
HAL Id: hal-03110894
https://hal.science/hal-03110894

Submitted on 14 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A modular architecture for mobile robots equipped with
continuous-discrete observers

Gian Marco Vinco, Philipp Braun, Luca Zaccarian

To cite this version:
Gian Marco Vinco, Philipp Braun, Luca Zaccarian. A modular architecture for mobile robots equipped
with continuous-discrete observers. IEEE International Conference on Mechatronics (ICM), Mar 2021,
Kashiwa, Japan. �hal-03110894�

https://hal.science/hal-03110894
https://hal.archives-ouvertes.fr

A modular architecture for mobile robots equipped
with continuous-discrete observers

Gian Marco Vinco1, Philipp Braun2, Luca Zaccarian1,3

Abstract—We illustrate the design and development of a
modular hardware/software system for multiple unicycle-like
mobile robots localized via a set of camera modules. We describe
the architecture and calibration of the hardware/software setup
and then discuss two continuous-discrete observation laws for
the distributed estimation of the robot positions. We show that
a suitable model exploiting the onboard IMU measurements
of the robots, enables obtaining an estimation error that is a
cascade of two linear systems, for which we can show global
exponential convergence to zero. The results are illustrated by
our experimental tests.

Index Terms—Nonlinear estimation, Hybrid Systems, Con-
troller Hardware/Software, Autonomous mobile robots.

I. INTRODUCTION

Control and navigation of unmanned vehicles such as
mobile robots or drones experiences a continuing research
interest not only in military applications. For example, on
an experimental scale, drones have been used to deliver
medical equipment [1], and fleets of mobile robots may replace
humans and conveyor belts in warehouses [2]. For such control
applications reliable models to estimate the states of the system
are necessary, and common approaches usually combine visual
measurements with measurements from inertial measurement
units (IMUs) in the observer design (see, e.g., [3]–[6]).

In this context, measurements are usually available at dif-
ferent time scales. IMU data are essentially continuous mea-
surements while visual measurements are obtained at a sig-
nificantly slower rate and potentially not periodically. Solely
relying on IMU measurements does not provide observability
of the position dynamics. Conversely, even if observability
holds when using the visual measurements only, due to the
generally slow rate of these measurements, a reliable state
estimation is difficult to guarantee if the IMU data is ignored.
Since IMUs are cheap as compared with cameras, it is not
surprising that common approaches fuse data from cameras
and IMUs. As examples, in [6] a multirate moving horizon
estimator for mobile robots is discussed, while the approaches
in [4], [5] rely on (extended) Kalman filters.

In this paper we follow this stream by developing a low cost
control architecture for mobile robots consisting of camera

The research presented in this paper was conducted while P. Braun was with
the University of Newcastle, Australia, and while G. M. Vinco was visiting
the University of Newcastle, Australia.

1Dept. of Industrial Engineering, University of Trento, Trento 38123, Italy.
2Research School of Electrical, Energy, and Materials Engineering,

Australian National University, Canberra, Australia (e-mail:
philipp.braun@anu.edu.au).

3 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France (e-mail:
luca.zaccarian@laas.fr).

client units and Makeblock mBot robot units, both equipped
with Raspberry Pis. The overall setup and the acquisition
system are described in Section II. The camera client units
provide delayed sporadic measurements of the position and
the orientation of the robots and the robots are equipped with
gyroscopes and accelerometers providing, respectively, angular
velocity and linear acceleration measurements, which can be
considered as continuous signals in the context of this paper.

In Section III two models and corresponding observers
for the Makeblock mBot robot units are derived. For the
observer design we use the hybrid systems formalism of
[7], acknowledging the peculiar nature of continuous-time
systems with discrete-time measurements. The first observer
described in Section III is a standard continuous-discrete
extended Kalman filter [8, Sec. 13.2.2], [9, Sec. 5.3.3] applied
to the unicycle dynamics [10, Sec. 2.3.1], which only uses
the camera measurements and ignores the IMU data. The
second set of dynamics is derived based on the hybrid time
observer developed in [11], [12] but could have alternatively
been written using an extended Kalman filter. In contrast to
the first observer, the second observer combines the discrete-
time position measurements with the velocity and acceleration
IMU measurements. Initial results on the performance of the
control architecture are given in Section IV. The control ar-
chitecture provides ample opportunities for extensions, which
are reported in Section V, in our conclusions.

II. MOBILE ROBOT CONTROL ARCHITECTURE

The setup, represented in Fig. 1, consists of a centralized
communication system, including a main server in the role
of a hub for the data exchange and a scalable number of
Camera Client Units and Robot Client Units. Each camera
client unit measures the position and orientation of the robots
in its field of view, with a specific acquisition frame rate, and

Camera Client Unit Robot Client UnitMain Server

Pi Camera

Pi 3B

Module V2

Raspberry
Pi 3B

mCore
Board

IMU
Gyroscope

Accelerometer
Motors

Raspberry
Data Data, Controls

Commands Feedback Info

Frame

ControlsData

Data Controls

User Input

Computer

Fig. 1. Main components of the mobile robot control architecture and their
interconnections.

sends the results to the main server. The robot client units
are equipped with an onboard microprocessor on a Raspberry
Pi card. Additionally, the robot client units include onboard
IMU sensors comprising gyroscopes and accelerometers. The
communication is based on the TCP/IP protocol and designed
as a master-slave model, managed by the main server. The
system is modular and scalable because each unit works as a
complete standalone system, which allows for multiple camera
and/or robot units. We describe below the units architecture
and the actuators/sensors calibration.

A. Camera and robot client units

1) Camera units: Each camera unit consists of a Raspberry
Camera module V2 serially connected to a dedicated Rasp-
berry Pi 3B+ microprocessor. The connection is established
through the I2C serial port of the microprocessor. The camera
acquisition parameters (such as resolution, frame rate and
brightness) are set during the initialization process of the unit.
After the initialization, the TCP/IP communication with the
main server is established through the generation of a specific
socket channel. Each camera unit uses the channel to send the
robot localization data to the server. The robot localization
is performed as a marker identification process through the
OpenCV Computer Vision library.

Each robot is provided with a specific pair of color markers
(a pointer and a center marker – see the bottom-right inset in
Fig. 2) enabling position and orientation estimation from the
camera image. The marker recognition process is performed
in two steps. (1) Color filtering is used to identify the presence
of the markers at each frame capture. (2) Morphological
transformations to isolate the pixels corresponding to the
(possibly) identified marker and to remove frame background
disturbances. With the central marker placed at the mBot
center of mass and aligned with the robot longitudinal axis,
after some data conversions, the above localization process
returns an estimate of the robot position and orientation
[p̂x(t∗) p̂y(t∗) φ̂(t∗)]> ∈ R3 in the (x, y) plane. The localiza-
tion process takes about 0.4 s, i.e., a constant delay of ∆ = 0.4
seconds occurs between the measurement (snapshot) time t∗

and the time t∗+ ∆ when the measurement is available at the
robot unit. Finally, while the camera frame rate was set to 40
Hz, most of the produced frames were disregarded due to the
above mentioned camera processing time ∆.

Remark 1: The quality of the marker identification strictly
relies on the accuracy of the initial camera calibration. During
the initialization, it is necessary to define the colors of the
center marker, that the camera is supposed to identify through
the color filter. Each color is defined as a triple of values in
the HSV colorspace. The calibration is performed manually
by the user which can adjust the three values for each
marker. Additionally, the calibration can be remotely adjusted
at any time by sending specific control commands from the
main server to the camera unit. Since this calibration is a
fairly standard process, we do not discuss it in Section II-B.
Additional details can be found in [13, §1.1]. ◦

Pointer Marker Central Marker

Power Source

mCore

Raspberry

IMU
Motor

Fig. 2. Components of each mobile robot (left) and a snapshot (right).

2) Robot units: Each robot unit consists of a Makeblock
mBot unicycle comprising an onboard mCore microcontroller
and a pair of motors (see Fig. 2). The off-the-shelf device
is augmented with a Raspberry Pi 3B+ serially connected to
the mCore. This allows us to connect the robot unit with the
main server through a TCP/IP socket channel. Thanks to a
dedicated Simulink software package for Raspberry Pi boards,
it is possible to develop Simulink models and deploy them on
the Raspberry microprocessor. These models run as standalone
processes in the background of the main robot script and can
be used to run decentralized observers and controllers.

Each mobile robot unit is sensorized with a 3-axis gyroscope
and a 3-axis accelerometer, embedded in the Makeblock
MPU6050 IMU unit. The IMU provides measurements of the
robot forward and lateral accelerations a = [afw alat]

> ∈ R2,
as well as measurements of the angular velocity ω ∈ R (with
respect to the z-axis) with a maximum rate of 200Hz. (The
three remaining measurements from the gyroscope and the
accelerometer are ignored in this paper.) The IMU is directly
connected to a I2C serial port of the mCore microcontroller.

Fig. 3 visualizes the software architecture of each mobile
robot unit. The architecture comprises a sequence of layers.
At the lowest programming level, the main Python process
manages the data communication and information exchange.
Concurrently, an Arduino based script defines the main pro-
cess executed by the mCore microcontroller, handling the
actuation section delivering the motors setpoint and receiving
the sensors acquisition. Finally, the Simulink model, running
as a standalone process, implements observation and control
laws. The three layers communicate in a continuous TCP/IP
communication network, exchanging data and commands.

B. Motors and sensors calibration

Before the IMU data can be used in an observer design
the sensors need to be calibrated. Similarly, a calibration of

Main Python Thread Arduino Thread

Simulink Model

Send Control Input

Receive Camera Data
Set Motor Input

Receive Control Input

Send IMU Measurements

Receive Camera and IMU Data

Estimate New State

Send Control Input

Receive IMU Data

Send Camera and IMU Data

Receive Control Input

Fig. 3. Software architecture of each mobile robot unit.

0 200 400 600 800

600

700

800

900

1000

0 200 400 600 800

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Fig. 4. Lateral accelerometer data alat. Raw measurements (left) and
calibrated measurements (right). Similar plots are obtained for the forward
acceleration afw.

the left and right motors is necessary to identify the static map
between the setpoint request and the resulting wheels velocity.

1) IMU calibration: The calibration process is included in
the main Arduino script of the mCore unit and is performed
during the initialization task. For 5 s, the calibration function
acquires the acceleration a = [afw alat]

> and angular velocity
ω measurements, while the robot is at rest. In this process,
nonzero measurements are identified as bias, also comprising
the effect of gravity. During subsequent experiments, the
average of the data acquired in the calibration process is
used as a zero reference. Fig. 4 shows an example of the
acceleration measurements acquired during the calibration
process, including the internal analog to digital conversion
performed by the embedded 16 bit analog-to-digital converter.

2) Motor calibration: The setpoint f` and fr delivered to
the left and right motors of each mobile robot unit range in
the interval [−250, 250]. A series of experiments has been
performed to estimate the characteristic curve associating the
setpoint fi, i ∈ {`, r} to the actual left and right wheels
velocities v` and vr. In these experiments, one motor input
is set to zero, while the other motor is driven by an increas-
ing setpoint fi, ramping up from −250 to 250, increasing
by 10 units every 20 s, then the total experiment duration
lasts 20 500

10 = 1000 s, that is, roughly 15 minutes. Under
the assumption of a uniform circular motion, during each
steady-state velocity step, the forward velocity corresponds
to vfw = ωd, where ω is the angular velocity measured by
the IMU and d is the curvature radius of the circular motion,
i.e., easily computed in this setting as the distance between
the wheels. The obtained left “`” and right “r” calibration
curves are shown in Fig. 5 and exhibit a peculiar deadzone
nonlinearity. They can be mathematically represented as

vi(fi) =

{
αifi − βi sign(fi), if |fi| ≥ 50,
0, if |fi| ≤ 50,

i ∈ {`, r},

-200 -100 0 100 200

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-200 -100 0 100 200

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fig. 5. Characteristic curves corresponding to the left and right motor obtained
through the motor calibration.

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

Fig. 6. Lateral acceleration for a uniform circular motion and relation between
alat and ω, based on the measured data (for the left and the right wheels).

vfw

px

py

R

ω

φ

Center of Mass

Trajectory

vfw

vlat

vx

vy

px

py

R

ω

φ

Fig. 7. Unicycle coordinates in (1): relation between velocities (vx, vy) in
the global frame and velocities (vfw, vlat) in the body (right).

with the identified scalars αr = α` = 0.0013, βr = 0.0223
and β` = 0.0182.

During the experimented uniform circular motions, the lat-
eral acceleration satisfies the relation alat = ω2d, which is used
in Fig. 6 to validate the assumption vfw = ωd. In particular,
the expected relation alat = ωvfw = ω2d is compared with
the measured accelerometer and gyroscope data and the result
justifies the assumption.

III. MOBILE ROBOT DYNAMICS & OBSERVER DESIGN

We present here two unicycle models and the corresponding
estimators. The first (simpler) model only uses the camera
measurements whereas the second, more sophisticated model,
also uses the IMU measurements for the state estimation.

A. Standard Unicycle & Kalman Filter

The unicycle, a standard model describing mobile robot
dynamics (see, e.g., [14, Ex. 4.3.16] and [10, Sec. 2.3.1]), well
represents the dynamics of an mBot in terms of its position
(px, py) ∈ R2 and orientation φ ∈ [0, 2π), namely

ẋ = f(x, u) + µ =

νref cos(φ)
νref sin(φ)

ωref

+ µ, (1)

where x = [px py φ]> is the unknown state of the robot and
µ ∈ R3 is an unknown process noise. As visualized in Fig. 7,
input u = [νref

ωref] ∈ R2 comprises the forward velocity νref
and the angular velocity ωref, which are here approximated to
coincide with the reference signals delivered to the actuators.
More precisely, since the inputs applicable to the mBot are
the left and right motor velocities v = [v` vr]

> (see Section
II-B), we clarify the relation between v and u as

u = 1
2d

[
d d
−1 1

]
v ⇐⇒ v = 1

2

[
2 −d
2 d

]
u, (2)

with d being again the distance between the two wheels. Since
there is a one-to-one correspondence between u and v, we will

focus on u in the following. As outlined in Section II-A1, at
discrete time instants tk ∈ R≥0 the state measurements

y(tk) = x(tk −∆) + η(k) (3)

are obtained from the camera units (which measure both
position and orientation), where ∆ = 0.4 s is the processing
time discussed in Section II-A1. The discrete input η ∈ R3

represents unknown measurement noise depending on the
precision of the camera-based localization. Since multiple
cameras could co-exist, and each robot could be in the field
of view of multiple cameras, we consider that, for a specific
robot, two successive camera measurements arrive at time
instants satisfying tk+1 − tk ∈ [Tm, TM] = [0.1, 1] seconds.

With these definitions, an estimate of the state x(t) can be
obtained through the continuous-discrete (or hybrid) extended
Kalman filter [8, Sec. 13.2.2]. In particular, using the hybrid
systems formalism of [7] we may define the overall state of the
Kalman filter as Θ = (x̂, χ̂, P, τ) ∈ R3×R3×R3×3×R≥0 and
introduce the flow and jump sets, respectively C = R3×R3×
R3×3 × [0, TM], D = R3 ×R3 ×R3×3 × [Tm, TM], where D
encodes the property tk+1− tk ∈ [Tm, TM] commented above
about the intersample time between two camera measurement
instants. Then, the continuous-discrete extended Kalman filter
for the mobile robot can be written as

˙̂x = f(x̂, u(t))
˙̂χ = f(χ̂, u(t−∆))

Ṗ = A(t)P + PA(t)> +Q
τ̇ = 1,

Θ ∈ C,

(4)
x̂+ = χ̂+ (I −K)(y − χ̂)

+ϕ(t, t−∆, χ̂+ (I −K)(y − χ̂), u[t−∆,t](·))
χ̂+ = χ̂+ (I −K)(y − χ̂)
P+ = KPK> + (I −K)R(I −K)>

τ+ = 0,

Θ ∈ D,

K = I − P (P +R)−1, A(t) = ∂f
∂x (χ̂, u(t−∆)),

where K is the Kalman gain, ϕ(t, t − ∆, ξ0) is the unique
solution of the initial value problem: ξ̇ = f(ξ, u(τ)), ξ(t −
∆) = ξ0, evaluated at time t, which is computed by running
a numerical simulation at each measurement time tk. The
constant matrices R and Q denote the covariance matrices
of the process disturbance µ and the measurement noise η.

Following the formalism of [7], the solution Θ of (4) is
parametrized by the ordinary time t and the (discrete) count j
of the number of measurements received so far. In particular,
at hybrid time (t, j), state x̂(t, j) provides an estimate of the
plant state x(t), while state χ̂(t, j) provides an estimate of
state x(t−∆), where ∆ is the camera processing time. During
the flow evolution (when no measurement is available), the
two states run in parallel, driven by ∆-shifted versions of
the input u. Instead, at each measurement time (tj , j), the
continuous-discrete Kalman update is first applied to χ̂+ and
then the selection x̂+ = χ̂+ + ϕ(t, t − ∆, χ̂+, u) propagates
forward the initial value χ̂+ via the prediction term ϕ. The
Kalman gain K and the dynamics of P simplify significantly
as compared to the standard results in [8, Sec. 13.2.2], because
the measurement y in (3) provide the whole state.

The simple nonlinear model (1) and the ensuing observer (4)
perhaps represents the most intuitive approach to our sampled-
data estimation problem. However, it is hard to prove the
convergence to zero of the estimation error x − x̂, even in
the ideal case of µ = 0 and η = 0. This problem is resolved
by the more sophisticated model derived in the next section.

B. Extended dynamics & observer design

We derive here a second model that allows using the
continuous IMU measurements.1 In this model, the estimation
error becomes a nonlinear cascade of two linear systems (one
for the position and one for the orientation) and we can rely
on input-to-state stability properties [15] to deduce uniform
convergence properties following the approach of [11].

For obtaining a cascade form, we separate the dynamics
into the rotational and translational subcomponents. For the
rotational part, we use the state xφ = [φ ω dφ]>, where φ
denotes the robot orientation, ω denotes the angular velocity
and dφ models external (unmeasured) biases affecting the
angular dynamics φ̇ = ω+dφ, satisfying ḋφ = 0. Moreover, we
model by ω̇ = −λ(ω − ωref) taking into account a reasonable
time constant 1

λ between the commanded angular velocity
ωref = 1

d (−v` + vr) introduced in (1), (2), and the actual
angular velocity ω. Experimental tests led to the identified
value λ = 9.85. Summarizing, we obtain the model

ẋφ = Aφxφ +Bφωref + µφ, ycφ = Ccφxφ + ηcφ, (5)

with µφ, ηcφ being process disturbance and measurement noise,

Aφ =

0 1 1
0 −λφ 0
0 0 0

 , Bφ =

 0
λφ
0

 , (Ccφ)> =

0
1
1

 ,
and where ycφ is the velocity output obtained from the gyro.

An appealing feature of the angular dynamics (5) is its
linearity in the state xφ. To obtain a similar linear relation
for the translational dynamics, we first characterize the relation
between the velocities (vx, vy) in the x- and y-directions of the
global frame, and the forward and lateral velocities (vfw, vlat)
in the body frame visualized in Fig. 7:[

vx
vy

]
= R(φ)

[
vfw
vlat

]
=

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

] [
vfw
vlat

]
(6)

where R(φ̂) denotes the standard rotation matrix.
Differentiating both sides of (6), and recalling that a ro-

tation matrix satisfies Ṙ(φ) = JR(φ)φ̇ = R(φ)Jφ̇, where
J =

[
0 −1
1 0

]
, we obtain[

v̇x
v̇y

]
= R(φ)

(
Jφ̇

[
vfw
0

]
+

[
v̇fw
0

])
= R(φ)

[
v̇fw

φ̇ vfw

]
, (7)

and the zeros at the second entry of the vectors reported in
the middle are motivated by the fact that the robot kinematics
constrains the lateral velocity vlat and its derivative v̇lat to be
both zero at all times.

1The IMU measurements are acquired significantly faster than the camera
measurements and thus are denoted as “continuous” in this paper.

In the rightmost vector of (7) we recognize the forward
acceleration v̇fw = afw and the lateral acceleration alat = φ̇vfw,
this last relation being experimentally confirmed by the ex-
periments in Fig. 6. Thus, with a = [afw alat]

>, it holds that[
v̇x
v̇y

]
= R(φ)a and

[
ṗx
ṗy

]
= [vxvy]. Defining the translational

state xT = [px py vx vy]> we may then write the model

ẋT = ATx+BT (φ)a+ µT , (8)

where µT ∈ R4 defines unmodeled process noise and with
O, I ∈ R2×2 denoting the zero matrix and the identity matrix,
respectively, AT and BT (φ) are defined as

AT =

[
O I
O O

]
, BT (φ) =

[
O

R(φ)

]
. (9)

The overall model (5), (8) exhibits the desired cascaded
structure, where φ is interpreted as an input of (8).

Without camera measurements, an asymptotic observer
cannot be built for xφ, xT , due to the lack of alternative
position measurements. Nevertheless, the continuous output
ycφ in (5) can be used to design a Luenberger gain [16, §16.5]
Lφ = [0 `2 `3]>, `2, `3 ∈ R such that the closed-loop
matrix Acl

φ = Aφ − LφC
c
φ has two eigenvalues in the left

half-plane and one eigenvalue equal to zero (the one that
is not observable for pair (Aφ, C

c
φ)). After this preliminary

continuous-time output injection term, we may then consider
the sporadic discrete-time camera-based outputs

ydφ(tk) = Cdφxφ(tk −∆) + ηdφ(k), Cdφ = [1 0 0] , (10)

ydT (tk) = CTxT (tk −∆) + ηdT (k), CT = [1 0 0 0
0 1 0 0] , (11)

with ηdφ and ηdT being discrete-time measurement noise.
While we cannot characterize observability in terms of

the continuous-time matrices Acl
φ and AT and the discrete-

time output matrices Cdφ and CT , it is quite intuitive that
the sampled-data measurements (10), (11) provide enough
information for estimating the state of (5), (8). Rather than
using a Kalman filter, we choose to follow the solution in
[11] that provides an immediate proof of convergence to zero
of the error dynamics. A similar result could be concluded
from the results in [17] or [18], for example, when using a
Kalman filter architecture.

An important advantage stemming from the linearity of (5)
and (8) (regardless of the nonlinear coupling in the cascade) is
that we do not need to introduce the double state x̂ and χ̂ used
in (4), nor do we need to run the online simulation required
to compute the term ϕ at each sampled measurement. More
specifically, proceeding as in (4), we define an overall state of
the estimator as Γ = [x̂>T x̂>φ τ]> and define the new flow and
jump sets C = R7 × [0, TM] and D = R7 × [Tm, TM], which
capture, just as in (4), the sporadic nature of the measurements.
Then the observer flow dynamics corresponds to the models
derived in (5), (8) augmented with the continuous output
injection from the continuous gyroscope measurement ycφ:

˙̂xT = AT x̂T +BT (φ̂)a
˙̂xφ = Acl

φx̂φ + Lφy
c
φ +Bφωref

τ̇ = 1,

Γ ∈ C. (12a)

The ensuing flow dynamics of the orientation estimation error
φ̃ = φ − φ̂ is then determined from (5), (12a) as ˙̃

φ = (Aφ −
LφC

c
φ)φ̃ + µφ − Lφηcφ = Acl

φφ̃ + µφ − Lφηcφ, which is fully
linear. As a consequence the camera processing time delay can
be taken into account as follows, with the notation ŷdφ = Cdφx̂φ:

ydφ(tk)− ŷdφ(tk−∆) = Cdφ(xφ(tk−∆)− x̂φ(tk−∆)) + ηdφ(k)

= Cdφe−A
cl
φ∆x̃φ(tk) + η̄dφ(k) = C̄dφx̃φ(tk) + η̄dφ(k),

where C̄dφ = Cdφe−A
cl
φ∆ is a transformed constant sampled-data

output matrix and η̄dφ is a transformed measurement noise de-
pending on ηdφ, µφ and ηcφ. For the translational error dynamics
x̃T = xT − x̂T , considering φ̂ = φ (this is possible because
we exploit the cascaded structure of the interconnection and
the fact that BT is uniformly bounded) parallel calculations
lead to ydT (tk)− ŷdT (tk−∆) = C̄T x̃T (tk)+ η̄dT (k), where ηdT is
a transformed noise input and ŷdT = CT x̂T , C̄T = CT e−AT∆.

Based on the above description, we may follow twice the
construction of [11, Algorithm 1] focusing on the virtual
output matrices C̄dφ and C̄T to design, respectively, time-
varying observer gains KT (·) : [Tm, TM] → R4×2 and
Kφ(·) : [Tm, TM] → R3×1 obtained from [11, Eq. (17)],
providing the observer jump dynamics

x̂+
T = x̂T +KT (τ)(yT − ŷdT (t−∆))
x̂+
φ = x̂φ +Kφ(τ)(ydφ − ŷdφ(t−∆))

τ+ = 0,

Γ ∈ D, (12b)

which evidently provides an easier implementation, only re-
quiring memory variables to store the past values of the pre-
dicted outputs ŷdT and ŷdφ. In addition, the following result can
be proven using the derivations reported above and the main
result of [11]. The proof is omitted due to space constraints.

Theorem 1: In the noise free case, the continuous-discrete
observer (12) provides asymptotic convergence to zero of the
estimation error

[
xT−x̂T
xφ−x̂φ

]
.

IV. EXPERIMENTAL RESULTS

We assess here the performance of the observers introduced
in Section III, through experiments on a robot performing
circular motions. In particular, Fig. 8 shows experiments using
the Kalman filter described in Section III-A while Fig. 9
reports on the observer of Section III-B. For the observer (4),
Fig. 8 shows the first two components of the state estimates
x̂ together with the sampled camera measurements y in (3),
represented in the (x, y) plane. On the top left, the first five
seconds of the experiment are shown and on the top right
the time window t ∈ [14, 18] seconds is visualized. The time
evolution of the estimated state x̂, together with the camera
measurements are shown in the bottom figures. The camera
measurements are shifted by ∆ so that they are correctly
aligned with the estimates. Similarly, for the observer (12),
the top Fig. 9 shows the position estimates x̂T , together with
the camera measurements ydT in (11) at the beginning (left)
and at the end of the experiment. The lower plots show the
time histories of the same variables with the measurements
shifted by ∆, to correctly align them with x̂T and x̂φ.

-0.8 -0.6 -0.4 -0.2 0 0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2

0

0.2

0.4

0.6

0.8

0 5 10 15

-1

-0.5

0

0.5

1

0 5 10 15

-4

-2

0

2

4

Fig. 8. The top figures show the estimates x̂ of observer (4), together with the
camera measurements y in (3), at the beginning of the experiment (left) and
the end of the experiment (right). The bottom figures show the time histories
of the same position and orientation estimates.

In the experiments, the circular motion is obtained through a
constant input u corresponding to νref = 0.225[m

s] and ωref =
1.5[rads]. The ordinary differential equations involved in the
observer dynamics are solved numerically using an explicit
Euler method with a sampling time of 0.025 s. From the IMU
measurements, the average values over time windows of length
0.1s are used. The camera measurements are received with an
intersample time of about 0.5 s.

From the experimental results we observe that, after an
initial transient, both observers achieve comparable results
and seem to return a reliable estimate of the robot state.
We point out that the camera frames are subject to mea-
surement errors, which cannot be quantified in the current
setup, and thus they are not capturing the true state of the
robot. Hence, a performance evaluation using the mismatch
between the camera measurements and state estimates is not
leading to a useful unit describing the performance of an
observer. Performing the experiments using a high precision
ground truth motion capture system will allow us to evaluate
both, the accuracy of the camera acquisition process and the
performance of the observers, and is left for future work. The
performance analysis will be combined with a tuning process
of the parameters involved in the observer design.

V. CONCLUSION

We developed a modular hardware/software system for
mobile robot localization, combining camera modules, mBots
and onboard IMU sensors. For this setup, we have developed a
continuous-discrete state observer combining continuous IMU
measurements with sporadic non-periodic camera measure-
ments. In future work the performance of the state observer
will be addressed in detail using a MoCap system, the IMU
measurements frequency will be increased, the model will be
refined and the setting will be validated for more sophisticated
closed-loop trajectories.

-0.8 -0.6 -0.4 -0.2 0 0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2

0

0.2

0.4

0.6

0.8

0 5 10 15

-1

-0.5

0

0.5

1

0 5 10 15

-4

-2

0

2

4

Fig. 9. The top figures show the estimated state x̂T obtained from observer
(12), together with the camera measurements ydT in (11), at the beginning
of the experiment (left) and the end of the experiment (right). The bottom
figures show the time histories of the position and orientation estimates.

REFERENCES

[1] M. Hampson. Drone delivers human kidney: The organ was flown
several kilometers by a drone without incurring damage. IEEE Spectrum,
56(1):7–9, 2019.

[2] E. Guizzo. Three engineers, hundreds of robots, one warehouse. IEEE
Spectrum, 45(7):26–34, 2008.

[3] B. Barshan and H. F. Durrant-Whyte. Inertial navigation systems
for mobile robots. IEEE Transactions on Robotics and Automation,
11(3):328–342, 1995.

[4] F. M. Mirzaei and S. I. Roumeliotis. A Kalman filter-based algorithm
for IMU-camera calibration: Observability analysis and performance
evaluation. IEEE Transactions on Robotics, 24(5):1143–1156, 2008.

[5] L. Li, Y. Liu, T. Jiang, K. Wang, and M. Fang. Adaptive trajectory
tracking of nonholonomic mobile robots using vision-based position and
velocity estimation. IEEE Transactions on Cybernetics, 48(2):571–582,
2018.

[6] A. Liu, W. Zhang, M. Z. Q. Chen, and L. Yu. Moving horizon estimation
for mobile robots with multirate sampling. IEEE Transactions on
Industrial Electronics, 64(2):1457–1467, 2017.

[7] R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid dynamical systems:
modeling stability, and robustness. Princeton University Press, 2012.

[8] D. Simon. Optimal State Estimation: Kalman, H∞, and Nonlinear
Approaches. John Wiley & Sons, 2006.

[9] F. L . Lewis, L. Xie, and D. Popa. Optimal and Robust Rstimation:
With an Introduction to Stochastic Control Theory. CRC Press, 2008.

[10] S. G. Tzafestas. Introduction to Mobile Robot Control. Elsevier, 2013.
[11] A. Sferlazza, S. Tarbouriech, and L. Zaccarian. Time-varying sampled-

data observer with asynchronous measurements. IEEE Transactions on
Automatic Control, 64(2):869–876, 2019.

[12] F. Alonge, F. D’Ippolito, G. Garraffa, and A. Sferlazza. A hybrid
observer for localization of mobile vehicles with asynchronous mea-
surements. Asian Journal of Control, 21(4):1506–1521, 2019.

[13] G. M. Vinco. Coordination of mobile robots: architecture for hybrid
observer and controller design. Master’s thesis, Univ. of Trento, 2020.

[14] E. D. Sontag. Mathematical Control Theory: Deterministic Finite
Dimensional Systems. Springer Science & Business Media, 1998.

[15] E. D. Sontag. Remarks on stabilization and input-to-state stability. In
Proc. of the 28th IEEE Conference on Decision and Control, 1989.

[16] J. P. Hespanha. Linear Systems Theory. Princeton Univ. Press, 2018.
[17] B. D. O. Anderson and J. B. Moore. Detectability and stabilizability

of time-varying discrete-time linear systems. SIAM Journal on Control
and Optimization, 19(1):20–32, 1981.

[18] A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic
Press, 1970.

