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Abstract: For unicycle robots and an arbitrary continuous reference tracking controller, we
propose a control augmentation providing obstacle avoidance properties. The avoidance control
law is activated in an eye-shaped neighborhood around an obstacle and guarantees that a
specified domain around the obstacle is not entered. Switching between different control laws
is orchestrated through a hybrid systems framework and Zeno behavior is avoided through
appropriate hysteresis regions. Since the size of the eye-shaped neighborhood and its orientation
depend continuously on the orientation and velocity of the robot, it can be guaranteed that the
velocity input of the overall control law is continuous. Numerical simulations are provided to
illustrate the performance of the tracking controller endowed with the avoidance augmentation.

Keywords: obstacle avoidance and reference tracking; controller design for hybrid systems

1. INTRODUCTION

Robot navigation, path planing and obstacle avoidance
have been largely investigated in the past 20-30 years as
well surveyed, for example, in Hoy et al. (2015); Sgorbissa
and Zaccaria (2012). The corresponding algorithms are
often classified in two families of motion planning and
reactive algorithms, the latter ones essentially addressing
unexpected or unplanned obstacle scenarios.

While many existing works address motion planning ac-
counting for known obstacles, a system theoretic approach
addressing avoidance of unexpected obstacles (the “reac-
tive” paradigm) is rarely found in the literature, especially
when seeking for rigorous guarantees of combined avoid-
ance and target stabilization. Among other things, due to
the bounded nature of obstacles, topological obstructions
well commented in Sontag (1999) and Braun and Kellett
(2020), among others, should be taken into account if
wanting global guarantees associated with the avoidance
algorithms.

An important field where this problem has been suc-
cessfully addressed is that of collision avoidance in un-
derwater systems (see Wiig et al. (2020, 2019) and refer-
ences therein) and surface marine vessels (see Johansen
et al. (2016) and references therein). Nonetheless, those
approaches typically focus on smooth neighborhoods of
the obstacle to be avoided (circles or spheres), thereby
not directly addressing the hybrid (turn left or right)
nature of the “avoidance” decision. A related approach is
discussed in Chunyu et al. (2010), for example, where the
authors switch between target set stabilizers and obstacle
avoidance control laws when a ball around the obstacles is
entered or left. While the approach is applicable to static
and moving obstacles, the control law leads to chattering
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when the controller switches, which is avoided through
the hybrid setting discussed here. Similarly, the papers
Matveev et al. (2011) and Matveev et al. (2013) describe
related approaches, where the robot travels with a con-
stant speed and the input defining the angular velocity
switches between tasks such as target set stabilization and
obstacle avoidance. More closely related to our paradigm,
Chen et al. (2017) uses barrier functions with a polytopic
approach by taking into account acceleration constraints,
which are not accounted for, in the simple suboptimal
solution derived here.

In this paper we extend hybrid ideas from our previous
work Braun et al. (2020) and Braun et al. (2019), aug-
menting an existing controller with an obstacle avoidance
controller in a “reactive” fashion. The individual control
laws are orchestrated through a hybrid systems framework
to ensure that the overall system is well-defined and sat-
isfies certain desirable properties in terms of absence of
chattering and well-posed hybrid dynamics. Moreover, the
controller preserves the properties of an arbitrary (pre-
defined) tracking feedback, while the augmented avoid-
ance controller only operates locally, close to the obstacle.
Instead of discussing general linear systems as in Braun
et al. (2020) and Braun et al. (2019), here, results on
reference tracking and combined obstacle avoidance for
unicycle models is addressed. Our avoidance controller is
constructed based on barrier functions whose level sets
resemble eye-shaped sets in form of a shell containing the
obstacle in its interior. The shell changes its orientation
with the orientation of the unicycle and the avoidance
controller is activated based on the proximity to the obsta-
cle and the velocity of the robot. Moreover, the shell size
is scaled with the size of the forward velocity, so that a
reasonable avoidance maneuver is enforced, depending on
the traveling speed of the robot. Designing the controller
based on a shell around the obstacle instead of a circle
decreases the angle between the orientation of the unicycle



and the tangent vectors on the boundary of the shell.
This construction reduces the impact of switching between
control laws and allows us to define a continuous forward
velocity input even in cases where the hybrid controller
switches from reference tracking to obstacle avoidance.

The paper is structured as follows. Section 2 introduces
the setting and discusses the problem addressed in this
paper. In Section 3 the avoidance neighborhood is made
precise and the intuition behind the overall controller is
explained before a rigorous derivation of the avoidance
control law is given in Section 4. In Section 5 the controller
is embedded in the hybrid systems framework before
numerical results of the overall closed-loop system are
illustrated in Section 6. The paper ends with concluding
remarks in Section 7.

Throughout the paper, the following notation is used.
The set {−1,+1} is replaced by {±1}. For x ∈ Rn, | · |
denotes the Euclidean norm, i.e., |x| :=

√
x>x. ForA ⊂ Rn

its closure is denoted by A. For r > 0 and x ∈ Rn we define
Br(x) := {y ∈ Rn| |y − x| < r}. In addition to the sign-
function, which satisfies sign(0) = 0 by assumption, we
consider a slight variation of the form

s(r) ∈
{

sign(r), if r 6= 0,
{±1} = {−1, 1}, if r = 0.

(1)

For m ∈ R≥0, the ensuing saturation is defined as

satm(v) =

{
v, for |v| ≤ m,

sign(v)m, for |v| ≥ m.
For φ ∈ R and φ = π/2 we consider the rotation matrices

R(φ) =
[

cos(φ) − sin(φ)
sin(φ) cos(φ)

]
and J =

[
0 −1
1 0

]
.

The matrix R(φ) satisfies R(φ)−1 = R(φ)> = R(−φ)
and R(φ1 + φ2) = R(φ1)R(φ2) = R(φ2)R(φ1) for all
φ, φ1, φ2 ∈ R. The time derivative of R(φ) satisfies

Ṙ(φ) =
[
− sin(φ) − cos(φ)

cos(φ) − sin(φ)

]
φ̇ = R(φ)Jφ̇ = JR(φ)φ̇. (2)

2. SETTING & PROBLEM FORMULATION

Consider the dynamics of a standard unicycle (see
(Tzafestas, 2013, Section 2.3.1), for example)

ẋ =

ṗ1

ṗ2

φ̇

 = f(x, u) :=

[
v cos(φ)
v sin(φ)
w

]
=

 vR(φ)

[
1
0

]
w

 (3)

with state x := [p1, p2, φ]> ∈ R3 and input u := [v, w]> ∈
R2. Additionally, p = [p1, p2]> is used to denote the
position without the orientation φ in the following. By
assumption, the inputs are bounded, i.e.,

v ∈ [−v̄, v̄], w ∈ [−w̄, w̄] and U := [−v̄, v̄]× [−w̄, w̄]

for v̄, w̄ ∈ R>0. The solution of (3) with respect to an
initial condition x0 ∈ R3 and input u : R≥0 → U is denoted
by t 7→ x(t;x0, u). If the initial condition and the input are
clear from the context, they may be omitted.

Consider a tracking controller, ensuring that the robot
follow a reference trajectory. While the results derived
in this paper are independent of the specific tracking
controller, we use in our simulation results a particular
controller described in (Tzafestas, 2013, Section 5.4) as an
example for the remainder of this paper. For a given input
uref the reference signal is defined through a copy of the
dynamics

ẋref = f(xref , uref). (4)

To obtain the control law, we introduce the error vari-
ables 1 x̃ = x− xref and the rotated error variables

p̃rot = R(φ)>p̃, φ̃rot = φ̃. (5)

With these definitions, for k1, k2, kφ ∈ R>0, the tracking
controller used here is given by

utr =

[
vtr

wtr

]
=

[
−k1p̃1,ref + vref cos(φ̃rot)

−kφ sin(φ̃rot)− k2vref p̃2,rot + wref

]
. (6)

We refer to (Tzafestas, 2013, Section 5.4) for a derivation
of the control law (6) and for its convergence properties.
The control law (6) is not necessarily feasible. To obtain a
feasible input with respect to U we consider the saturated
tracking controller

uts =

[
vts

wts

]
=

[
satv̄(vtr)
satw̄(wtr)

]
(7)

which is feasible by construction, coincides with (6) in
the case utr ∈ U and preserves locally good convergence
properties.

The control law (7) represents a generic tracking con-
troller. The main contribution of this paper is to augment
(7) with an avoidance controller that preserves asymp-
totically the properties of the original control law while,
in addition, guaranteeing obstacle avoidance. The control
laws are coordinated through a hybrid switching strategy.
By design, the overall controller preserves certain conti-
nuity and robustness properties of the individual control
laws and ensures that the avoidance controller acts only
locally. The avoidance controller is discussed in detail in
the following sections.

3. AVOIDANCE NEIGHBORHOODS & INTUITIVE
CONTROLLER DESIGN

When the robot (3) is close to an obstacle, where “close
to” is made mathematically precise later in this paper,
the input u switches from the nominal tracking control
law (7) to an avoidance controller. In this section we
illustrate the neighborhood around the obstacle where this
switching happens. Then, the core intuition behind the
overall control law is explained.

3.1 The avoidance neighborhood

We consider obstacles centered at a point c ∈ R2

in the position plane p. Additionally, we consider two
shifted points cq = cq(φ, `), q ∈ {±1}, depending on the
orientation φ and the time dependent length ` ∈ R>0,
which is adjusted online, depending on the magnitude of
|vts| of the speed commanded by the tracking controller,
according to the following law

`(vts) := max
{
`min,min

{
`max,

1
w̄ |vts|

}}
, (8)

where `max > `min > 0 are some predefined bounds
on the minimum and maximum shift, ensuring that ` ∈
[`min, `max].

Based on the selection of `(vts) in (8), points c+1 and
c−1 are defined as

cq := c− q`(vts)R(φ) [ 0
1 ] , q ∈ {±1}, (9)

i.e., c+1 and c−1 are shifted versions of c rotated by φ and
at a distance |c − cq| = |`(vts)|, q ∈ {±1} in the position
p-plane (see Fig. 1).

1 We deviate from the presentation in (Tzafestas, 2013, Section 5.4),
which uses x̄ = xref − x instead.



With the definition of cq in (9), we introduce the barrier
functions

Bq(x) := 1
2 |p− cq|

2, q ∈ {±1}, (10)

which penalize the distance to cq. The dependence of Bq
on `(vts) is omitted for simplicity in definition (10). Fig. 1
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Fig. 1. Level sets of the functions B−1 (blue) and B+1 (red) for
c = [1, 1]>, ` = 1

2
and φ = 0 (left) and φ = 3

4
π (right). The

robot is located at the origin with the orientation given by the
arrow.

shows the level sets of Bq, q ∈ {±1} for φ = 0 (left) and
φ = 3

4π (right), for the case c = [1, 1]> and ` = 1
2 .

The intersection of the sublevel sets of B+1 and B−1

forms an eye-shaped neighborhood of c resembling a shell.
In particular, for any constant parametric “size” s > 0
satisfying s ≤ `min, and any φ, `, we define the shell

Sφs (`) :=
{
p ∈ R2

∣∣Bq(x) ≤ 1
2 (`+ s)2, ∀ q ∈ {±1}

}
.

Moreover, for any pair of constant parameters r, s satisfy-
ing 0 < r < s ≤ `min, we define an inner and an outer shell
with the properties c ∈ Sφr (`) ⊂ Sφs (`) ⊂ R2.

These two eye-shaped shells rule the hysteresis switching
mechanism of our obstacle avoidance law. For a fixed
φ ∈ R, define the functions ηφc , δ

φ
c : R2 → R,

ηφc (p) = [ 0 1 ]R(φ)>(p− c)
= − sin(φ)(p1 − c1) + cos(φ)(p2 − c2),

(11)

δφc (p) = [ 1 0 ]R(φ)>(p− c)
= cos(φ)(p1 − c1) + sin(φ)(p2 − c2),

(12)

the first one being zero on the longitudinal axis and the
second one being zero on the lateral axis of the shell (see
Fig. 2). Moreover, ηφc and δφc divide the (p1, p2)-plane in
four quadrants.

0.5 1 1.5

0.5

1

1.5

ηφc (p) ≤ 0 ηφc (p) ≤ 0

ηφc (p) ≥ 0 ηφc (p) ≥ 0

δφc (p) ≤ 0 δφc (p) ≥ 0

δφc (p) ≤ 0 δφc (p) ≥ 0

Sφr (`) ⊂ Sφs (`)

Fig. 2. While ηφc indicates whether the robot is at the left or the

right of the obstacle, δφc indicates whether the obstacle is ahead
or behind the robot. Additionally, the inner and outer shells
Sφr (`), Sφs (`), for parameters 0 < r < s ≤ `min are shown.

Before we continue with a rigorous definition of the
avoidance control laws, we highlight connections between
the definitions in this section leading to the intuition
behind the avoidance controller. For r > 0 fixed, for all
φ ∈ R, the shell Sφr (`) (and thus also the obstacle itself)
satisfies

Sφr (`) ⊂ {p ∈ R2| Bq(x) ≤ 1
2 (`+ r)2} ∀ q ∈ {±1}.

Thus, if the initial state satisfies p(0) /∈ Sφ(0)
r (`) and

φ(0) ∈ R, it is sufficient to guarantee that, on the correct
boundary, we have

〈∇Bq(x), f(x, u)〉 ≥ 0, q ∈ {±1}, (13)

for a suitable q ∈ {±1}, to ensure that p(t) /∈ Sφr (`) for
all t ∈ R≥0. Due to this reason, we characterize below the
left-hand side of (13). We only focus on the case where
`(vts) is constant, because we will clarify later that ` is
held constant during the whole avoidance phase.

Lemma 1. Assume that ` = ¯̀ ∈ R>0 is constant. Then,
the gradient of Bq defined in (10) satisfies

〈∇Bq(x), f(x, u)〉 = (v − q ¯̀w)δφc (p) (14)

for q ∈ {±1}. y

Proof. Let q ∈ {±1} and ¯̀ > 0 be fixed. Since
R(φ)>R(φ) = I, using (7), function Bq(x) in (10) can
be expressed as

Bq(x) = 1
2

(
p− c+ q ¯̀R(φ) [ 0

1 ]
)> (

p− c+ q ¯̀R(φ) [ 0
1 ]
)

= 1
2 (p− c)> (p− c) + 1

2
¯̀2 + q ¯̀(p− c)>R(φ) [ 0

1 ] .

Thus, using (2), it holds that

〈∇Bq(x), f(x, u)〉
= ṗ>(p− c) + q ¯̀ṗ>R(φ) [ 0

1 ] + q ¯̀(p− c)>R(φ)Jφ̇ [ 0
1 ]

= v
[

cos(φ)
sin(φ)

]>
(p− c) + q ¯̀v

[
cos(φ)
sin(φ)

]> [− sin(φ)
cos(φ)

]
+ q ¯̀w (p− c)>R(φ)

[−1
0

]
= (v − q ¯̀w) [ 1 0 ]R(φ)>(p− c) = (v − q ¯̀w)δφc (p),

which completes the proof. 2

Based on (14), if the input (v, w) is selected so that
v− q ¯̀w = 0, then the distance between the robot and the
point cq is constant and the non-decrease condition (13)
is satisfied. The following lemma motivates the definition
of Bq, q ∈ {±1}, and shows that (13) can be used to
guarantee that a neighborhood around c is avoided.

Lemma 2. Let r, ¯̀ ∈ R>0, q ∈ {±1} and u : R≥0 → U .
Moreover, let x0 ∈ R3 satisfy Bq(x0) ≥ 1

2 (¯̀ + r)2 and

assume that d
dtBq(x(t; , x0, u(t))) ≥ 0 for almost all t ∈

R≥0. Then |p(t;x0, u(t))− c| ≥ r for all t ≥ 0. y

Proof. It is sufficient to show that the set Br(c) × R is
contained in the sublevel set {x ∈ R3| Bq(x) ≤ 1

2 (¯̀+ r)2}.
Then the conditions on x0 and on p(·;x0, u(·)) ensure that
x(t;x0, u(t)) /∈ Br(c)×R for all t ≥ 0. An arbitrary element
in Br(c) can be represented as p̃ = c+rR(ϕ) [ 1

0 ] for ϕ ∈ R.
Thus for x = [p̃>, φ]>, φ ∈ R, with cq as in (9), it holds
that

Bq(x) = 1
2 (p̃− cq)>(p̃− cq)

= 1
2 (rR(ϕ) [ 1

0 ] + q ¯̀R(φ) [ 1
0 ])>(rR(ϕ) [ 1

0 ] + q ¯̀R(φ) [ 1
0 ])

= r2

2 [ 1 0 ]R(ϕ)>R(ϕ) [ 1
0 ] +

¯̀2

2 [ 1 0 ]R(φ)>R(φ) [ 1
0 ]

+ rq ¯̀[ 1 0 ]R(ϕ)>R(φ) [ 1
0 ] ≤ r2

2 +
¯̀2

2 + r ¯̀= 1
2 (¯̀+ r)2

which completes the proof. 2

3.2 Intuitive controller design

The controller proposed in this paper switches among
three operating modes, with a hysteresis switching mecha-
nism depending on the position p and the orientation φ. In
particular, the first mode comprises the tracking controller



uts in (7), and the second and third mode comprise an
avoidance controller uav that can be split in an emergency
mode uem and a recovery mode ure.

A precise definition of the avoidance controller is derived
in Section 4. Here we give an intuitive interpretation of
the three control modes under the simplifying assumption
that vts ≥ 0 (namely the tracking controller never moves
backwards), to best deliver the message about the design
intuition. In the actual control law of Sections 4 and 5,
this simplification is not made.

Tracking mode. The tracking controller uts is active

when p ∈ R2\Sφs (`(vts)) is satisfied. This implies that the
obstacle does not affect the control input selection outside
the outer shell Sφs (`(vts)). y

Emergency mode. Under the assumption that vts ≥ 0,
the first avoidance mode corresponds to selection

vav := satv̄w(vts), v̄w := min{v̄, ¯̀w̄} (15)

uem =

[
vav

qvav/¯̀

]
, with q ∈ {±1}, (16)

where q is selected based on the position of the robot, i.e.,
if the robot is at the left or the right of the obstacle as
depicted in Fig. 2. For 0 < r < s, the emergency mode is
activated when the inner shell Sφr (`(vts)) is reached by the
position p, and then `(vts) is sampled and held as ¯̀ and
this mode remains active until the robot leaves the set
{p ∈ Sφs (¯̀)| δφc (p) ≤ 0}, namely with reference to Fig. 2
either the outer shell Sφs (¯̀) is left (and then the tracking
mode is enabled) or the half-shell behind the obstacle is
left the robot overtakes the obstacle so that δφc (p) ≥ 0 (and
the recovery mode is enabled).

Based on (14), we observe that the emergency mode
(16) ensures that 〈∇Bq(x), f(x, uem)〉 = 0 holds, while
the saturation level v̄w guarantees feasibility. Therefore
the emergency mode ensures that the shell Sφr (¯̀) is never
entered when the robot is heading towards the obstacle at
the expense of sacrificing reference tracking. y

Recovery mode. In this case ure is defined as

ure =

[
vav

satvav/
¯̀
(wts)

]
, (17)

where v? is again defined in (15). Note that the recovery
mode is independent of q ∈ {±1}.

The recovery controller is activated when δφc (p) changes
its sign, i.e, when the obstacle is left behind and δφc (p)
becomes positive, while the robot is still within the outer
shell. More precisely, the recovery mode remains active in
the set {p ∈ Sφs (¯̀)| δφc (p) ≥ 0} and ensures that

〈∇Bq(x), f(x, ure)〉 ≥ 0 (18)

for all possible tracking inputs (vts, wts). Thus, in the
worst case 〈∇Bq(x), f(x, ure)〉 = 0 (obstacle avoidance)
is guaranteed. Possibly, if 〈∇Bq(x), f(x, ure)〉 increases

sufficiently over time, p will reach the set R2\Sφs (¯̀) and
the controller switches back to the tracking mode. y

The switching among the different modes is made pre-
cise in Section 5 via a hybrid formalism Goebel et al.
(2012). Before that, we describe more rigorously the avoid-
ance control law, in the next section.

4. OBSTACLE AVOIDANCE CONTROLLER DESIGN

In this section we derive the avoidance controller uav.
Along with the derivation we point out properties of

the corresponding modes and motivate the particular
input selections. Throughout this section, and during any
avoidance maneuver, we freeze the parameter ` > 0 to
a constant value ¯̀ > 0 decided at the beginning of the
emergency mode.

4.1 A minimally invasive avoidance control law

Based on the discussion so far, a justified approach for
the design of the avoidance control law uav is to consider
the optimization problem

u? = argmin
u∈U

1
2 (v − vts)

2 + k
2 (w − wts)

2

s. t. (v − q ¯̀w)δφc (p) ≥ 0,
(19)

where k ∈ R>0 denotes a weighting factor and u? =
[v?, w?]> denotes the optimal solution depending on
(x, q, uts) ∈ R3 × {±1} × R2.

Feasibility of the optimization problem (19) is trivially
satisfied through v = w = 0. Moreover, since the objective
function is strongly convex and the feasible domain is
convex and compact for all (x, q, uts) fixed, the optimal
solution u? is unique. The objective function penalizes
the deviation from the nominal tracking controller and
thus u? can be considered to be minimally invasive. The
constraints ensure that the input bounds u? ∈ U be
satisfied and that the non-decrease condition (13) (see also
(14)) be satisfied too.

While the solution of (19) implicitly defines a control
law, an explicit expression of u? can be obtained through
quadratic multiparametric programming (Bemporad et al.
(2002)). In particular, the inequality constraint capturing
(13) can be replaced by

(v − qw ¯̀)α ≥ 0, α ∈ {0,±1}, q ∈ {±1}, (20)

depending on the sign α = sign(δφc (p)). Then, under
the assumption that α and q are fixed, the optimization
problem (19) can be written in form of the quadratic
multiparametric program

u?q,α = argmin
u∈U

1
2 (v − vts)

2 + k
2 (w − wts)

2

s. t. αv − (αq ¯̀)w ≥ 0,
(21)

in the unknowns (v, w) and with parameters (vts, wts) ∈
[−v̄, v̄] × [−w̄, w̄]. The multiparametric program (21)
can be solved efficiently offline through Yalmip (Löfberg
(2004)), and the Mult-Parametric Toolbox (Herceg et al.
(2013)) in Matlab. To obtain an explicit expression of the
optimal solution, (21) needs to be solved six times for all
the possible values of α ∈ {0,±1} and q ∈ {±1} and
from the optimal solution computed offline the avoidance
control law

µq(x, uts) =


u?q,−1(uts), if α = sign(δφc (p)) = −1,

u?q,0(uts), if α = sign(δφc (p)) = 0,

u?q,+1(uts), if α = sign(δφc (p)) = 1,

(22)

for q ∈ {±1}, can be defined and stored. Control law (22)
satisfies the following properties.

Lemma 3. For any q ∈ {±1} and any ¯̀> 0, the feedback
law (22) is a piecewise linear function of (x, uts) ∈ R3×U .
Moreover, (22) is continuous at any point (x, uts) ∈ R3×U
satisfying δφc (p) 6= 0. y

Proof. The result follows immediately from (Bemporad
et al., 2002, Theorem 4.2). In particular, since (21) is
a quadratic multiparametric program for α and q fixed,



u?q,α(·) is continuous and piecewise linear. This implies
continuity of the control law µq, q ∈ {±1}, whenever
α 6= 0, or equivalently δφc (p) 6= 0. 2

Lemma 4. For q ∈ {±1} and ¯̀> 0 consider an arbitrary
tracking controller input uts : R≥0 → U . Let x0 ∈ R3 be
such that Bq(x0) ≥ 1

2 (¯̀+ r)2 for r > 0 and let x(·;x0, uts)
denote the closed-loop solution using the feedback law
(22). Then, |p(t;x0, uts)− c| ≥ r for all t ∈ R≥0. y
Proof. The result follows from Lemma 2 and by design
of the control law (22) whose constraints in (19) ensure
condition (13). 2

The control law (22) is well-defined for all pairs (x, uts).
While in theory (22) has nice properties, i.e., the control
law guarantees avoidance and is continuous for x ∈ R3

excluding a set of measure zero, numerically the control
law may not behave well due its discontinuity at [p>, φ]> ∈
R3 with δφc (p) = 0. In a numerical simulation δφc (p) = 0 is
unlikely to be satisfied. One might argue that for |δφc (p)|
arbitrarily small the violation of the increase condition
(13) is arbitrarily small and that {x ∈ R3|δφc (p) = 0} is
only a set of measure zero. However, the optimal control
law (22) may guarantee that d

dtB(x(t)) = 0 is satisfied
for almost all t ∈ [t1, t2] for a time interval defined
through t2 > t1 > 0. Thus, in a numerical simulation,
the control law (22) can lead to chattering where δφc (x)
changes its sign arbitrarily fast based on the numerical
solver. To this end we propose a modification of (22)
by considering suboptimal solutions of (19) guaranteeing
additional regularity properties.

4.2 Enhanced avoidance controller design

To overcome the potential chattering problems of con-
trol law (22), as pointed out at the end of the previous
section, we propose a modified and enhanced control law
enjoying additional continuity properties at the cost of
optimality. To this end, using the modified sign function
s(·) in (1), introduce the triple κ = [q, α, β]> ∈ {±1}3,
which is initialized as follows at the beginning of each
emergency mode:

κ+ =
[
q+ α+ β+

]> ∈ [ s(ηφc (p)) s(δφc (p)) s(vts)
]>

(23)

and has the following meaning, according to Fig. 2:
• q indicates whether the obstacle is being avoided from

the left or the right;
• α indicates whether the robot is ahead or behind the

obstacle;
• β indicates whether the robot is traveling forward or

backwards.
Since the elements of κ are never zero by definition, this
avoids the problems with the sets of measure zero where
ηφc (p) = 0, δφc (p) = 0 or vts = 0. Then, the case α = 0 in the
optimization problem (19) never occurs and, while input
u?q,α computed for α ∈ {±1} might not be optimal for (21)

when δφc (p) = 0, it still provides a feasible (suboptimal)
solution.

Once the logic variables κ in (23) are initialized at
the beginning of an avoidance maneuver, the avoidance
direction remains unchanged until the robot exits the outer
shell. In particular, both q and β are held constant during
the whole avoidance phase (comprising the emergency and
recovery modes). To this end, the first term (v − vts)

2 of
the cost function (21) is replaced by the term (v−β|vts|)2.
In this way, the heading speed v will never change sign,

even in cases where the tracking control input vts changes
sign. Of course when vts > 0 (positive forward speed) over
the whole avoidance phase we recover the case discussed in
Section 3.2. Ensuring that the heading speed never changes
sign during the avoidance, also ensures that the avoidance
direction q (left or right) remain unchanged.

A different strategy has to be followed for the evolution
of variable α, which should switch only once (from −1
to +1 during forward motion and from +1 to −1 during
backwards motion). To induce this behavior, looking at
Fig. 2, when the robot approaches the obstacle with vts >
0, then δφc (p) is initially negative and δφc (p) increases until
the obstacle is left behind. Similarly, if vts is negative,
δφc (p) decreases and eventually becomes negative. We can
thus include an additional condition in the optimization
problem (21) enforcing that β d

dtδ
φ
c (p) be increasing. In

particular, noting that
d
dtδ

φ
c (p) = φ̇(− sin(φ))(p1 − c1) + cos(φ)ṗ1

+ φ̇ cos(φ)(p2 − c2) + sin(φ)ṗ2

= w(cos(φ)(p2 − c2)− sin(φ)(p1 − c1))

+ cos(φ)v cos(φ) + sin(φ)v sin(φ)

= ηφc (p)w + v,

then, the additional constraint

β d
dtδ

φ
c (p) = β(ηφc (p)w + v) ≥ 0 (24)

ensures that δc(x) is either increasing or decreasing de-
pending on the heading direction β ∈ {±1}. Including
this constraint in the optimization problem (19), with the
modified cost function, we obtain the modified problem

u? = argmin
u∈U

1
2 (v − β|vts|)2 + k

2 (w − wts)
2

s. t. (v − q ¯̀w)α ≥ 0, (ηφc (p)w + v)β ≥ 0,
(25)

for q, α, β ∈ {±1}. While feasibility and uniqueness of
optimal solutions can be concluded as in the case of (19),
due to the multiplication ηφc (p)w, an explicit solution
through quadratic multiparametric programming cannot
be derived. Instead, we derive a suboptimal solution of
(25) which guarantees that the velocity is continuous also
across sign changes of α.

To this end, we choose suboptimal selections vav and
wav sequentially. For v? we consider

vav = argmin
v∈[−v̄,v̄]

1
2 (v − β|vts|)2 (26a)

s. t. (v + w̄ ¯̀) ≥ 0, (v − w̄ ¯̀) ≤ 0 (26b)

βv ≥ 0, (26c)

and for wav we consider

wav = argmin
w∈[−w̄,w̄]

1
2 (w − wts)

2 (27a)

s. t. (vav − qw ¯̀)α ≥ 0, (27b)

βηφc (p)w ≥ −|v?|, (27c)

for q, α, β ∈ {±1}.
The optimization problem (26) is feasible since, for

example, v = 0 satisfies the constraints. The constraints
are defined in such a way that (13) holds by construction
for α ∈ {0,±1} and q ∈ {±1}. In particular, (26b)
guarantees that

(vav + w̄ ¯̀) ≥ 0 and (vav − w̄ ¯̀) ≤ 0,

giving w the authority to ensure that (27b), or equivalently
the non-decrease condition in (19) be satisfied. Moreover,



observe that (26c), which is included to account for (24), is
redundant because of the modified cost function involving
the term β|vts|. Then it follows that the optimal solution
of (26) is given by

vav = satv̄w(β|vts|), v̄w := min{v̄, w̄`}, (28)

which, in the case where vts is always positive (and there-
fore β = 1), reduces to (15) and the first components in
(16) and (17). Note also that vav is continuous (indepen-
dent of q, α, β ∈ {±1}) and vav = 0 if and only vts = 0.

For the optimization problem (27) we examine the
inequality constraints (27b) and (27c), which, exploiting
vav = β|vav| for all β ∈ s(vav) and q|ηφc (p)| = ηφc (p) for all
q ∈ s(ηφc (p)), can be written as

αqw ≤ αβ|vav|/¯̀, −qβw ≤ |vav|
|ηφc (p)|

, q, α, β ∈ {±1}. (29)

Then, exploiting the fact that in the avoidance shell we
have |ηφc (p)| ≤ s ≤ `min ≤ ¯̀, (29) is satisfied if the
inequalities

αqw ≤ αβ|vav|/¯̀, −qβw ≤ |vav|/¯̀, q, α, β ∈ {±1} (30)

hold. This leads to the conditions

w ≤ −|vav|/¯̀, q ∈ {±1}, α = q, β = −q,
|w| ≤ |vav|/¯̀, q ∈ {±1}, α ∈ {±1}, β = α, (31)

w ≥ |vav|/¯̀, q ∈ {±1}, α = −q, β = q.

Lemma 5. Consider the optimization problem (27), quan-
tities v̄, w̄ ∈ R>0, ¯̀∈ [`min, `max], vts ∈ [−v̄, v̄] and v? as
defined in (28). Then (27) is feasible for all q, α, β ∈ {±1},
and all x = (p, φ) ∈ R3 such that p ∈ Sφs (¯̀). y

Proof. Note that for vts = 0 (i.e., vav = 0), w = 0 is
feasible. Moreover, for ηφc (x) = 0, (27c) is satisfied and the
existence of w ∈ [−w̄, w̄] satisfying (27b) is guaranteed
through condition (26b). Thus, feasibility of (27) follows
from the equivalent conditions (31), where we emphasize
that |vav|/¯̀∈ [−w̄, w̄], due to the constraints (26b). 2

Lemma 5 immediately implies the following result, com-
pleting the definition of the suboptimal avoidance con-
troller.

Corollary 1. Consider the optimization problem (27),
quantities v̄, w̄ ∈ R>0, ¯̀ ∈ [`min, `max], vts ∈ [−v̄, v̄] and
vav as defined in (28). For x = (p, φ) ∈ R3 such that
p ∈ Sφs (¯̀),

wav =

{
βq|vav|/¯̀, if q ∈ {±1}, α = −β,
sat|vav|/

¯̀
(wts), if q ∈ {±1}, α = β

(32)

defines a suboptimal solution of (27). y

Note that combined with (28), the first condition of wav

capture the emergency control law (16), which must be
active whenever αβ = −1, namely when approaching the
obstacle, while the second condition captures the recovery
controller (17), which must be active after overtaking the
obstacle, with αβ = 1.

The following statement summarizes the properties of
the avoidance controller (emergency + recovery) developed
in the past sections. Its proof follows immediately from the
results proven in the section.

Proposition 1. For any q, β ∈ {±1} and any ¯̀ ∈
[`min, `max], an arbitrary tracking controller input uts :
R≥0 → U and any initial condition x0 = (p0, φ0) such that
p belongs to the closure of Sφs (¯̀) \ Sφr (¯̀), the avoidance
control law u = uav := (vav, wav) as defined in (28) and
(32) ensures that the ensuing trajectory t 7→ p(t) satisfies

|p(t)−c| ≥ r for all t ∈ [0, T ], where T is the smallest time
such that p(T ) belongs to the boundary of Sφs (¯̀). y

Intuitively speaking, Proposition 1 ensures that the
robot does not hit the obstacle. Note that no stronger
statement can be concluded due to the fact that we make
essentially no assumption on the nature of the tracking
controller, which could possibly aim (in a worst case sce-
nario) exactly at the obstacle. Providing stronger state-
ments under more restrictive conditions on the tracking
controller and the position of the obstacle is regarded as
future work.

5. THE HYBRID CONTROL ARCHITECTURE

We present in this section a hybrid formulation of the
tracking controller augmented with the avoidance (emer-
gency+recovery) augmentation proposed here, adopting
the notation in Goebel et al. (2012). The presented for-
mulation provides convenient hysteresis switching among
the different operating modes. The hybrid state of the
closed loop comprises the plant state x = (p, φ), the
memory variable ¯̀ ∈ [`min, `max] and the logic variables
κ = [q, α, β]> already introduced in (23), with the novelty
that, while α, β ∈ {±1}, we extend the domain of q to be
q ∈ {0,−1,+1}, to associate the tracking motion to the
selection q = 0. Summarizing, the hybrid state is selected
as

ξ := (x, ¯̀, κ) ∈ Ξ := R3× [`min, `max]×{−1, 0, 1}×{±1}2,
and the overall hybrid dynamics can be summarized by

ξ̇ =

 ẋ˙̀̄
κ̇

 =

[
f(x, γ(ξ, uts)

0
0

]
, ξ ∈ C := Ξ \ D, (33a)

ξ+ =

 x+

¯̀+

κ+

 ∈ [ x
G(ξ, uts))

]
, ξ ∈ D. (33b)

which is a hybrid system with jump and flow dynamics
affected by the external input uts, which stems from
any arbitrary tracking controller. Following the intuition
of Section 3.2 and the derivations of Section 4, in the
proximity of the obstacle, the jump set D allows for a
mode transition among three possible modes: tracking,
with q = 0, emergency, with |q| = 1 and αβ = −1, and
recovery, with |q| = 1 and αβ = 1, while the flow set
C is selected as the closed complement of this jump set.
Accordingly, input u = γ(ξ, uts) is selected as follows:

γ(ξ, uts) :=


uts, if q = 0,

uem =

[
vav

βq|vav|/¯̀

]
, if

|q| = 1,
αβ = −1

ure =

[
vav

sat|vav|/
¯̀
(wts)

]
, if

|q| = 1,
αβ = 1

(34)

where, according to (28), vav = satv̄w(β|vts|) and v̄w :=
min{v̄, w̄`}.

Concerning the jumps (mode transitions) of hybrid sys-
tem (33), three jump sets capture the transition diagram
represented in Figure 3, namely

D := Dtr ∪ Dem ∪ Dre (35)

Dtr := {ξ ∈ Ξ : |q| = 1, p ∈ R2\Sφs (¯̀)}, (36)

Dem := {ξ ∈ Ξ : q = 0, p ∈ Sφr (`(vts))} (37)

Dre := {ξ ∈ Ξ : |q| = 1, αδφc (p) ≤ 0, αβ = −1} (38)



Recovery Mode

|q| = 1, α = β

Emergency Mode

|q| = 1, α = −β

Tracking Mode
q = 0

Dem

Dtr

Dtr

Dre

Fig. 3. Mode transitions induced by the jumps of (33).

Intuitively speaking, jumps from Dtr occur from outside
the outer shell (or at the boundary) when the avoidance
mode is active (|q| = 1); jumps from Dem occur when the
tracking mode is active (q = 0) and the robot hits the inner
shell, while jumps from Dre occur when the emergency
controller is active (|q = 1| and αβ = −1 and the robot
overtakes the obstacle). The corresponding jump laws are
issued from (23) and are given by

G(ξ, uts) =
⋃

i∈{tr,em,re}:ξ∈Di

gi(ξ, uts) (39)

gtr :=


¯̀

0
α
β

 , gem :=

g`(x, vts)
s(ηφc (p))
−s(vts)
s(vts)

 , gre :=


¯̀

q
β
β

 ,
g`(x, vts) := min{|p− cs(ηφc (p))| − r, `(vts)}, (40)

where we omitted the dependence of gtr, gem, gre on (ξ, uts)
to keep the notation compact. While gtr is quite intuitive
because it merely ensures that q+ = 0 to enable the
tracking mode, the transition gem to emergency mode
structurally ensures α+β+ = −1 and, if α+ /∈ s(δφc (p)),
an immediate further jump from Dre (according to gre)
ensures that the recovery mode is correctly triggered by
swapping the sign of α.

As a final step we discuss the update law for the state ¯̀

in (39), related to the size of the outer shell. In particular,
during free motion, as per (37), the outer shell is related
to `(vts), as defined in (8), which depends on the velocity
vts. Intuitively this makes sense. Indeed, if vts is large, the
robot needs to react early to guarantee avoidance without
abrupt maneuvers. In contrast if vts is small, the size of
the shell can be reduced.

When the avoidance starts, the parameter ¯̀ is frozen
as per the corresponding term in gem, in (39), because
the avoidance controller requires a constant parameter ¯̀.
In particular, function g` in (40) ensures that ¯̀ is small
enough so that the position p never falls in the interior
of the inner shell. The first term in the minimum is
only relevant in the case that the system jumps from the
recovery mode to the tracking mode and immediately to
the emergency mode.

Remark 1. The last term in (8) is used to ensure that
the velocity is typically continuous when the control law
switches from the tracking to the emergency mode (unless
the situation just described occurs). In particular, using
the definition of `(vts) in v̄w defined in (28), it holds that

v̄w = min
{
v̄, w̄ ·max

{
s, 1
w̄ |vts(t)|

}}
= min {v̄,max {w̄s, |vts(t)|}}

which implies that

v̄w = |vts(t)| ≤ v̄ if |vts(t)| ≤ w̄s and
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Fig. 4. Trajectory of the unicycle (blue) tracking the reference signal
(red) while avoiding a neighborhood around c = [1, 0]>. The
figures show the beginning and the end of the simulation as
well as the times when the controller switches.

|vts(t)| ≤ v̄w = min {v̄, w̄s} if |vts(t)| ≥ w̄s.
In both cases, the avoidance control law in (28) satisfies
vav = vts, and thus, the overall control law is continuous
when switching from q = 0 to q ∈ {±1}. ◦

By construction, the closed loop (33) guarantees avoid-
ance of the neighborhood Br(c) with additional tracking
properties depending on the selection of uts. Moreover,
due to the hysteresis region Sφs (¯̀)\Sφr (¯̀), 0 < r < s and
the non-decrease condition d

dtδ
φ
c (p) ≥ 0, the switching

dynamics avoids Zeno behavior and chattering. A rigorous
analysis of combined avoidance and tracking properties of
(33) using a specific tracking controller is left for future
work. Instead we illustrate the overall controller through
numerical simulations in the next section.

6. NUMERICAL SIMULATIONS

We analyze the performance of the augmented avoidance
controller based on numerical simulations. We use the
parameters v̄ = w̄ = 2. The parameters of the reference
tracking controller (6), (7) are set to k1 = k2 = kφ = 5.
The obstacle is centered at c = [1, 0]> and the inner and
the outer shell are defined through r = 0.4 and s = 0.6.
All simulations are initialized outside the shell with q = 0.
For the results in Fig. 4 and Fig. 5 the reference input
uref = [ 1

2 cos(t) + 1, 0]> is used while the results in Fig. 6

are obtained through uref = [1.5,−1]>.
Fig. 4 shows the trajectory of the unicycle (blue) and

the reference system (4) (red) in the (p1, p2)-plane at
the beginning of the simulation, the end of the simu-
lation and whenever the controller switches among the
different modes as per Fig. 3. While the reference signal
hits the obstacle c, the unicycle avoids the neighborhood
B0.4(c) = Br(c) by deviating via the emergency mode. The
corresponding control law is visualized in Fig. 5. Observe
that the velocity input is continuous in this example. As
discussed, this is not necessarily the case when the control
law switches from uav to uts.

Fig. 6 shows the closed-loop solution (right) of the uni-
cycle (blue) and the reference signal (4) (red) for different
initial conditions (left). The reference signal describes a
circular motion passing through the obstacle c, while the
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Fig. 5. Control input u for the simulation in Fig. 4. The control law
(34) (v in blue, w in red) is shown using a solid line while uref
is shown using a dashed line.
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Fig. 6. Initial condition and closed loop of the reference system (3)
(red), and the avoidance-augmented closed loop (33), (blue).

controller successfully avoids B0.4(c) independent of the
initial conditions. For a longer simulation, the three closed-
loop solutions converge to the same solution while in the
transient the avoidance strategy depends on the initial
condition. Since the avoidance controller vav does not
change its sign while it is active, the sign is only changed
after the outer shell is left, leading to the kink in the
bottom right illustration in Fig. 6, interestingly showing
the avoidance phases for this specific scenario.

7. CONCLUSIONS

In this paper, based on a given reference tracking con-
troller, an augmented obstacle avoidance controller has
been derived. The two control laws are combined using the
hybrid systems framework such that the overall controller
guarantees avoidance of a neighborhood around obstacles
while preserving properties of the tracking controller away
from the obstacle. The avoidance controller is derived us-
ing barrier functions whose level sets resemble a shell con-
taining the obstacle and providing a suboptimal solution
of a minimally invasive optimization problem. By changing
the orientation and the size of the shell with the heading
and the velocity of the robot it is guaranteed that the
velocity input is continuous. Future work will concentrate
on a rigorous analysis of the closed loop system in terms of
robust avoidance and tracking performance. Additionally,
the ideas will be extended to more realistic unicycle models
with u̇ as input to guarantee that v and w are continuous.
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