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Abstract—The clustering of incomplete patterns is a very
challenging task because the estimations may negatively affect
the distribution of real centers and thus cause uncertainty and
imprecision in the results. To address this problem, a new belief-
based incomplete pattern unsupervised classification method
(BPC) is proposed in this paper. Firstly, the complete patterns
are grouped into a few clusters by a classical soft method like
fuzzy c-means to obtain the corresponding reliable centers and
thereby are partitioned into reliable patterns and unreliable ones
by an optimization method. Secondly, a basic classifier trained by
reliable patterns is employed to classifies unreliable patterns and
the incomplete patterns edited by the neighbors. In this way, most
of the edited incomplete patterns can be submitted to specific
clusters. Finally, some ambiguous patterns will be carefully
repartitioned again by a new distance-based rule depending on
the obtained reliable centers and belief functions theory. By doing
this, a few patterns that are very difficult to classify between
different specific clusters will be reasonably submitted to meta-
cluster which can characterize the uncertainty and imprecision
of the clusters due to missing values. The simulation results show
that the BPC has the potential to deal with real datasets.

Keywords: clustering, incomplete pattern, belief functions
theory, unsupervised classification, fuzzy c-means.

I. INTRODUCTION

Cluster analysis [1]-[4], also known as unsupervised clas-
sification, is an important branch of pattern recognition and
machine learning, which can classify massive data without
any prior information into the same groups with similar data
structures or physical structures and has extensive applications
in many fields, such as financial analysis, medical diagnosis,
image processing, information retrieval and bioinformatics.
A large number of clustering methods [4]-[11] have been
developed and they can be divided into two types, namely hard
clustering [4], [5] and soft clustering [6], [11]. Among them,
the K-means algorithm [5] is one of the most well-known
hard clustering techniques which allows each pattern to belong
to only one cluster, and the fuzzy c-means [6] is the most
widely used soft clustering method where each pattern can
be committed to different clusters with different probabilities.
These classical unsupervised classification methods are gener-
ally applicable to complete data analysis, whereas the pattern
with missing values is a common issue in many real-world
datasets. For example, 45% of the datasets in the UCI [12],
as one of the standard repository commonly used in machine
learning algorithms, contains missing values caused by many
manifold reasons, including respondents refuse to answer some

privacy questions when filling out a questionnaire and patient
data or treatment data can not be obtained completely because
of confidentiality in medical statistics, and so on. Therefore,
preprocessing is the prerequisite for the use of these methods.

A number of methods [13] have emerged for preprocessing
missing data depending on three types of missing data mech-
anisms summarized by Little and Rubin [14] according to the
cause of the missing. The simplest whole data strategy also
called the discarding method, is to ignore all incomplete pat-
terns if they only take a small amount of the entire dataset, and
then cluster the complete patterns. In many cases, the missing
values are usually estimated by imputation strategies [15]-
[24], and then the incomplete patterns with the estimations
are clustered. For instance, one of the simplest and fast mean
imputation (MI) method is introduced in [15]. The missing
values are replaced by the average values of the same attributes
of all complete patterns. A commonly used weighted K-
nearest neighbor imputation (KNNI) method is introduced in
[18] based on DNA microarray data to reasonably simulate the
different effects of different neighbors on incomplete patterns.
In fuzzy C-means imputation (FCMI) method [19], [20], the
missing values of each incomplete pattern are estimated based
on the membership degree and clustering center generated by
FCM [6]. In POCS [21], according to the KNNs distribution
density of missing values, the probabilistic information gran-
ules with missing values are introduced into the optimal whole
strategy (OCS) of incomplete pattern clustering to obtain
classification results. Particularly, a new method, named fuzzy-
based information decomposition (FID) [22], is developed to
simultaneously address class imbalance and missing values,
and they are treated as the same missing data estimation
problem. Recently, a new linear local approximation (LLA)
[23], uses the optimal weights of KNNs obtained by local
linear reconstruction to estimate the missing values. Interest-
ingly, some recent works are dedicated to multiple estimations
or non-estimation of missing values [26], [27]-[28]. These
methods have achieved good results. However, these methods
may lead to the following problems:

(1) Estimation deviations may be large or too much useful
information lost, which will have a negative impact on the per-
formance of clustering methods. For example, in the discarding
method [13], some useful information may be lost, which is
difficult to obtain in reality and will cause great waste. The
correlation between data is not taken into account in MI [15],
so the estimations may be quite different from the truth.
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(2) Most clustering algorithms tend to directly cluster the
edited data with estimations, which ignore the negative impact
of imputation strategies on the complete pattern. For instance,
if there is a large difference between the estimations and the
truth, the estimations may change the initial distribution of the
original data, and then may change the initial position of the
cluster center while having a negative impact on the clustering
of complete patterns, which is very likely to happen.

(3) They do not reasonably characterize the uncertainty and
imprecision caused by missing values or the lack of informa-
tion on the overlapping of different clusters. The estimations
obtained by different imputation strategies are often different,
which indicates that the estimations cannot replace the role
of the real values and inevitably lead to uncertainty. At the
same time, some patterns in the overlapping areas of different
clusters may be difficult to be clustered to a specific cluster.
If they are forced to cluster to a singleton cluster, the risk of
error will be greatly increased.

In this paper, we propose a new belief-based unsuper-
vised classification method (BPC) for dealing with incomplete
patterns. The core is to adopt a more cautious strategy to
characterize the uncertainty and imprecision caused by missing
values or data distribution under belief functions theory.

Belief functions theory [29], [30] has been applied in many
fields, such as data clustering [31]-[34], data classification
[35]-[37] and decision-making [38]-[39]. In belief functions,
the pattern is not only allowed to belong to any singleton
(specific) cluster, but also to different meta-clusters (denoted
as particular disjunctions of several singleton clusters) with
different possibilities which can well represent the imprecision
of clustering for uncertain patterns. For instance, the EVCLUS
algorithm [31] is introduced to cluster the relational data with
the large dissimilarities between objects, and its improved
version for computational speed is developed in [32].

In ECM, it produce three kinds of clusters with different
masses of beliefs. They are singleton clusters (e.g. ωi), meta-
clusters (e.g. ωj ∪ ... ∪ ωk) defined by disjunction (union) of
several singleton clusters, and the outlier cluster represented
by ∅. The meta-cluster center is considered to be the average
of the involved singleton cluster centers and the probability
of pattern belonging to the meta-cluster only depends on
the distance between the pattern and the center, which is
unreasonable because it may cause clustering error when the
center of a meta-cluster is very close to the center of a
singleton cluster. The limitation is overcome in [11] where the
pattern committed to a meta-cluster is not only close to the
center of the meta-cluster but also close to the related singleton
clusters included in the meta-cluster. However, these clustering
methods are mainly developed to complete data clustering and
they do not consider the situation of incomplete data. Recently,
some researches are devoted to the classification of incomplete
data, which effectively complements the application fields of
belief functions theory. For instance, a new incomplete pattern
belief classification [36] method, where the incomplete pattern
is directly assigned into a specific class or filled by KNNs in
terms of the class information of its neighbors, and then, a
weighted possibility distance method is designed to partition
the uncertain incomplete pattern under the framework of belief

functions. Whereas there is no relevant literature(s) on the
clustering of incomplete data.

The main contribution of this paper is the development of a
new efficient belief-based unsupervised classification method
that works on belief function theory for incomplete patterns
(BPC). It focuses on avoiding cluster center shifts caused by
estimations and the uncertainty and imprecision due to missing
values. Specifically, BPC first adopts the existing classical soft
clustering methods (such as FCM [6], NC [9]) to cluster the
complete patterns1, and thereby adaptive partitions them as
reliable complete patterns or unreliable ones based on step
iteration. Then, a basic classifier such as K-NN [40], SVM
[41], NB [42] trained by the reliable patterns is employed to
classifies unreliable patterns and the edited incomplete patterns
estimated by the neighbors. In this way, most of the edited in-
complete patterns can be assigned to specific clusters. Whereas
if the possibilities of a pattern being classified into different
singleton clusters are not distinct different, we consider it
to be an uncertain pattern2. Finally, these uncertain patterns
will be carefully repartitioned again by a new distance-based
rule based on belief functions theory. By doing this, a few
patterns that are difficult to classify in specific clusters will be
reasonably assigned to meta-clusters which can characterize
the uncertainty and imprecision due to missing values.

In BPC, meta-clusters will be conditionally kept for the
uncertain patterns that are hard to correctly classify, which can
not only reduce the error rate but also reasonably characterize
the uncertainty and inaccuracy caused by missing values or the
lack of information on the overlapping of different clusters.
Once the pattern is submitted to meta-cluster, it indicates that
the singleton clusters contained in the meta-cluster are indistin-
guishable for the pattern, and the existing information cannot
accurately partition the pattern. The introduction of meta-
clusters can effectively reduce the misclassification rate. In
many practical problems, we prefer to obtain some imprecise
results that need to be judged by other methods, rather than
take a greater risk to get a wrong classification. Moreover,
sometimes more precise but expensive methods can be used
to make auxiliary judgments for difficult patterns. However, if
these precise technologies are used at the very start, they will
be expensive. Therefore, we can assign the hard-to-distinguish
patterns to meta-clusters, and then confirm the patterns in
meta-clusters only further at a much lower cost.

This paper is organized as follows. Section II briefly in-
troduces the background knowledge. Section III introduces
the new BPC method. Then in Section IV, the dataset of
UCI repository is used to test the proposed BPC method and
compare it with other methods for dealing with incomplete
data. The conclusion of this paper is given in Section V.

1Here we will choose FCM to cluster complete patterns, because it is the
most classical representative of soft clustering algorithm which has mature
theory and is widely used.

2Once a pattern is regarded as an uncertain pattern, it indicates that the
pattern may originally be distributed in overlapping regions of different
clusters or caused to be distributed in overlapping regions of different clusters
due to missing values.
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II. BACKGROUND
A. Fuzzy c-means algorithm

As one of the most famous soft clustering methods, FCM
has been widely used in various fields [6], [7] and its core
idea is that the patterns belonging to one cluster have a high
degree of membership, while those belonging to the others
have a relatively low degree of membership. It can divide a
complete dataset X = {x1,x2, . . . ,xN} ⊂ Rp into c clusters
characterized by prototypes V = {v1,v2, . . . ,vc} ∈ Rc×p
depending on minimizing the following objective functions:

JFCM (U, V ) =
N∑
i=1

c∑
j=1

uβijd
2
ij , (1)

with
c∑

k=1

uik = 1, for i = 1, 2, . . . , N, (2)

where β ∈ (1,∞) denotes the fuzzification parameter, which
will determine the fuzziness degree of clustering analysis
results; xi = [xi1, xi2, . . . , xip]

T is a pattern datum, and xik is
the k-th attribute value of xi; vj is the j-th cluster prototype,
vj ∈ Rp; uij is the degree of membership of xi in the j-
th cluster, and let the partition matrix U = [uij ] ∈ Rn×c;
dij denotes the Euclidean distance between xi and the cluster
center vj .

The necessary conditions for minimizing (1) with the con-
straint (2) result in the following update formulas:

vj =

∑N
i=1 u

β
ijxi∑N

i=1u
β
ij

, for j = 1, 2, . . . , c, (3)

and

uij =
d
−2/(β−1)
ij∑c

k=1 d
−2/(β−1)
ik

,

for i = 1, 2, . . . , n and j = 1, 2, . . . , c,

(4)

The procedure of FCM is to optimize the clustering ob-
jective function (1) by alternating optimization, that is, the
minimization steps (3) and (4) are repeated until the change
of the objective function below a certain threshold.

B. K-nearest neighbors imputation
Since weight K-nearest neighbor imputation (WKNNI) [18]

is employed in this paper to estimate the missing values, we
briefly recall the principle of KNNI here. Let us consider a
complete dataset Xcom with p-dimensional space in the class
editing framework Ω = {ω1, ..., ωc} and a query pattern xi
with t (1 ≤ t < p) known attributes. For estimating the
missing values, one can obtain the neighbors of xi first by
calculating the distances based on the known attributes. The
Euclidean distance dij between the pattern xi and each pattern
xj included in the set Xcom is defined by:

dij =

√√√√ t∑
l=1

(xil − xjl)2, (5)

Then the K minimum distances dik and corresponding
complete patterns xk ∈ Xcom, k = 1, 2, . . . ,K, are obtained.

Noted that the distance between the pattern xi and KNNs
may vary when estimating missing values, thus the weights are
reasonably applied to weigh differently the impact of KNNs
in obtaining the estimations. In WKNNI, the weight αki of the
k-th neighbor xk is denoted as:

αki =
e−dik∑K
k=1e

−dik
(6)

Once the KNNs of pattern xi and weight αki are obtained,
the missing value x̃ij of the pattern xi is thereby estimated in
the same dimension as follows:

x̃ij =
K∑
k=1

αki · xkj , (7)

By doing this, one can deal with incomplete patterns with
estimations in the same way as to complete patterns.

C. Belief functions theory

Belief functions theory [29], [30] was first proposed by
Dempster and formed by Shafer generalization, which is also
known as Evidential Reasoning or Dempster-Shafer theory
(DST). It is a theoretical framework for reasoning with partial
and unreliable information, which can deal with uncertain
problems well. In this theory, a set of finite mutually exclusive
and complete elements Ω = {ω1, ω2, · · ·, ωc} is defined as the
framework of discernment of the problem under study. The
set of all subsets of Ω is called the power-set of Ω, which is
represented as 2Ω and contains 2|Ω| elements. For example,
if Ω = {ω1, ω2, ω3}, then 2Ω = {∅, ω1, ω2, ω3, ω1 ∪ ω2, ω1 ∪
ω3, ω2 ∪ ω3,Ω}. The singleton cluster (e.g. ωi) is also called
specific cluster. The disjunction of several singleton elements
(e.g. ωi ∪ωj , ωi ∪ωj ∪ωk) represents the partial ignorance in
2Ω, and they are called meta-clusters.

The basic belief assignment (BBA) on the framework of
discernment Ω is a function m(.) from 2Ω to [0, 1], and
satisfies the following conditions:{ ∑

A∈2Ω

m(A) = 1

m(∅) = 0
(8)

All the elements A ∈ 2Ω such that m(A) > 0 are called
the focal elements of m(.). A credal partition [10], [31] is
defined as the N -tuple M = (m1, . . . ,mN ), where mi is the
BBA of the pattern xi ∈ X , i = 1, 2, . . . , N , associated with
the different elements of the power-set 2Ω.

Some evidential clustering methods [10], [11] have been
developed to address the uncertain and imprecise problem
in partitioning the unlabeled dataset. Here we briefly recall
the representative evidential c-means (ECM) [10] proposed
by Denœux, which is considered to be a very important
component in the clustering task. It can be regarded as an
evidential version of the fuzzy c-means algorithm (FCM [6]
and noise clustering algorithm (NC) [9]. In ECM, the pattern
is assigned not only to singleton clusters including the outlier
cluster, but also to any meta-clusters of 2Ω by a “mass of
belief” which is similar to the membership degree in FCM
and denoted as m(.). The objective function JECM can be
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written as follows:

JECM (M,V ) =
N∑
i=1

∑
{j/Aj 6=∅,Aj⊆Ω}

|Aj |αmβ
ijd

2
ij +

N∑
i=1

δ2mβ
i∅

(9)
subject to ∑

{j/Aj 6=∅,Aj⊆Ω}

mij +mi∅ = 1, i = 1, ..., N (10)

where α is an adjustable weight parameter of the distance
between the pattern and the cluster center, and |Aj | denotes
the cardinality of Aj . If Aj = {ωk, ωt}, then |Aj | = 2.

In ECM, the mass of the belief mij of the pattern xi can
be obtained by minimizing the objective function (9) with
constraint (10), and it is given by:

mij =
|Aj |−α/(β−1)d

−2/(β−1)
ij∑

Ak 6=∅
|Aj |−α/(β−1)d

−2/(β−1)
ij + δ−2/(β−1)

. (11)

In applications, ECM may produce unreasonable results
when some singleton cluster centers are close to that of
meta-clusters. Since the definition of the distance between
patterns and meta-cluster centers is not precise and it has been
improved by a new method, called credal c-means (CCM)
[11]. Inspired by these methods, we design a new distance-
based rule for classifying uncertain patterns to characterize
the imprecision caused by missing values in this paper.

III. BELIEF-BASED UNSUPERVISED
CLASSIFICATION METHOD

A new BPC method is proposed to deal with incomplete
patterns based on belief functions theory. BPC firstly clusters
the complete patterns by the famous FCM method and thereby
obtain the membership of the pattern for different clusters.
Some of the patterns with clear cluster information are nat-
urally partitioned into reliable patterns, which are regarded
as having strong support for a specific cluster. By contrast,
the remaining complete patterns without support a particular
cluster are partitioned as unreliable patterns, some of which
may be in overlapping regions of different clusters. Then,
these reliable patterns are used to train a basic classifier and
thus to classify unreliable patterns and the edited incomplete
patterns estimated by the neighbors. For patterns with strong
support for specific clusters in the classification results, they
are partitioned into singleton clusters. By contrast, for those
uncertain patterns that do not clearly belong to singleton
clusters, a new and more cautious distance-based rule method
is designed to submit some of them to the meta-clusters to
reduce the risk of misclassification. The classification of the
uncertain pattern in meta-cluster can be eventually precise
using some other (costly) techniques or with extra information
sources. By doing this, the BPC method can prevent us to take
erroneous fatal decisions whenever it is essential to do it.

A. Optimization of reliable patterns

Let us consider a dataset X in p-dimensional real space
to be clustered into c specific clusters under the frame of

discernment Ω = {ω1, . . . , ωc}. The set X can be divided into
two parts: the set Xcom contains complete patterns and the set
Xmis contains incomplete patterns, i.e., X = Xcom + Xmis.
Firstly, FCM3 is employed to cluster complete patterns and
thereby to obtain different memberships mij of each pattern
xi ∈ Xcom belonging to the different specific clusters (such
as ωj). In this way, the complete patterns can be divided into
reliable and unreliable ones by a threshold γ, and denoted as:

Xre = {xi|mmax
i (ωmax) ≥ γ} (12)

with

mmax
i (ωmax) = max{mi(ω1), . . . ,mi(ωc)} (13)

where mi(ωj) is the membership of xi belonging to the
cluster ωj (j = 1, . . . , c). mmax

i (ωmax) denotes the support
(membership) degree of xi belonging to the most believed
cluster ωmax (ωmax ∈ Ω). Xre is the set of all the complete
patterns satisfying condition mmax

i (ωmax) ≥ γ, and γ is the
threshold to control the number of patterns in Xre.

One can find that all the patterns in Xre have distinct
class information with the increase of γ, especially when γ
approaches 1. This indicates that the pattern xi is very close
to the center of the cluster ωmax, and xi can be considered as a
reliable pattern belonging to ωmax. Conversely, the remaining
patterns with satisfying Eq. (12) in Xcom are regarded as
unreliable ones and therefore form the unreliable pattern set
Xunr, Xcom = Xre+Xunr. The pattern in Xunr is considered
to be close to the centers of multiple clusters at the same time
caused by a variety of reasons. For example, the membership
values are very close if the pattern is in the overlapping or
middle region of different clusters.

Since γ determines the number of reliable patterns of
different clusters and these reliable patterns then are used to
train the basic classifier, the value of γ ∈ [γBel, γPl] is a key
parameter in BPC, where γBel is the belief value of γ (i.e., the
lowest value that γ can take) and γPl is the plausibility value
of γ (i.e., the desirable maximum of γ). If γBel is too small,
a number of unreliable patterns will be partitioned into Xre,
which is not a good choice for training the basic classifier; By
contrast, too big γPl will lead to an increase in the number of
patterns in the set Xunr while that in the set Xre decrease.
In such a case, it will also have a negative impact on the
performance of the basic classifier if the reliable patterns of
different clusters are insufficient4.

Here, we provide a new adaptive method for obtaining more
accurate γ values for a particular dataset X . At its core,
the basic classifier achieves its best performance when the
distance between the probability result of clustering patterns
into different clusters in Xcom and the probability result of the
classifier classifying patterns into different classes is smallest.
For a particular γs, we define the probabilistic distance Ψ(γs)

3Here we assume that the relevant methods (e.g., FCM [6], K-NN [40])
introduced by default when applying the proposed method are also applicable.

4After many tests conducted on various real datasets, this method generally
produces good performances with γ ∈ [0.6, 0.95] in practice, i.e., γBel = 0.6
and γPl = 0.95, and we recommend γ = 0.85 as the default.
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obtained for the complete patterns as follows:

Ψ(γs) =
N∑
i=1

c∑
j=1

‖pij −mij‖2 (14)

where mij is the membership of xi in Xcom belonging to
ωj (j = 1, . . . , c) obtained from FCM; n is the number of
the reliable patterns in Xcom by γs, and c is the real cluster
number; ‖·‖2 represents the Euclidean distance and pij is
the probability of xi belonging to class ωj obtained by Γ(.),
denoted as:

pi = Γ(xi |Xs
re ) (15)

where pi is the probability of xi being assigned to different
classes using the basic classifier Γ(.) trained by the set Xs

re

and pi = [pi(ω1), . . . , pi(ωc)] with pij
∆
= pi(ωj). The choice

of the classifier Γ(.) is left to one’s preference. For instance,
one can use the K-NN [40], SVM [41] or NB [42], etc. Here
we choose the K-NN as the basic classifier in this paper.

One can easily find that with γs takes different values,
Ψ(γs) will also get different corresponding values. In other
words, γs ∈ [γBel, γPl] is the optimal value for the specific
dataset X if Ψ(γs) reaches the minimum, denoted as:

Ψ(γopt) = min{Ψ(γ1), . . . ,Ψ(γS)} (16)

where Ψ(γopt) is the probabilistic distance for the optimal
solution γopt and γopt ∈ [γ1, . . . , γs, . . . , γS ]5; S is the total
number of iterations and determined as follows:

S =
γPl − γBel

λ
+ 1 (17)

where λ is the step size of each iteration. Thus, the value of
γs (if iterated to the s-th) is:

γs = γBel + λ(s− 1), s = 1, . . . ,S (18)

1) Guideline for Choosing Parameter λ: The selection
of λ plays an important role in the generation of the optimal
threshold. If λ is too big, we may not be able to get the optimal
γopt (or near the optimal) and then have a negative impact on
the performance of the classifier. Too small λ, however, will
lead to increased computational complexity in the process of
obtaining the optimal γopt. According to many exploratory
experiments, λ = 0.01 can be chosen as the default.

Discussion 1: FCM is used as the basic unsupervised
method for clustering the complete patterns in Xcom in this
paper. In applications, many classical soft clustering algo-
rithms can be used for clustering. In traditional probability
frameworks, such as FCM [6], PCM [8] and NC [9], bayesian
probability is used to denote the possibility that patterns belong
to different singleton (specific) clusters. Nevertheless, the
framework of pattern classification is extended to the power-set
2Ω in belief functions theory, which allows the pattern to have
different BBAs for not only the different singleton (specific)
clusters but also the meta-clusters (such as ECM [10] and
CCM [11]). In this case, BPC only considers the BBAs that

5In this case, the γopt we get may not be the optimal value in the math-
ematical sense, but since the step size λ takes a small value, i.e.,λ = 0.01,
γopt can be approximated as the optimal value in practical applications. In
addition, we also give an alternative in Discussion 2.

the patterns are clustered into singleton clusters and regards
that the patterns clustered into meta-clusters are unreliable and
they are submitted directly to the set Xunr.

Discussion 2: In BPC, the optimal γopt is obtained by
equivalent step λ iteration, which may cause a lot of computa-
tional cost. In applications, one can obtain γopt by optimiza-
tion method. Specifically, a number of points are randomly
selected between γBel and γPl, and the corresponding Ψ(γs)
values can be calculated by Eq. (14). Then, the corresponding
relationships between γs and Ψ(γs) are used for curve fitting
and the fitting function Ψ(γs) = f(γs) can be obtained
through a variety of methods, such as MATLAB curve fitting
experiment. Finally, the optimal γopt can be gotten by finding
the extremum (minimum) point of the fitting function f(γs).

B. Decision-making of remaining patterns

Since we are concerned with uncertainty and imprecision
due to missing values rather than imputation methods, different
estimation strategies can in principle be chosen as potential
alternatives, and here we use one of the simplest and most
commonly used KNNI method [18]. In other words, missing
values of incomplete patterns are naturally estimated by the
neighbors with different weights defined in Eqs. (5)-(7). These
edited patterns with estimations and the unreliable patterns
thereby can be classified by the trained classifier Γ(·) defined
in Eq. (15). By doing this, one can obtain the probability
of these patterns belonging to different clusters. Generally,
the larger the value pij , the greater the probability that the
pattern xi belongs to cluster ωj . In this way, most of these
patterns can be submitted to specific clusters. However it
may also happen that the probability values of the pattern
being allocated to different clusters are very close, which
means that the pattern, called uncertain pattern, may be in
the overlapping areas of different clusters or the estimations
of missing values of the pattern are not accurate enough. If
forced to be classified into a singleton cluster, it will be result
a greater risk of misclassification. Therefore, a more cautious
method is needed to repartition these uncertain patterns to
characterize the uncertainty and imprecision caused by the lack
of information or missing values.

Based on the above analysis, we adopt a flexible and ad-
justable method based on the belief functions theory to repar-
tition uncertain patterns, which is an appropriate compromise
between the error rate and the imprecision rate by adjusting
parameter. For the uncertain pattern xi belonging to some
different singleton (specific) clusters (e.g., ωt and ωk) with
little difference in probability, we assume that there exists one
cluster, called the optimal meta-cluster Λi (i.e., Λi = ωt∪ωk)
for xi, composed of those singleton clusters (i.e., ωt and ωk).
The uncertain pattern xi then will be repartitioned again under
the editing framework Ωi = {ω1, ..., ωc,Λi} after finding the
optimal meta-cluster Λi.

For simplicity and notation convenience, we assume that
the most likely cluster is ωmax, that is pi(ωmax) = max{pij},
j = 1, 2, . . . , c. In the classification result, the cluster ωmax

with the biggest probability is denoted as:

pi(ωmax) = max{pi(ω1), · · ·, pi(ωc)}, (19)
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In practice, pi(ωj) may be very close to pi(ωmax), while
ωj and ωmax are different clusters. In such case, the pattern
can also potentially belong to ωj , and we should consider
all possible singleton clusters as potential solution. The set of
these clusters is considered as Λi i.e., the optimal meta-cluster
Λi, and it is defined by:

Λi = {ωmax∪, ...,∪ωj |pi(ωmax)− pi(ωj) < ε}, (20)

where ε has only a small adjustable threshold. The singleton
clusters in Λi are indistinguishable for the pattern xi under
the threshold ε. Inspired by [10], [11], we can repartition
the pattern xi by a distance-based rule to reduce the risk of
misclassification once obtaining the optimal meta-cluster Λi.

In traditional evidential clustering [10], [11], the belief de-
gree for one pattern belonging to different clusters (including
singleton cluster and meta-cluster) depends mainly on the
distance between the pattern and the cluster centers. The
smaller the distance between the pattern and the clustering
center, the higher the degree of belief that the pattern belongs
to the corresponding cluster. It is easy to see that the essence
of the degree of belief is the inverse distance relationship
between the pattern and the clustering center. Therefore, we
provide a distance-based rule here to classify the uncertain
patterns directly. The core is that the pattern xi will be
submitted to the cluster if the distance between the pattern
and the cluster center (including all singleton clusters and the
optimal meta-cluster Λi) is the smallest. Since the reliable
clustering centers have been obtained based on FCM, we
therefore define the Euclidean distance between the pattern
and the singleton cluster cluster as the distance, which is
similar as ECM [10] and CCM [11]. It should be noted
that the distance between the pattern and the optimal meta-
cluster Λi is depending not only on the Euclidean distance
between the pattern and the optimal meta-cluster center (i.e.
the mean value of the involved singleton cluster centers) but
also on the Euclidean distance between the pattern and all
the singleton cluster centers involved in the meta-cluster. The
distance d(xi,Λi) between the pattern xi and the optimal meta-
cluster Λi is calculated as follows:

d(xi,Λi) =

∑
ωk∈Λi

dik + d∗(xi,vΛi
)

|Λi|+ 1
, (21)

where vΛi =

∑
ωk∈Λi,|ωk|=1

vk

|Λi| , and vk is the center of the
singleton cluster ωk involved in Λi; d∗(xi,vΛi

) = ||xi − vΛi
||2

is the distance between xi and the center vΛi
of the optimal

meta-cluster Λi; |Λi| denotes the cardinality of Λi, that is, the
number of singleton clusters it contains.

After obtaining the distance between the uncertain pattern
xi and the clusters included in the editing framework Ωi, one
can easily partition xi into one singleton cluster (e.g., ωk) or
the optimal meta-cluster Λi. If the distance d(xi,Λi) is less than
the distance from xi to each singleton cluster center involved
in the meta-cluster Λi, BPC will partition xi into the optimal
meta-cluster Λi, denoted as:

Λi = {xi|d(xi,Λi) < min{dik}}, ωk ∈ Λi. (22)

It is important to note that although each uncertain pattern
has its corresponding optimal meta-cluster, it does not mean
that the pattern will be partitioned into the meta-cluster, since
the choice of the optimal meta-cluster is highly dependent on
the parameter ε. For uncertain pattern xi, xi will naturally be
submitted to the corresponding optimal meta-cluster Λi if the
value of ε is reasonable. By contrast, the pattern xi will still
be submitted to the singleton cluster that xi most likely to
belong to. The following is the guidance on the parameter ε.

2) Guideline for Choosing Meta-cluster Threshold ε: In
applications, the threshold of meta-cluster ε is mainly used
for the selection of meta-clusters in classification. ε plays an
important role in BPC. Thus, we will make some suggestions
on the adjustment of ε. The bigger ε value, the smaller
the number of patterns that are misclassified, but also the
more ambiguous classification results, that is, more patterns
belong to meta-clusters. Too small ε value, however, will
result in fewer patterns in the meta-cluster, but it may cause
more misclassifications for the imprecise patterns. Therefore,
ε should be tuned according to the imprecision degree that one
can accept under specific situations.

In order to clearly express the basic principle of BPC and
facilitate its popularization and application, the main steps are
given in Fig. 1.

The dataset X

The set Xcom  of 

complete patterns 

Soft clustering by 

FCM

K-nearest neighbors 

imputation

Membership of 

complete patterns 

mi
max(ωmax)≥γ

Y

Reliable patterns Unreliable patterns

N

Certain patternUncertain pattern

Distance-based rule

pi(ωmax)-pi(ωj)<ε
N

The output

The set Xinc  of 

incomplete patterns 

submitted

submitted

The chosen classifier
training

Y

Obtain γopt based on 

step iteration method

Cluster centers 

Figure 1: The flowchart of BPC method.

IV. EXPERIMENT APPLICATIONS
In this section, the performance of BPC will be tested using

real datasets and compared with mean imputation (MI) method
[15], K-nearest neighbors imputation (KNNI) method [17],
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[18], fuzzy c-means imputation (FCMI) method [19], [20], op-
timal whole strategy clustering with probabilistic information
granules (POCS) [21], fuzzy-based information decomposition
(FID) method [22] and locally linear approximation (LLA)
method [23]. In this paper, a relatively simple K-NN classifier
is selected as the standard classifier. To fully illustrate that
the implementation of BPC does not depend on the chosen
classifier, Support Vector Machine (SVM) [41] and Naive
Bayesian (NB) [42] methods are also used to test and evaluate
the BPC calculation. In addition to the adjusted parameters in
the experiments, other parameters are set to default values.
Since the introduction of meta-clusters, the error rate (Re),
imprecision rate (Ri), and benefit value are used as indicators
[11], [43]. The results in the experiments are the statistical
averages of the program execution 10 times.

A. Experiment 1
Twelve well-known real datasets available from UCI repos-

itory [12] to design the experiment. For these datasets, dif-
ferent proportions of incomplete patterns are designed. Each
pattern can have a different number (i.e. φ) of missing values,
and they are missing completely at random (MCAR). The
basic characteristics of the twelve datasets are presented in
table I, and all the detailed information can be found at
http://archive.ics.uci.edu/ml/.

Table I: Basic Information of The Used Datasets.
Data Classes Attributes Instances
Iris (Ir) 3 4 150
Seeds (Se) 3 7 210
Statlog (St) 2 13 270
Wine (Wi) 3 13 178
Vehicle (Ve) 4 18 846
Forest Type (FT) 4 27 523
Satimage (Sa) 7 36 6435
Segment (Seg) 7 19 2310
Texture (Te) 11 40 5500
Hayes (Ha) 3 5 160
Knowledge (Kn) 4 5 403
Abalone (Ab) 3 9 4174

Fig. 2 (a) - (l) exhibits the optimal threshold for adaptive
selection of reliable patterns from the real datasets. For these
datasets, we randomly choose 25% of the patterns for missing
attributes in diverse dimensions. Here the basic classifier K-
NN is adopted to classify the complete patterns where K = 13
and λ = 0.01. One can see that, for most datasets, the optimal
threshold γ ∈ [0.6, 0.95] can always be obtained within the
membership range (i.e., the error between classification results
and FCM clustering results is the smallest). For Forest Type,
Satimage, and Segment datasets, the number of classes of
reliable patterns will be smaller than that of the complete
datasets if the selected threshold is too large, which makes it
impossible to train a basic classifier for classification. Through
exploratory experiments, however, we can always find an
optimal threshold among the previously possible thresholds,
thus it will not affect the final results of the proposed method.
Also, other basic classifiers (SVM, NB) can be used to classify
reliable patterns with adaptive thresholds.

Table II shows the classification results of different methods
for the real datasets. We randomly choose 25% of the patterns
with missing values in distinct dimensions. One can see clearly
from Table II that BPC generally produces lower error rate
than the MI, KNNI, FCMI, POCS, FID and LLA methods,
but meanwhile it yields some imprecision in the result because
of the introduction of meta-cluster, which indicates that some
incomplete patterns are hard to be submitted to singleton
clusters due to the lack of discriminant information. Although
we estimate the missing values, the estimations are not a
complete substitute for the truth and inevitably introduce
uncertainty and errors. MI, KNNI, FCMI, POCS, FID and
LLA all classify patterns into singleton (specific) clusters,
which may cause the risk of misclassification for those patterns
distributed in the overlapping regions of different singleton
clusters or intermediate regions, e.g., due to missing values. By
contrast, the BPC submits some uncertain patterns to appro-
priate meta-clusters in a more cautious way thereby avoiding
the misclassification caused by inadequate information as far
as possible. With the increases of ε from ε = 0.2 to ε = 0.4,
one can see that the error rate decreases, while the imprecision
rate increases. In applications, ε can be adapted according to
the imprecision rate one can accept.

Table III illustrates the performance of BPC with different
classifiers, and ε = 0.3 is the default. One can observe that
the chosen classifier in BPC usually produce similar error
rates, which is lower than that of other methods, because
some “hard-to-classify” patterns are submitted to the relevant
meta-clusters automatically and reasonably. This experiment
presents that the implementation of BPC does not depend on
the selection of the chosen classifiers, and also illustrates the
potential of BPC in practical classification tasks. In addition,
when the number of missing patterns gradually increases, it
usually leads to an increase in the error rate. This is reasonable,
because the more attributes that are missing, the greater the
uncertainty in pattern classification, and thereby the greater the
likelihood of misclassification. In this case, one should more
cautiously in classifying the patterns included in meta-clusters.

B. Experiment 2

To further illustrate the effect of different parameters on the
performance of the BPC method, we allow K and ε to take
different values and the datasets with different missing rates
(i.e., 10%, 25%, 40%), respectively.

Fig. 3 (a) - (l) shows more intuitively and clearly the effect
of different K values of neighbors on KNNI, LLA, and BPC
methods classification results. The abscissa corresponds to K
values, ranging from 5 to 15, and the ordinate corresponds
to the mean of the error rate in the classification method,
denoted by [0, 1]. Among them, the nine complete datasets
shown in Fig. 3 are missing different dimension attributes in
25% of randomly chose patterns. The error rate of BPC with
different classifiers is much lower than that of other methods,
and the classification results of different K values change a
bit in K-NN, which further illustrates that the classification
performance is insensitive to the changing of K. This indicates
that the BPC method is robust to the choice of K values.
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(a) Iris data with φ = 2.
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(b) Seeds data with φ = 4.
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(c) Statlog data with φ = 6.
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(d) Wine data with φ = 10.
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(e) Vehicle data with φ = 10.
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(f) Forest type data with φ = 20.
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(g) Satimage data with φ = 20.
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(h) Segment data with φ = 10.
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(i) Texture data with φ = 10.
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(j) Hayes data with φ = 2.
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(k) Knowledge data with φ = 2.
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(l) Abalone data with φ = 4.

Figure 2: The optimal threshold γopt obtained by step iteration.

The results in Table IV clearly show that BPC has a lower
error rate because it introduces the concept of meta-cluster
under belief functions theory. In BPC, if we increase the
adjustment parameter from ε = 0.2 to ε = 0.4, this will lead
to a decrease in the error rate but also bring an increase in the
imprecision rate. Therefore, in applications, we should choose

a suitable compromise between the error rate and the impre-
cision according to the situation. The results show that the
known information is not sufficient to accurately classify the
patterns in the meta-clusters. Our tests and analyses illustrate
the interest in the unsupervised classification of incomplete
data based on belief function theory.
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Table II: The results of the used datasets with different ε values (In %).
Data φ MI KNNI FCMI POCS FID LLA BPC(ε=0.2) BPC(ε=0.3) BPC(ε=0.4)

Re Re Re Re Re Re {Re,Ri} {Re,Ri} {Re,Ri}
1 14.00 10.00 10.00 10.67 12.67 10.00 {8.67, 3.33} {6.00, 6.00} {4.67, 8.00}

Ir 2 15.33 10.67 10.00 11.33 16.00 10.00 {9.33, 2.67} {8.67, 3.33} {6.67, 6.67}
3 16.67 11.33 12.00 12.00 16.00 10.67 {10.00, 2.67} {8.67, 5.33} {7.33, 6.67}
2 13.33 10.48 10.48 10.48 14.29 10.95 {9.05 , 0.95} {7.14, 5.71} {6.67, 7.62}

Se 4 20.00 11.43 12.38 13.33 19.52 11.90 {10.95, 2.38} {8.10, 5.71} {8.10, 8.10}
6 24.76 16.19 15.71 17.38 27.14 20.48 {13.81, 5.24} {12.38, 7.62} {9.52, 12.86}
3 41.48 40.00 40.74 39.26 40.74 41.85 {38.52, 2.59} {37.41, 6.30} {34.44, 10.00}

St 6 42.59 42.59 42.59 41.58 42.22 42.59 {40.37, 3.70} {37.78, 7.78} {37.04, 10.00}
10 42.96 43.33 42.96 42.96 41.11 44.07 {41.11, 5.19} {38.52, 10.00} {37.41, 12.22}
3 33.71 32.02 34.27 34.27 34.27 33.15 {30.90, 1.12} {29.78, 3.93} {27.53, 6.74}

Wi 6 37.64 34.27 35.39 35.96 38.20 35.39 {32.02, 0.56} {29.78, 3.93} {28.65, 6.74}
10 44.94 37.08 38.76 39.89 44.38 41.57 {36.52, 2.25} {33.71, 6.74} {33.15, 10.11}
5 57.68 55.08 55.91 61.58 54.96 55.08 {53.43, 2.72} {52.60, 3.90} {52.01, 4.96}

Ve 10 57.68 55.44 57.45 62.36 57.21 55.44 {54.61, 2.01} {53.31, 4.02} {52.25, 5.44}
15 59.69 56.38 58.39 62.70 65.96 56.74 {54.61, 3.66} {53.55, 5.20} {52.36, 6.62}
5 21.80 22.18 21.80 22.37 23.71 21.99 {20.46, 3.25} {19.12, 6.12} {17.40, 8.41}

FT 10 22.18 22.37 21.99 22.60 25.62 22.18 {21.41, 2.68} {19.31, 5.16} {18.36, 7.46}
20 34.80 22.56 33.84 24.13 33.08 22.56 {22.37, 2.87} {20.65, 4.78} {19.69, 6.69}
10 32.73 30.63 32.39 30.86 33.13 30.63 {28.17, 1.60} {27.40, 2.81} {26.81, 3.85}

Sa 20 40.00 30.80 39.18 30.94 39.08 30.89 {28.36, 1.60} {27.52, 2.80} {26.84, 3.89}
30 52.40 31.02 51.64 33.46 52.88 31.33 {28.55, 1.68} {27.82, 2.74} {27.20, 3.89}
5 42.34 37.84 45.63 39.22 52.73 40.35 {35.28, 3.16} {33.81, 5.37} {32.64, 7.32}

Seg 10 51.39 38.53 51.39 42.42 54.81 38.74 {36.93, 2.73} {35.76, 4.85} {33.72, 7.45}
15 54.29 42.08 58.14 47.36 54.63 42.94 {38.57, 2.81} {37.62, 4.68} {35.11, 7.84}
5 39.02 38.09 39.07 35.80 39.05 38.09 {31.70, 2.55} {31.15, 3.58} {30.35, 4.78}

Te 10 41.35 38.15 40.87 38.35 47.22 38.09 {34.16, 2.09} {33.49, 3.13} {32.45, 4.62}
30 53.65 38.47 53.11 51.65 56.60 38.65 {34.22, 2.31} {33.64, 3.27} {32.51, 5.07}
1 56.06 56.82 56.06 56.06 53.79 58.33 {53.79, 4.55} {52.27, 8.33} {50.76, 12.12}

Ha 2 61.36 60.61 61.36 60.61 59.75 60.61 {57.68, 4.55} {55.30, 7.58} {54.55, 10.61}
3 61.36 60.61 61.36 62.12 62.12 61.36 {59.09, 2.27} {58.33, 6.82} {56.06, 11.36}
1 56.82 55.30 56.82 57.58 56.82 58.33 {53.79, 4.55} {51.52, 9.09} {50.00, 12.88}

Kn 2 59.85 59.85 59.85 59.09 57.58 60.61 {54.55, 5.30} {52.27, 10.61} {52.27, 12.88}
3 60.61 59.85 60.61 59.85 61.36 61.36 {56.06, 4.55} {54.55, 7.58} {51.52, 12.88}
2 49.35 48.59 48.25 48.90 49.59 48.54 {46.14, 3.35} {44.11, 6.71} {42.02, 10.04}

Ab 4 50.50 48.80 50.77 49.64 50.69 49.31 {46.21, 3.64} {44.39, 6.61} {42.48, 9.87}
6 51.77 48.66 50.91 52.16 51.65 49.50 {46.86, 2.06} {45.50, 4.46} {44.11, 6.73}

In order to show the performance of BPC more intuitively,
we employ the benefit value [43] to evaluate the results of
all methods, which is an index that can balance the error and
imprecision. It is interesting to note that when no patterns are
submitted to meta-clusters, the benefit value is equal to the ac-
curacy. the imprecision penalizing coefficient is recommended
to be within [0,1], we take the penalizing coefficient of 0.5
to test the effectiveness of BPC with respect to other related
methods. K-NN is chosen as the basic classifier. One can
see from Fig. 4 that the BPC generally yields higher benefit
value than other methods, which indicates that the imprecision
in meta-clusters is better than error in decision-making. The
BPC results clearly show that the attributes used in the real
datasets are not enough to correctly classify the patterns in
meta-clusters. We should be more cautious about these patterns
and need additional sources of information to achieve better
concrete results (if necessary).

V. CONCLUSION

In this paper, we propose a new belief-based incomplete
pattern unsupervised classification method (BPC), which aims
to reduce the negative effect of estimations on clustering and

characterize the imprecision in the results caused by missing
values. In BPC, we first obtain the real cluster centers by soft
clustering and thereby obtain the reliable patterns by a step
iteration method. Then the unreliable patterns and the edited
incomplete patterns are classified by a basic classifier trained
by the reliable patterns and thereby are regarded as certain or
uncertain ones. For uncertain patterns, a new distance-based
rule is introduced to further extract the cluster information, and
a few patterns may be submitted to meta-clusters which can
characterize the uncertainty and imprecision caused by missing
values and, from a cautious perspective, thereby reduce the risk
of misclassification. If one wants more accurate results, some
other (possibly expensive) technology or information source
should be introduced. The performance of BPC and other
classical methods is evaluated by using eleven datasets of UCI
repository. The results show that BPC can effectively reduce
the error rates and reasonably characterize the uncertainty and
imprecision caused by the missing attribute information.

In our work, we use single imputation based on the KNNI
method to estimate incomplete patterns, however, there is a
problem that the neighbors may belong to multiple clusters. In
the future, we will consider the correlation between attributes
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Table III: The results of the used datasets with different classifiers (In %).
Data φ MI KNNI FCMI POCS FID LLA BPCKNN BPCSVM BPCNB

Re Re Re Re Re Re {Re,Ri} {Re,Ri} {Re,Ri}
1 14.00 10.00 10.00 10.67 12.67 10.00 {6.00, 6.00} {4.67, 9.33} {6.67, 4.00}

Ir 2 15.33 10.67 10.00 11.33 16.00 10.00 {8.67, 3.33} {7.33, 7.33} {8.67, 0.67}
3 16.67 11.33 12.00 12.00 16.00 10.67 {8.67, 5.33} {7.33, 8.00} {10.00, 0.67}
2 13.33 10.48 10.48 10.48 14.29 10.95 {7.14, 5.71} {5.71, 10.00} {8.57, 1.43}

Se 4 20.00 11.43 12.38 13.33 19.52 11.90 {8.10, 5.71} {6.67, 11.43} {11.43, 0.48}
6 24.76 16.19 15.71 17.38 27.14 20.48 {12.38, 7.62} {8.57, 14.76} {13.81, 0.48}
3 41.48 40.00 40.74 39.26 40.74 41.85 {37.41, 6.30} {32.22, 13.70} {35.56, 4.07}

St 6 42.59 42.59 42.59 41.58 42.22 42.59 {37.78, 7.78} {34.81, 14.07} {37.78, 3.70}
10 42.96 43.33 42.96 42.96 41.11 44.07 {38.52, 10.00} {34.44, 16.30} {38.89, 5.93}
3 33.71 32.02 34.27 34.27 34.27 33.15 {29.78, 3.93} {26.97, 6.18} {27.53, 1.12}

Wi 6 37.64 34.27 35.39 35.96 38.20 35.39 {29.78, 3.93} {28.09, 7.30} {28.09, 1.12}
10 44.94 37.08 38.76 39.89 44.38 41.57 {33.71, 6.74} {30.34, 11.24} {32.02, 1.12}
5 57.68 55.08 55.91 61.58 54.96 55.08 {52.60, 3.90} {48.11, 10.87} {54.37, 0.71}

Ve 10 57.68 55.44 57.45 62.36 57.21 55.44 {53.31, 4.02} {49.05, 10.52} {55.67, 0.47}
15 59.69 56.38 58.39 62.70 65.96 56.74 {53.55, 5.20} {49.41, 11.47} {55.67, 0.71}
5 21.80 22.18 21.80 22.37 23.71 21.99 {19.12, 6.12} {14.53, 13.77} {17.59, 0}

FT 10 22.18 22.37 21.99 22.60 25.62 22.18 {19.31, 5.16} {14.72, 12.81} {17.59, 0.57}
20 34.80 22.56 33.84 24.13 33.08 22.56 {20.65, 4.78} {15.30, 14.53} {17.59, 0.96}
10 32.73 30.63 32.39 30.86 33.13 30.63 {27.40, 2.81} {22.87, 14.65} {28.72, 0.12}

Sa 20 40.00 30.80 39.18 30.94 39.08 30.89 {27.52, 2.80} {22.91, 15.09} {28.78, 0.20}
30 52.40 31.02 51.64 33.46 52.88 31.33 {27.82, 2.74} {22.94, 14.51} {29.01, 0.06}
5 42.34 37.84 45.63 39.22 52.73 40.35 {33.81, 5.37} {28.05, 15.63} \

Seg 10 51.39 38.53 51.39 42.42 54.81 38.74 {35.76, 4.85} {29.09, 15.50} \
15 54.29 42.08 58.14 47.36 54.63 42.94 {37.62, 4.68 } {29.61, 16.88} \
5 39.02 38.09 39.07 35.80 39.05 38.09 {31.15, 3.58} {29.11, 12.96} {36.41, 0.05}

Te 10 41.35 38.15 40.87 38.35 47.22 38.09 {33.49, 3.13} {29.15, 13.60} {37.16, 0.22}
30 53.65 38.47 53.11 51.65 56.60 38.65 {33.64, 3.27} {29.42, 13.38} {37.42, 0.20}
1 56.06 56.82 56.06 56.06 53.79 58.33 {52.27, 8.33} {53.03, 6.82} {53.03, 3.03}

Ha 2 61.36 60.61 61.36 60.61 59.75 60.61 {55.30, 7.58} {53.79, 11.36} {56.06, 4.55}
3 61.36 60.61 61.36 62.12 62.12 61.36 {58.33, 6.82} {56.82, 9.09} {59.09, 1.52}
1 56.82 55.30 56.82 57.58 56.82 58.33 {51.52, 9.09} {49.24, 11.36} {53.79, 4.55}

Kn 2 59.85 59.85 59.85 59.09 57.58 60.61 {52.27, 10.61} {53.03, 9.85} {52.27, 3.03}
3 60.61 59.85 60.61 59.85 61.36 61.36 {54.55, 7.58} {53.79, 10.61} {56.82, 5.3}
2 49.35 48.59 48.25 48.90 49.59 48.54 {44.11, 6.71} {38.67, 16.12} {45.60, 2.40}

Ab 4 50.50 48.80 50.77 49.64 50.69 49.31 {44.39, 6.61} {40.99, 12.87} {46.14, 2.56}
6 51.77 48.66 50.91 52.16 51.65 49.50 {45.50, 4.46} {39.17, 15.57} {46.43, 1.73}

and adopt multiple imputation strategies to reduce the negative
effect of misestimations as much as possible. In the long-term,
we hope to establish an adaptive estimation strategy in the
clustering task and to reasonably characterize the uncertainty
and imprecision caused by missing values.
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(a) Iris data with φ = 2.
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(b) Seeds data with φ = 2.
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(c) Statlog data with φ = 6.
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(d) Wine data with φ = 10.
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(e) Vehicle data with φ = 10.
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(f) Forest type data with φ = 20.
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(g) Satimage data with φ = 20.
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(h) Segment data with φ = 10.
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(i) Texture data with φ = 10.
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(j) Hayes data with φ = 2.
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(k) Knowledge data with φ = 2.
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(l) Abalone data with φ = 4.

Figure 3: The results of the used datasets with different K values.
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Table IV: Thre results of the used datasets with different missing rates under different ε (In %).

Data φ missing MI KNNI FCMI POCS FID LLA BPC(ε=0.2) BPC(ε=0.3) BPC(ε=0.4)
% Re Re Re Re Re Re {Re,Ri} {Re,Ri} {Re,Ri}
10 11.33 8.67 8.67 8.67 12.00 8.00 {7.33, 2.67} {5.33, 6.67} {4.67, 7.33}

Ir 2 25 15.33 10.67 10.00 11.33 16.00 10.00 {9.33, 2.67} {8.67, 3.33} {6.67, 6.67}
40 18.67 13.33 13.33 12.92 18.67 14.00 {10.00,5.33} {8.67,8.00} {7.33,10.67}
10 14.29 9.52 10.95 10.76 15.71 10.00 {8.10, 4.29} {7.62, 5.24} {7.14, 7.14}

Se 4 25 20.00 11.43 12.38 13.33 19.52 11.90 {10.95, 2.38} {8.10, 5.71} {8.10, 8.10}
40 27.62 15.24 17.62 17.86 21.90 15.24 {12.38, 4.29} {11.90, 6.19} {10.00, 9.52}
10 40.37 40.37 40.74 40.37 41.11 40.74 {37.78, 3.33} {37.04, 5.93} {36.30, 7.41}

St 6 25 42.59 42.59 42.59 41.58 42.22 42.59 {40.37, 3.70} {37.78, 7.78} {37.04, 10.00}
40 44.44 41.85 44.07 42.22 44.81 43.33 {40.74, 4.81} {38.52, 8.89} {37.04, 12.22}
10 34.27 30.34 32.58 32.02 33.15 30.34 {29.21, 2.25} {29.21, 2.81} {26.40, 7.30}

Wi 6 25 44.94 37.08 38.76 39.89 44.38 41.57 {36.52, 2.25} {33.71, 6.74} {33.15, 10.11}
40 47.75 40.45 42.13 41.76 42.70 40.45 {38.20, 5.06} {35.39, 11.80} {34.83, 12.92}
10 56.86 54.61 55.79 61.58 55.56 54.73 {53.43, 2.72} {52.48, 3.78} {51.77, 4.61}

Ve 10 25 57.68 55.44 57.45 62.36 57.21 55.44 {54.61, 2.01} {53.31, 4.02} {52.25, 5.44}
40 66.08 56.15 58.51 62.41 60.76 55.56 {55.20, 1.06} {54.26, 2.13} {53.43, 3.55}
10 24.67 21.03 24.47 22.33 24.09 20.84 {21.99, 1.72} {21.03, 3.44} {18.74, 7.65}

FT 10 25 34.80 22.56 33.84 24.13 33.08 22.56 {21.41, 3.25} {19.69, 5.35} {18.93, 6.88}
40 49.71 24.09 47.23 26.54 37.48 23.71 {22.37, 3.82} {21.61, 5.54} {19.89, 8.03}
10 34.76 30.64 34.25 30.72 34.09 30.72 {28.10, 1.35} {27.26, 2.53} {26.45, 3.85}

Sa 20 25 40.00 30.80 39.18 30.94 39.08 30.89 {28.36, 1.60} {27.52, 2.80} {26.84, 3.89}
40 51.93 30.88 51.30 31.36 51.90 30.97 {28.24, 1.62} {27.20, 3.01} {26.39, 4.21}
10 40.69 38.01 40.78 40.04 51.90 37.10 {36.32, 2.55} {34.94, 4.46} {32.99, 7.32}

Seg 10 25 51.39 38.53 51.39 42.42 54.81 38.74 {36.93, 2.73} {35.76, 4.85} {33.72, 7.45}
40 54.42 41.65 55.02 48.54 55.24 41.56 {37.92, 4.63} {35.80, 7.44} {34.99, 8.61}
10 39.20 38.00 38.98 36.00 37.35 38.05 {32.20, 2.80} {31.47, 3.95} {30.67, 5.16}

Te 10 25 41.35 38.15 40.87 38.35 47.22 38.09 {34.16, 2.09} {33.49, 3.13} {32.45, 4.62}
40 46.47 37.91 45.16 45.20 53.44 37.87 {35.04, 1.82} {34.13, 3.31} {32.75, 5.71}
10 58.33 57.58 58.33 57.58 56.06 57.58 {56.82, 3.03} {53.79, 7.58} {50.76, 12.12}

Ha 2 25 61.36 60.61 61.36 60.61 59.75 60.61 {57.68, 4.55} {55.30, 7.58} {54.55, 10.61}
40 63.64 61.36 62.12 61.36 59.85 63.64 {58.33, 6.06} {55.30, 12.12} {54.55, 12.88}
10 56.82 57.58 56.82 58.33 57.58 56.82 {53.79, 3.79} {52.27, 6.82} {49.24, 11.36}

Kn 2 25 59.85 59.85 59.85 59.09 57.58 60.61 {54.55, 5.30} {52.27, 10.61} {52.27, 12.88}
40 59.09 62.88 61.36 59.85 57.58 61.36 {56.82, 5.30} {54.55, 10.61} {53.03, 12.88}
10 48.40 48.63 49.19 49.11 49.38 48.75 {46.17, 3.59} {44.20, 6.88} {42.43, 9.99}

Ab 4 25 50.50 48.80 50.77 49.64 50.69 49.31 {46.21, 3.64} {44.39, 6.61} {42.48, 9.87}
40 52.16 48.95 51.03 50.34 51.96 49.40 {47.20, 2.00} {45.78, 4.31} {44.25, 6.88}
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(a) Iris data with φ = 2. (b) Seeds data with φ = 2. (c) Statlog data with φ = 6.

(d) Wine data with φ = 10. (e) Vehicle data with φ = 10. (f) Forest type data with φ = 20.

(g) Satimage data with φ = 20. (h) Segment data with φ = 10. (i) Texture data with φ = 10.

(j) Hayes data with φ = 2. (k) Knowledge data with φ = 2. (l) Abalone data with φ = 4.

Figure 4: The benefit values of the used datasets with different missing rates.
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