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Abstract: This paper presents a Model Predictive Control-based Energy Management System
for compliance with the day-ahead power dispatching plan of a hybrid power plant connected
to the Guadeloupe Island electrical grid. The hybrid power plant combines a wind farm and a
Li-ION battery energy storage system. The proposed EMS handles several operation rules, in
order to solve the optimization problem while considering the production forecasting data as
well as the battery lifespan. A simulation study is implemented via PowerFactory and Matlab.

Keywords: Modeling and simulation of power systems, Control of renewable energy resources,
Model predictive control, Smart grids.

1. INTRODUCTION

Dependence on fossil fuels imports is a major problem
in island territories. Renewable energy resources such
as sun and wind are playing a key role in terms of
reduction of petroleum-based fuels reliance as they are
free and abundant in those overseas locations. However,
the fluctuations caused by their random behavior render
the scheduling more difficult while increasing the system
operational costs (Jin et al., 2019).

Due to the variability of wind speed, wind turbines (WT)
have intermittent power output and, consequently, the
difficulties grow to meet day-ahead generation schedules.
These issues are amplified in the context of island grids
as the French Archipelago of Guadeloupe, which should
be managed to enhance grid efficiency without affecting
stability and energy quality (Rodŕıgues et al., 2016).

Hybrid Power Plants (HPP) provide a solution to these
issues by associating renewable energy sources (RES) with
other technologies of generation or storage into one smart
generation facility. The smartness of the hybrid systems
lies in its Energy Management System (EMS), which
allows power dispatching according to a generation plan,
as well as the supply of ancillary services like frequency
and voltage regulation.

Several EMSs based on control methods and data acqui-
sition have been developed to operate those HPP (Luna
et al., 2017; Bukar and Tan, 2019). More recently, Model
Predictive Control (MPC) has received increasing atten-
tion because it can incorporate both forecasts and updated
information to decide the future behavior of the system
while handling constraints efficiently. MPC integrates the
RES production forecasts in the optimization problem,
either in terms of the expected generation or in terms

of the primary source, (wind speed, solar irradiance, etc)
(Abdeltawab and Y.Mohamed, 2015; Zhang et al., 2019;
Chen et al., 2020). However, there is still a large number
of difficulties with regard to effective load management,
economic dispatch, and especially its high dependency on
the accuracy of expected forecast data.

In this paper, an EMS is proposed for an existing wind-
battery storage HPP injecting power into the Guade-
loupe island grid. Predictive control and optimization are
combined to guarantee compliance with the day-ahead
power dispatching plan while managing the storage system
charge/discharge cycles efficiently, in order to accomplish
the day-ahead power dispatch plan while considering the
battery lifespan. To test the strategy, realistic simulation
scenarios were considered with different forecasting errors
to prove the ability of the proposed method to compensate
them. The complete system was implemented in PowerFac-
tory while the control algorithm is executed in MATLAB.

This paper is organized as follows: Section 2 presents
a description of the Grid-connected hybrid power plant.
Section 3 introduces the HPP PowerFactory model. In
Section 4 the MPC strategy proposed is developed and
finally in Section 5 the results are shown and discussed.

2. GRID-CONNECTED HYBRID POWER PLANT

The Guadeloupe archipelago relies heavily on thermal non-
renewable sources (coal, diesel and combustion turbines)
for electricity generation. In 2018, 71, 8% of the electricity
consumed was provided by the combustion of fossil fuels
(Belfort et al., 2019). The electrical grid of the Guadeloupe
Islands has a 63kV high voltage transmission system,
composed of two big loops of overhead lines (see Fig.
1). The loop covering Basse-Terre is interconnected at
the Jarry Nord/Jarry Sud substation with Grande-Terre’s
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loop, which is composed of 14 nodes that correspond to
HTB/HTA substations each comprising two 63/21 kV step
down transformers connecting loads and, in most cases,
also reactive compensation stations.
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Fig. 1. Electrical substations on the Guadeloupe island.

This paper proposes a study to assess and validate the
operation of a new hybrid wind/storage power plant at a
particular point of the Guadeloupe electric grid (Sainte-
Rose).The PowerFactory model of the Guadeloupe island
electrical system shown in Fig. 2 was implemented from
the data presented by Marin (2009). The shaded area
corresponds to the point of common coupling (PCC)
located within the node Sainte-Rose, where the HPP is
connected.
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Fig. 2. Guadeloupe island electrical model.

3. SYSTEM MODELING

In this paper, a PowerFactory/Matlab co-simulation study
was carried out in order to assess the impact of a wind-
storage hybrid power plant, injecting power into one of
the HTA busbars of the Sainte-Rose substation. The grid
model was validated through simulation with respect to
available data.

3.1 Wind generation system modeling

The wind generation system is depicted in Fig. 3. This
system is composed of four 2MW induction generators
containing the model of a DFIG (Doubly Fed Induction

Generators) wind turbines and converters. The transform-
ers, busbars and underground lines used to rely the wind
turbines to the PCC are also part of the system.
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Fig. 3. Wind generation system model.

The WT model is based on the steady-state characteristics
of the turbine presented by Rueda et al. (2014). Such
model allows calculate the power extracted from the WT
and considers electrical, mechanical, aerodynamic and
control aspects.

3.2 Energy storage system modeling

The battery energy storage system (BESS) is based on the
commercial storage solution Intensium Max 20M of Safe.
For the project, four 1 MW 580 kWh Li-ion storage were
considered. The modified Shepherd’s model proposed by
Tremblay and Dessaint (2009) was employed to describe
the output voltage of a cell as a function of its capacity in
ampere-hours (Ah). The battery cell terminal charge and
discharge voltages are calculated as follows:

Vch = E0 +R · i∗ −K Qm

it − 0.1Qm
i∗ −K Qm

Qm − it
it + Θ

Vdch = E0 +R · i∗ −K Qm

Qm − it
i∗ −K Qm

Qm − it
it + Θ

(1)

where Θ = Ā · e
(

−B̄·it
Qmax

)
is the term representing the expo-

nential voltage. E0 represents the battery constant voltage
(V), R is the battery internal resistant (Ω), and K is the
polarization constant (V/Ah). Meanwhile Qm represents
the maximum battery cell capacity (Ah), i∗ is the filtered
current, it is the dynamic current, Ā is the exponential
zone amplitude (V), and B̄ is the exponential zone time
constant inverse (Ah−1). In this work, to determine the
parameters E0, R, Ā, B̄ and K, an identification method
from the manufacturing discharge curve was employed.
This method applies optimization techniques to find the
values of the X vector, subject to Xmin and Xmax as
follows:

X =
[
E0 Ā B̄ R K

]
Xmin =

[
Emin

0 Āmin B̄min Rmin Kmin
]

Xmax =
[
Emax

0 Āmax B̄max Rmax Kmax
] (2)

to minimize the following cost function:

fobj(X) =

√√√√i=n∑
i=1

Q=Qnom∑
Q=0

(Vmes(Q, Ii)− V (Q, Ii))2 (3)



where Ii = I1, ..., In represents the discharge currents,
which allows that the quadratic error among the manu-
facturer’s voltage Vmes and the model estimations V , is
minimized. For that, the amperes-hour delivered Q and
the discharge current I are varied.

The four storage units comprising the BESS implemented
in PowerFactory is shown in Fig. 4. It was also added the
respective converters, two 2-winding transformers, one 3-
winding, three busbars, and three underground lines.
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Fig. 4. Energy storage system model.

This model was validated through comparison with the
battery model available on Simulink and presented in
Aguilera-González et al. (2018). For this, a current input
was imposed on both system representations (Matlab and
PowerFactory) to observe the dynamic of battery states
during the charging and discharging process.

4. MPC CONTROLLER

The EMS proposed warrants the continuous power injec-
tion from the HPP into the PCC, according to a com-
mitment production profile determined from wind forecast
data. For this, a control-oriented linear model of the BESS
is required by the MPC controller to generate optimal
control actions. The control scheme is presented in Fig.
5.
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Fig. 5. HPP control scheme.

As can be seen, the power reference profile PBESSref

is obtained from the commitment generation schedule
PSCHED and the output power of the wind energy system
PWECS , as:

PBESSref
= PSCHED − PWECS (4)

where the signal PSCHED represents the reference for the
total power injected into the main grid. PINJ is calculated
as:

PINJ = PWECS + PBESS (5)

4.1 Storage System modeling for MPC

The proposed EMS uses predictive control to optimize the
use of the storage system and thereby, the power injection
into the utility grid. The prediction is based on the linear
model of the storage system. With this purpose, the follow
linear time-invariant (LTI) form is used:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) (6)

where k represents the sampling time, x(k) ∈ Rn repre-
sents the system states, u(k) ∈ Rnu the decision variable
or input, and y(k) ∈ Rnr , the output controlled. Based on
the discrete-time state-space representation obtained from
Eq. (6), the BEES model is given by the next equations
set:

it(k + 1) = it(k) +4tiBESS(k)

i∗(k + 1) = (1− α)i∗(k) + α iBESS(k) (7)

SOC(k + 1) = 100

(
1− it(k)

Q

)
−
(
4tiBESS(k)

Q

)
where it is the dynamic current, i∗ is the filtered current,
SOC is the state-of-charge and Q is the battery capacity.
iBESS represents the battery current as the input system
and α is the mitigating factor defined by:

α =
4t

(τ +4t)
(8)

4t represents the simulation step time and τ is the filter
time constant. The model output vector containing the
variables to optimize is given by:

y(k) = [i∗(k) SOC(k)]
T

(9)

From the measured voltage vBESS coming for the BESS
(see Eq. (1)) and the filtered current i∗ given by the model,
the battery power can be computed as:

PBESS = vBESS · i∗ (10)

where PBESS is negative in case of charge (if vBESS = Vch)
and positive in case of discharge (if vBESS = Vdch).

4.2 MPC Algorithm

The EMS proposed combines an MPC controller with an
optimization strategy based on the representation given by
Eq (6). A multi-step ahead map is then required to apply
the predictive methodology, which uses a state trajectory
vector containing estimates for the next Np sampling
instants (i.e. the length of the optimization window is of
Np samples). This vector is described by:

x̃(k + 1) =

 x(k + 1)
...

x(k +Np)

 (11)

In the same way, the Nc elements conforming the future
control sequence, (Nc is called the control horizon) are
contained in the following vector:



ũ(k + 1) =


u(k)

...
u(k +Nc − 2)
u(k +Nc − 1)

 (12)

where x̃(k|ũ(k)) denotes the fact that the state trajectory
x̃(k) calculation takes place at the current time step k and
results from the control actions sequence ũ(k) (Alamir,
2013). Applying the one-step-ahead prediction map, the
instant k + 2 is calculated as:

x(k + 2) = Ax(k + 1) + Bu(k + 1)

= A[Ax(k) + Bu(k)] + Bu(k + 1)

= A2x(k) + ABu(k) + Bu(k + 1)

(13)

For simplicity Np = Nc it is considered. Then, rewritten
Eq. (13) in a more generally form, for any i ∈ 1, ..., Np,
the state-space representation is given by:

x(k + i) = Aix(k) + [Ai−1B, ...,AB,B]


u(k)

...
u(k + i− 2)
u(k + i− 1)

 (14)

Then, it is possible to define a matrix Π
(nu,Np)
i allowing

the selection of the ith vector of dimension nu from the Np

elements of vector u (Alamir, 2013):


u(k)

...
u(k +Np − 2)
u(k +Np − 1)

 =


Π

(nu,Np)
1

...

Π
(nu,Np)
i−1

Π
(nu,Np)
i

 (15)

where each element of the Π
(nu,Np)
i matrix is given by:

Π
(nu,Np)
i =

(
Inui Onui×(Np−inu)

)
(16)

so, the Eq. (14) can then be rewritten as:

x(k + i) = Aix(k) +

(
[Ai−1B, ...,AB,B] · Π

(nu,Np)

i

)
ũ(k) (17)

and the prediction of future states can be written in a
compact form as:

x(k + i) = Φix(k) +
(

Ψi ·Π
(nu,Np)
i

)
ũ(k) (18)

where Φi = Ai and Ψi = [Ai−1B, ...,AB,B] · Π(nu,Np)
i are

constant matrices depending on state and input matrices,
A and B respectively.

4.3 Power dispatch optimization

The aim of the EMS is ensuring that the power supplied to
the main grid respect the operating rules while maximizing
the plant’s income. The disrespect of the injection band
leads to penalties reducing the power plant profits. The
power injections with excursions of 60 consecutive seconds

outside the limits are penalized with non-payment of the
power supplied to the grid for the next 10 minutes. The
plant revenue (PR) is a key indicator performance (KPI),
which was established for monitoring the HPP profits.
During the operation time, it can be calculated considering
the energy selling price (SP in /c per kWh) as:

PR =

sim.time∑
t=0

PINJ(t) · SP (t) · ∂(t) (19)

where ∂(t) =

{
0 when a penalty condition is active
1 in other cases

The optimization objectives and the constraints to which
the cost function is subject are explained in the following
paragraphs:

Objectives

• Power injection band respect: A tolerance region (in-
jection band) is established on the basis of the injec-
tion schedule. This objective consists in minimizing
the difference among PINJ and PSCHED, which is
equivalent to attracting PINJ towards the center of
the tolerance region (see Fig. 6).

Fig. 6. Power injection band.

The upper and lower bounds are given by:

Puplim = PSCHED + 0.25 · PMAX

Plowlim = PSCHED − 0.25 · PMAX

(20)

were PMAX is the plant generation capacity (8MW ).

• State-of-charge maximization: This objective consists
in minimizing the difference among the current SOC
and reference established at 90%.

Constraints

• Maximal power injection: When the wind-generated
power is close to maximal of the WP capacity and the
BESS is being discharged, Pmax

INJ is fixed as follow:

Pmax
INJ = PSCHED + tol · PMAX (21)

conversely, its minimum value is zero when the WT is
not generating and the BESS is not being discharged.
In order to avoid penalties, rather than setting con-
straints on the injection band limits, the constraint
Pmax
INJ is placed on the band ceiling as:

PINJ ≤ Pmax
INJ (22)

In this way, instead of allowing injections greater
than the upper limit, extra available power can be
used to charge the BESS. This constraint was defined
through the current i∗, which is a controlled output.



• Rate of change of power injected: the rate of change
limits of the power injected were defined by the
objectives. This can be put in inequality form, giving:

PMAX

300
MW/s≤ dPINJ

dt
≤ PMAX

30
MW/s (23)

−PMAX

600
MW/s≤ dPINJ

dt
≤ −PMAX

60
MW/s

which are constraints for upward and downward steps
of dPINJ/dt. In other words, these constraints limit
the rate of change of PINJ so as to avoid big changes
in the power transferred towards the grid.

• State-of-charge: The BESS must be operated re-
specting the recommendations of the manufacturer
in terms of depth-of-discharge and charging rates as
to avoid its replacement before 15 years. To achieve
this, a SOC operation region is established as follows:

20% ≤ SOC ≤ 80% (24)

• BESS maximum charge current: The maximum con-
tinuous charge and discharge currents (respectively
3280A and −6400A) are defined for the BESS. Hence,
the battery current is constrained as:

−6400 ≤ i∗ ≤ 3280 (25)

4.4 Prediction and optimization strategy

The aim of the optimization strategy is that of generating
a control signal that optimizes a cost function over the
prediction horizon. The following quadratic cost function
is then defined:

Γ(k) =

Np∑
i=1

{
λ1‖PINJ − PINJref‖2 + (26)

λ2‖SOC − SOCref‖2 +
[
Π

(nu,Np)
i ũ

]T
Qu

[
Π

(nu,Np)
i ũ

]}
where the control objectives are expressed in a quadratic
form. λ1 and λ2 are weights allowing to increase/decrease
the importance of an objective with respect to the other.
ũ is the vector containing the Np elements conforming
the control sequence going from u(k) to u(k + Np − 1).
Qu ∈ Rnu×nu is a symmetric positive definite matrix for
weighting and adjusting the control effort of the inputs,

and Π
(nu,Np)
i is an identity matrix concatenated with a

zero matrix whose sizes change with i, i.e.:

Πnu,Np
i =

(
Inui×nui Onui×(Np−1)nu

)
(27)

Here, Γ can be interpreted as the cost obtained by the
evaluation of the future control actions function ũ using
the future references PINJref and SOCref and the present
system state x(k) within the time horizon [k, k +Np].

An appropriate optimization algorithm is used to reduce
future errors based on such a quadratic function and in
the presence of linear constraints Alamir (2013). The MPC
prediction algorithm is defined based on the BESS model
to feed the cost function at every time step (see Aguilera-
González et al. (2018)).

5. RESULTS

To test the robustness of our strategy, a 24h profile of wind
power production from Guadeloupe Island was analyzed.
Two scenarios representing 3-hours commitment profiles
were chosen (as can be seen in Fig. 7). These results deal
with the electrical grid of Guadeloupe as well as the HPP
modeled under PowerFactory environment, while the MPC
and the optimization strategy was executed in Matlab.
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Fig. 7. Wind and power profiles during 24h.

• Case 1: In Fig. 8 a 3-hours commitment profile
with steps of 30 minutes is shown, a prediction
horizon (Np) of 15 seconds was defined. In this first
case, greater importance was given to respect of the
injection band over the SOC maximization.
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(a) Wind production and the day-ahead dispatch power profiles.
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Fig. 8. Profile and Injection band at morning (2h-5h).

Fig. 8b shows that the injected power PINJ stays inside
the tolerance region of 2 MW above and bellow of the
commitment profile, (PSCHED). Between t = 3.5 hours
and t = 3.8 hours the power transferred to the grid is less
than the commitment. This is because the WECS output
smaller than expected that caused the storage system to
discharge from its initial SOC of 30 % until reaching 20 %
(the lower SOC level allowed), as depicted in Fig. 9.
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Fig. 9. Battery SOC in case 1.



• Case 2: In Fig. 10 a second 3-hours commitment
profile at afternoon is shown. In this case, more
importance was given to the objective of the SOC
maximization. Initial SOC was fixed at 78%.
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(a) Wind production and the day-ahead dispatch power profiles.
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Fig. 10. Profile and Injection band at afternoon (15h-18h).

In this second case, the Fig. 10b shows that the injected
power PINJ is greater than commitment (WECS overpro-
duction between 15.5-16 hours), but this injection stays
always inside the tolerance region. During this time, the
wind being stronger than expected makes to charge the
battery until the upper limit, 80% SOC (Fig. 11). As
shown, the proposed controller is able to efficiently manage
the BESS with respect to the constraints defined.
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Fig. 11. Battery SOC in case 2.

6. CONCLUSION

In this work, an energy management strategy for the power
dispatch of a wind-BESS HPP injecting power into the
electrical grid of Guadeloupe Island is proposed. For that,
a model predictive control and optimization strategy were
developed to drive the storage system with respect to two
optimization objectives: respect of a defined region for the
power injection, and maximization of the storage system
SOC. The strategy uses the model of the BESS to find
optimal solutions that bring the system’s predicted output
close to a trajectory of future power injections defined.

The controller performance was verified in co-simulation
PowerFactory/Matlab using real wind speed data collected
in Guadeloupe Island. The methodology proved its ability
to efficiently manage the power output of the hybrid power
plant and meet generation schedules with respect to the
constraints defined. The prediction algorithm developed
here is compatible with a quadratic programming solver
tool to minimize a cost function subject to a set of linear
constraints. Those constraints represent the physical and
operational burdens of the hybrid plant studied. In future
work, forecast reliability analysis for the implementation
of the MPC control strategy should be considered.
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de l’énergie en guadeloupe. bilan 2018. Report, Obser-
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