by the leaving node.

B. Layer 2: Blockchain Management

The aim of this layer is to decentralize the KM using a
private blockchain. Unlike public blockchain, such as Bit-
coin, only authorized participants are allowed to access or
modify the content of a private one. This limited number
of participants usually makes the blockchain management
more efficient. The network therefore contains selected IoT
gateways (BPs for Blockchain Participants) that generate,
validate and store transactions upon a network change. A
blockchain transaction is the storage unit that corresponds to
a specific event, which is a rekeying operation in our case. As
shown in Figure 3, a transaction is composed of: the rekeying
operation (join, leave or evict), the node ID, the ID of the set
of the node, the cryptographic hash of the node’s secret code
and the refresh key used to update the keys.

Fig. 3: Example of a blockchain transaction.

1) Transaction management upon a network change: When
a BP receives a join or leave request, it first uses the layer 1
for the set and node management. Before distributing the keys,
the layer 1 calls the layer 2 to generate, validate and store a
transaction in the blockchain. The goal is that all the BPs are
aware and agree to perform the rekeying operation. To achieve
this, smart contracts are used. They are previously defined
functions (e.g. implementation of the Assignment Algorithm)
that are stored in the blockchain. They can be automatically
run by all BPs upon the reception of a transaction. If the
transaction corresponding to the current rekeying operation is
correctly stored in the blockchain, the layer 2 informs the layer
1. The latter distributes then the keys on the appropriate nodes
after ciphering them using the KEKs (Figure 2).

Transaction generation: When the layer 2 receives the
information from layer 1 about a rekeying operation, it starts
by generating the corresponding transaction. The layer 2 then
stores the transaction in a temporary memory (while waiting
for it to be validated) and broadcasts it to all other PBs .

Transaction verification: When a BP receives a transaction,
it becomes a validator. It runs smart contracts to verify the
correctness of the received transaction. In the case of a node
joining, the validator reruns the Assignment Algorithm to
confirm that the node was assigned to the right set. It also
checks if the node ID and the hash of the secret code have
not already been used for another node. If a node leaves the
network or is evicted, the validator checks if it is actually a
member. It also verifies if there is a match between the node
ID, the set ID and the cryptographic hash of the node’s secret
code. If the validator judges that the transaction is correct, it
adds the transaction to its temporary memory.

Transaction validation: Periodically or when the temporary
memory is complete, the BPs run a consensus algorithm (e.g.
PoW, PoS or in our case PBFT). The aim is to achieve a
consensus between them on whether the block of transactions,
contained in their temporary memories, can be included to the
blockchain or not. Once the block containing a given trans-
action is correctly added to the blockchain, this transaction is
considered as valid and the layer 1 is informed. The latter can
then distribute the generated keys on the appropriate nodes.



2) Blockchain participants management: The BPs act as
gateways between the nodes and the blockchain. The aim is to
not involve any additional cost on nodes, except those imposed
by the layer 1. When a node wishes to join the network, it
sends a request to a BP . If the transaction corresponding to
this request is validated by the other BPs and is correctly
added to the blockchain, the node is attached to the gateway
that initiates the joining process. It will remain attached to
it until the node moves, leaves the network or when the
BP fails or gets compromised. Meanwhile, the BP manages
(generates, stores and updates) the keys associated to the node
and provides it with the elements allowing it to update its keys.

3) System availability: When a BP fails or when it is a
target of malicious attacks, the nodes attached to it become
orphans. Each of them sends then a rejoin request to an other
BP . When a BP receives a rejoin request, it agrees with
the sender on new KEKs so they can securely communicate.
Next, the node sends the hash of its secret code to be able
to get authenticated. The BP consults the blockchain and
checks if the hash received corresponds to that of the node.
As the node in question is the only one able to generate the
hash of its secret code, the BP concludes that it is really a
network member. If it is the case, the node is then attached
to this gateway without having to add new transactions to the
blockchain. Avoiding the blockchain management makes the
rejoin operation much more efficient. More importantly, the
failure of a BP does not prevent the system from working.

4) Node mobility and sleeping: As when a BP fails, a
node can use its secret code to get authenticated with another
BP if its actual BP is no longer in range. Furthermore, a
node can sleep if it does not have a work in progress to save
energy. During sleeping, the node turns off its radio and will
not receive the rekeying messages. Note that these messages
contain the refresh keys that allow the network members to
update their keys. Thus, the sleeping node will not have the
opportunity to update its keys. However, when it wakes up, it
will need the new keys to be able to securely communicate
with the other network members. It will then send to its BP a
rekey request containing the last refresh key it received. Since
all the refresh keys are stored in the blockchain, the BP can
retrieve and send to the node the refresh keys it missed. It
will then be able to update its keys without having to add new
transactions to the blockchain.

IV. SECURITY ANALYSIS

Resilience is the measure of the impact of the capture of a
member (node or BP ) on the network.

A. Resilience against node capture

We start by evaluating resilience against node capture.
Lemma 1: A node can decrypt a number of links equal to:

D = n − 1 + (
√
n − 1 )(n −

√
n) = (

√
n − 1 )(n + 1 ) (1)

Proof: A node can decrypt the communications linking it to
the n − 1 other network members as well as the links between
the
√
n − 1 members of its set and the n −

√
n other nodes.

Proposition 1: The percentage of links that a compromised
node can decipher is equal to:

P =
D

T
=

2 (n + 1 )

(
√
n + 1 )n

→ 0 , as n→∞ (2)

Proof: From lemma 1 and the fact the the number of links
in a network of n nodes is equal to T = C 2

n = n(n−1)
2 , we

obtain this percentage.
Proposition 2: The capture of the whole network requires

the compromise of all the network members.
Proof: Deciphering all the intra-set communications re-

quires the knowledge of all the pairwise node keys associated
to it. This is only possible if all the set members are captured.
Also, deciphering all the inter-set communications requires the
knowledge of all the pairwise set keys. This is only possible
if at least a member of each set is compromised.

B. Resilience against BP capture
We assume that the blockchain is tamper proof, but the

BPs do not trust each other as they can be compromised. The
number of BPs is p and n

p nodes are attached to each of them.
Proposition 3: The percentage of links that a compromised

BP can decipher is equal to:

P =
D

T
=

2np − n − p

(n − 1 )p2
→ 2p − 1

p2
, as n→∞ (3)

Proof: A BP is responsible for the management of the
keys associated to the nodes attached to it. Therefore, if it
gets compromised, it will be able to decipher the n

2p (
n
p − 1 )

links between them. It will also be able to decipher the
communications between its n

p nodes and the n − n
p other

members of the network. It can then decrypt a total number
of links equal to D = n

2p (
n
p − 1 ) + n

p (n −
n
p ).

Proposition 4: The capture of the whole network requires
the compromise of all the BPs .

Proof: As shown in the proof of proposition 2, deciphering
all the communications requires the knowledge of all the
pairwise keys. This is possible only if all the BPs are captured.

C. Comparison and discussion
In a previous work [9], we proved that our solution provides

a level of resilience, for large networks, comparable to the
perfect resilience offered by deterministic protocols such as
[16]. However, we assumed that the central entity is secure
and that only the nodes can be compromised. In the current
work, we propose a decentralization based on blockchain as
in practice the central entity can be captured. Thanks to the
blockchain features, the KM is securely decentralized so that
the compromise of a BP has no effect on the others. Thus,
compared to our previous solution based on a centralized entity
[9] (Number of BPs is equal to one), which once captured the
whole network is compromised, only a part is compromised
when PBs are captured (Figure 4). We showed that the rate of
compromised links is inversely proportional to the number of
BPs . Thus, the more we increase the number of BPs , the more
resilient is our solution. In the following, we analyse the effect
of this parameter on performance to help the reader to choose
the best compromise between resilience and performance.



Fig. 4: Variation of the rate of captured links according to p.

V. PERFORMANCE EVALUATION

The performance evaluation of our solution consists of three
parts. First, We propose a theoretical analysis on the node side.
Since the performance on the BPs depends on the blockchain
used, we performed simulations to evaluate it. Finally, we
compare the results obtained to some of the existing solutions.

A. Theoretical analysis

We start by analyzing the protocol overheads on nodes.
Proposition 5: Storage and calculation costs on nodes are

of the order of O(
√
n), while the communication is O(1 ).

Proof: Using our solution, a node knows a secret key,√
n − 1 pairwise node keys, a set key and

√
n − 1 pairwise

set keys. It then stores in total 2 .
√
n keys. Moreover, regard-

less of the rekeying operation performed (e.g. node joining or
node leaving), a node receives a constant number of messages
and updates the 2 .

√
n keys it knows.

B. Simulations

Due to space constraints, we assume that (unlike nodes) the
BPs have enough storage and focus on their response time. It
is the time separating the reception of a join or leave request
from the sending of a response to the node. This time is equal
to the sum of the execution time of layer 1 (Tk ) and that of
layer 2. The layer 2 consists of two operations: transaction
generation and verification (Te ); transaction validation (Ta ).
The total response time (Tr ) is therefore equal to:

Tr = Tk + Te + Ta (4)

1) Simulation assumptions: To evaluate this response time,
we conducted simulations on a laptop with an Intel Core
i7 CPU and 4GB RAM. Each BP is run on a different
docker container. The length of a transaction is 57 Bytes
(Operation -1B-, Node ID -4B-, Set ID -4B-, Hash of the node
secret code -32B-, Refresh key -16B-). For greater accuracy,
each result mentioned in the following is the average of
dozens of tests. Our results are obtained using Tendermint [8],
which is a blockchain application platform. We mainly choose
Tendermint for two reasons. First, the application layer of Ten-
dermint can be written in any programming language. Second,
Tendermint is a very powerful blockchain engine based on the
PBFT consensus algorithm. Using Tendermint, hashing energy
is not required to validate the next block. Therefore, compared
to some of the most used consensus algorithm, PBFT reduce
calculations and thereby energy consumption [19].

2) Results: The results of the simulations are plotted in
Figure 5a. They show the variation of the execution times
of the different steps mentioned above. Two points come out
of this. First, the more there are BPs , the more the execution
time of the different operations increases. This is because there
is more exchange between the different BPs . The results also
show that the most time-consuming operation is the validation
of the transaction because of the consensus algorithm.

C. Comparison and discussion

In our previous work [9], we showed that our solution
provides the best compromise between the IoT requirements
(connectivity, efficiency, scalability and flexibility) on the
node side (considering only Layer 1). Before dealing with
layer 2, we briefly recall this comparison. In addition to
being resilient, our solution requires less storage on the
nodes (O(

√
n)) than the deterministic scheme presented in

[6] (O(n)). It also provides a better connectivity compared
to the probabilistic schemes presented in [2, 16]. Using our
solution, the probability that two neighboring nodes share a
common key is always equal to 1 , while it is approximately
lower bounded by 0 .632 in [6] and does not exceed 0 .25 in
[16]. Thus, our solution does not require additional calculation
and communication to establish secure links. Finally, although
deployment knowledge schemes [5] provide good connectivity,
they are based on nodes’ location. Our solution operates well
regardless of the position of nodes and supports their dynamic
deployment as they can join and leave the network at any time.
It is then more flexible and suitable for dynamic networks.

Regarding the BPs’ response time, the simulations showed
that the validation of the transaction is the most expensive.
To reduce the total response time, we took advantage of the
fact that Tendermint offers multiple endpoints to respond to a
request. We used the broadcast tx commit endpoint to get
the results of Figure 5a. In this mode, the request returns after
the transaction is committed (i.e. included in the blockchain).
This approach is reliable, but can take on the order of a second.
Tendermint provides an another mode, broadcast tx sync, in
which the request returns as soon as the transaction is verified
and does not wait for a block to be stored. The validation
time (Ta ) is therefore not included in the calculation of the
total response time. In the absence of similar works, we only
compare the response time using the centralized version [9]
(Number of BPs is equal to one) and the two decentralized
modes, according to the number of BPs (Figure 5b).

The results confirmed that the Broadcast tx sync signifi-
cantly reduces the response time and brings it closer to that
of the centralized version. However, it does not guarantee that
the transaction will be stored in the blockchain. Thus, a new
attempt to add the transaction is necessary. To help the reader
to choose the mode that is most suitable for a given appli-
cation, we studied the error rate of the Broadxcat tx sync.
We then calculated the percentage of transactions which are
not successfully stored in the blockchain, from the first time,
according to the number of BPs (Figure 5c). The results show
that the more there are BPs , the more the error rate increases.



(a) Variation of the different execution times. (b) Variation of the total response time. (c) Variation of the error rate.
Fig. 5: Simulation results.

To sum up, the more we increase the number of BPs , the
less nodes are attached to each BP . This improve the resilience
of our solution since the capture of a BP does not jeopardize a
large part of the network. Also, the more there are blockchain
participants, the more it becomes impossible for a malicious
BP to compromised the blockchain. On the other hand, the
more we decrease the number of BPs , the more we improve
the performance of our solution. According to the needs of the
application, we must choose the number of BPs that provides
the best comprise between resilience and performance.

VI. CONCLUSION

In this paper, we proposed a novel blockchain-based de-
centralized Key Management protocol for secure Device-to-
Device communication. Unlike most of the existing solutions
based on pre-distribution, our protocol supports the dynamic
deployment of nodes. When a node joins or leaves the network,
the KM updates the keys and distributes them to the remaining
network members. To avoid the single point of failure prob-
lem, our solution uses the blockchain technology to securely
decentralize the KM on several participants. We then showed
that the system will still be able to operate even if an entity
fails. We also proved that the compromise of an entity will
not jeopardize the security of the whole network.

In future works, we intend to propose a novel consensus
algorithm, which will be more suitable for heterogeneous
networks such as the IoT. We also plan to design a new key
agreement method for the key exchange (between BPS and
nodes) to replace asymmetric encryption that is inappropriate
for the IoT. We finally intend to implement our solution on
real IoT platforms and to consider more parameters for testing.

ACKNOWLEDGMENTS

This work was carried out and funded by Heudiasyc UMR
CNRS 7253 and the Labex MS2T.

REFERENCES

[1] E. Baburaj et al. “Polynomial and multivariate mapping-based triple-
key approach for secure key distribution in wireless sensor networks”.
In: Computers & Electrical Engineering 59 (2017), pp. 274–290.

[2] W. Bechkit, Y. Challal, A. Bouabdallah and V. Tarokh. “A highly
scalable key pre-distribution scheme for wireless sensor networks”. In:
IEEE Trans on Wireless Communications 12.2 (2013), pp. 948–959.

[3] M. Castro, B. Liskov et al. “Practical Byzantine fault tolerance”. In:
OSDI. Vol. 99. 1999. 1999, pp. 173–186.

[4] J. Choi, J. Bang, L. Kim, M. Ahn and T. Kwon. “Location-based
key management strong against insider threats in wireless sensor
networks”. In: IEEE Systems Journal 11.2 (2015), pp. 494–502.

[5] J. Choi, J. Bang, L. Kim, M. Ahn and T. Kwon. “Location-based
key management strong against insider threats in wireless sensor
networks”. In: IEEE Systems Journal 11.2 (2017), pp. 494–502.

[6] T. Choi, H. B. Acharya and M. G. Gouda. “The best keying protocol
for sensor networks”. In: Pervasive and Mobile Computing 9.4 (2013).

[7] E. I. W. Group and I. IoT. IoT Developer Survey Results. 2017. URL:
https://fr.slideshare.net/IanSkerrett/iot-developer-survey-2017.

[8] T. Inc. Tendermint. 2020. URL: https://docs.tendermint.com/master/.
[9] M. A. Kandi, H. Lakhlef, A. Bouabdallah and Y. Challal. “A Key

Management Protocol for Secure Device-to-Device Communication
in the Internet of Things”. In: 2019 IEEE Global Communications
Conference (Globecom2019). Waikoloa, USA, Dec. 2019.

[10] M. A. Kandi, H. Lakhlef, A. Bouabdallah and Y. Challal. “A versatile
Key Management protocol for secure Group and Device-to-Device
Communication in the Internet of Things”. In: Journal of Network
and Computer Applications 150 (2020), p. 102480.

[11] A. Lei, H. Cruickshank, Y. Cao, P. Asuquo, C. P. A. Ogah and Z. Sun.
“Blockchain-based dynamic key management for heterogeneous in-
telligent transportation systems”. In: IEEE Internet of Things Journal
4.6 (2017), pp. 1832–1843.

[12] A. Lei, C. Ogah, P. Asuquo, H. Cruickshank and Z. Sun. “A
secure key management scheme for heterogeneous secure vehicular
communication systems”. In: ZTE Communications 21 (2016), p. 1.

[13] M. Ma, G. Shi and F. Li. “Privacy-Oriented Blockchain-based Dis-
tributed Key Management Architecture for Hierarchical Access Con-
trol in the IoT Scenario”. In: IEEE Access 7 (2019), pp. 34045–34059.

[14] S. Nakamoto et al. “Bitcoin: A peer-to-peer electronic cash system”.
In: (2008).

[15] S. Ruj, A. Nayak and I. Stojmenovic. “Pairwise and triple key
distribution in wireless sensor networks with applications”. In: IEEE
Transactions on Computers 62.11 (2012), pp. 2224–2237.

[16] S. Ruj, A. Nayak and I. Stojmenovic. “Pairwise and triple key
distribution in wireless sensor networks with applications”. In: IEEE
Transactions on Computers 62.11 (2013), pp. 2224–2237.

[17] I.-C. Tsai, C.-M. Yu, H. Yokota and S.-Y. Kuo. “Key management
in Internet of Things via Kronecker product”. In: 2017 IEEE 22nd
Pacific Rim International Symposium on Dependable Computing
(PRDC). IEEE. 2017, pp. 118–124.

[18] P. Vasin. “Blackcoin’s proof-of-stake protocol v2”. In:
URL:https://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
71 (2014).

[19] M. Vukolić. “The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication”. In: International workshop on open problems
in network security. Springer. 2015, pp. 112–125.

[20] M. S. Yousefpoor and H. Barati. “Dynamic key management al-
gorithms in wireless sensor networks: A survey”. In: Computer
Communications (2018).

[21] F. Zhan, N. Yao, Z. Gao and G. Tan. “A novel key generation method
for wireless sensor networks based on system of equations”. In: Jour-
nal of Network and Computer Applications 82 (2017), pp. 114–127.

[22] J. Zhang, H. Li and J. Li. “Key establishment scheme for wireless
sensor networks based on polynomial and random key predistribution
scheme”. In: Ad Hoc Networks 71 (2018), pp. 68–77.


