
HAL Id: hal-03110841
https://hal.science/hal-03110841

Submitted on 14 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interacting quantum mixtures for precision atom
interferometry

Robin Corgier, Sina Loriani, Holger Ahlers, Katerine Posso-Trujillo, Christian
Schubert, Ernst M Rasel, Eric Charron, Naceur Gaaloul

To cite this version:
Robin Corgier, Sina Loriani, Holger Ahlers, Katerine Posso-Trujillo, Christian Schubert, et al.. Inter-
acting quantum mixtures for precision atom interferometry. New Journal of Physics, 2020, 22 (12),
pp.123008. �10.1088/1367-2630/abcbc8�. �hal-03110841�

https://hal.science/hal-03110841
https://hal.archives-ouvertes.fr


Interacting quantum mixtures for precision atom interferometry

Robin Corgier1,2,a,b, Sina Loriani1, Holger Ahlers1, Katerine Posso-Trujillo1,

Christian Schubert1,3, Ernst M. Rasel1, Eric Charron2 and Naceur Gaaloul1,c

1 Institut für Quantenoptik, Leibniz Universität Hannover,

Welfengarten 1, 30167 Hannover, Germany
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Abstract

We present a source engineering concept for a binary quantum mixture suitable as input for

differential, precision atom interferometry with drift times of several seconds. To solve the non-

linear dynamics of the mixture, we develop a set of scaling approach equations and verify their

validity contrasting it to the one of a system of coupled Gross-Pitaevskii equations. This scaling

approach is a generalization of the standard approach commonly used for single species. Its validity

range is discussed with respect to intra- and inter-species interaction regimes. We propose a multi-

stage, non-linear atomic lens sequence to simultaneously create dual ensembles with ultra-slow

kinetic expansion energies, below 15 pK. Our scheme has the advantage of mitigating wave front

aberrations, a leading systematic effect in precision atom interferometry.
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I. INTRODUCTION

The high precision of atom interferometry-based sensors makes them an exquisite tool

for performing tests of fundamental theories [1–6] as well as for metrology [7–10], geodesy or

inertial navigation [11]. One timely challenge is to test the weak equivalence principle (WEP)

or universality of free fall (UFF) [12] by tracking the acceleration of two different test masses

in free fall using matter-wave interferometry [13, 14]. This experimental test [15] is important

in the context of Grand Unification theory [16] to falsify some of the competing models, which

predict a violation of the UFF at different levels [17–19]. EP tests are parametrised by the

Eötvös ratio η, which is the relative acceleration of the test masses divided by their average

acceleration in the same gravitational field. The simultaneous operation of a dual-species

(or isotopes) atom interferometer (AI) was proposed and expected [1, 20] to perform a UFF

test with a target performance that would exceed the best reported measurements using

classical test masses as torsion balances at η = 1.8 × 10−13 [21], Laser Lunar Ranging at

η = 1.4× 10−13 [22] or the space mission MICROSCOPE at η = 1.3× 10−14 [23].

The sensitivity of an atomic inertial sensor scales quadratically with the time spent by

the atoms inside the interferometer [13], limiting ground-bound UFF tests [24–28] and mo-

tivating the drive for long free expansions. Several platforms are therefore considered for

such an increase, such as droptowers [29, 30], fountains [27, 31–33], parabolic flights [34], the

international space station [35, 36] and spacecraft [37–39]. To match the UFF performance

of classical tests, the interferometry time has to reach the second regime [40]. Combined

with a satellite operation, a performance in the range of η = 10−15− 10−17 [41] can be made

possible. To be able to observe the atomic ensemble after several seconds, one uses ultra-cold

degenerate gases that exhibit ultra-slow expansion and unique coherence properties [42]. Re-

cently, AIs fed with single-species Bose-Einstein condensates (BEC) [43, 44] were operated

in these long-time regimes [45, 46] by taking advantage of the delta-kick collimation (DKC)

technique [45, 47–50] since a simple free expansion would quickly lead to low atomic densities

that could be below the density threshold for detection [13]. These demonstrations point

towards a high-accuracy UFF test when combined with a second species in a differential

atom interferometry measurement. The source of such an interferometer would naturally be

a quantum degenerate atomic mixture. Such an input state would allow to go beyond the

current recent performance of η = 10−12 [27] where a binary non-condensed source was used
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taking advantage of the reduced systematic effects associated to quantum gases.

In this paper, we theoretically study the use of these dual sources from the specific

angle of their appropriateness in an atom interferometric accurate measurement. Quantum

mixtures of ultra-cold gases received a surge of theoretical [51–54] and experimental [55–64]

interest since the early years of BEC manipulation revealing extremely rich and interesting

physics. Nevertheless, studies of degenerate mixtures as an appropriate source satisfying the

requirements of a differential AI in the conditions described above have not been considered

to our knowledge. Neither the size, the density shape control, the common collimation of

the two species, nor the AI-relevant systematics are specifically reported. In addition to

covering these aspects, we have paid particular attention to the effects of interactions, which

cannot be neglected for the desired number of atoms in an AI with high sensitivity, i.e.

about 105 to 106 atoms in each condensate.

We illustrate our theoretical approach with the study of a degenerate mixture of 87Rb

and 41K recently proposed for a cutting-edge UFF test [41, 65]. This choice is justified first

by the possibility to tune the interaction between the two species, where the presence of

two Feshbach resonances below 100 G has been demonstrated [57]. A second motivation

is related to the miscibility of the degenerate mixture with both species sharing the same

center of mass. This feature is of particular interest since an offset between the center-

of-mass of the two species coupled to gravity and/or magnetic field gradients can lead to

large detrimental systematic effects [39, 65–67]. Third, it is essential to explore various

combinations of species in order to put bounds on different UFF violation models [68–

70], which parametrize composition-dependent couplings to fifth forces, dark matter, etc.

Depending on the model under consideration, it is advantageous to choose different species

over different isotopes of the same species, since violation parameters scale favourably with

the baryon numbers. Here, by means of a coupled scaling approach derived for miscible

mixtures and verified by Gross-Pitaevskii equations, we found a suitable regime for an AI

operating during more than 10 s using a two-component Rb-K BEC source. This is expected

to allow for an accuracy of UFF tests of few parts in 10−15 for the Eötvös ratio [39, 65, 67].

Mitigation strategies for leading systematic errors as the wave front aberrations that would

limit the accuracy of UFF tests are also proposed. We show that the regime of extremely

long times (several seconds) and ultra-slow kinetic expansion speeds (around 10µm.s−1) is

accessible within current experimental capabilities.
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This paper is structured as follows: In Sec. II we briefly recall the salient features of the

proposed scheme. Sec. III presents the theoretical tools used to track the dynamics of the

quantum mixture. In Sec. IV, we illustrate the preparation scheme of the mixture, its rich

ground state properties and the long-time dynamics observed. In Sec. V we discuss aspects

that are important when using the prepared mixture as an input of a differential AI, in

particular the matching of expansion rates. Conclusions and perspectives are presented in

Sec. VI.

II. SYSTEM CONSIDERED AND PROPOSED SEQUENCE

In spite of the high number of characteristic parameters (three scattering lengths, two

different atom numbers, different trap characteristics, etc..), two-component mixtures could

be classified in two general categories depending whether their spatial density distributions

form symmetric or asymmetric patterns, often referred to as miscible and immiscible states,

respectively. [51, 53, 54]. The system that we shall consider as a study case in this paper

consists of a BEC binary mixture of 87Rb and 41K. A two-component BEC of this kind was

first produced in the pioneering experiments of Ref. [71]. To be close to state-of-the-art

realisations, we consider 105 atoms in each BEC. Since at vanishing ambient magnetic field,

the (positive) inter-species s-wave scattering length is larger than the two (positive) intra-

species ones, the two BECs repel each other for such high atom numbers. This leads to a

spatial separation of the two BECs, even though they share the same center-of-mass. One

of the two species is located in the center of the trap, surrounded by the second one in an

onion-like shape. In presence of a magnetic field, the interaction between these two species

can be tuned thanks to Feshbach resonances [61, 72]. For a particular value of this magnetic

field, the inter-species interaction vanishes and the two BECs feature a large overlap region.

If the trap is released, the atomic clouds expand freely in the Feshbach magnetic field.

A delta-kick collimation (DKC) stage can follow, during which the initial trap is briefly

switched-on again. This pulsed trap strategy is intended to remove a substantial part of the

kinetic energy from the expanding gas [47–50].

Such manipulations have been experimentally implemented and allowed for monitoring

the free evolution of a single-species BEC for 2 s [29, 50, 73]. In the case of a double-species

BEC, we could consider applying the DKC atomic lens once, or using successive pulses, in
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order to control the expansion speed of the atomic clouds. Just as in the single-species case,

the timing(s) and the duration(s) of the pulse(s) is of particular importance. The aim of this

paper is to show that we can effectively collimate the two atomic ensembles such that they

remain sufficiently compact after a free expansion of 10 s. This time can be used to operate

an efficient differential AI with the two species as proposed in the UFF test of Ref. [39, 65].

For such applications, magnetic disturbances of the clouds have to be avoided. To this end,

the Feshbach magnetic field has to be ramped down after the last DKC pulse and the atomic

ensembles transferred to magnetically insensitive states. One needs to verify that the density

distribution of the two species keeps a suitable shape for the precision measurement despite

the absence of the Feshbach field.

Figure 1. Schematic representation of the optimized sequence with two atomic lenses. Top row:

Density distributions (continuous lines) of the two species at different stages of the sequence. The

different times of flight (traps off) and delta-kick collimations (traps on, dashed lines) are indi-

cated by the labels TOF 1, DKC 1, TOF 2 and DKC 2. During these different steps, the Feshbach

magnetic field is activated in such a way that species interactions are suppressed (a12 = 0). At the

end of the sequence the two species are collimated and the atom interferometry (AI) sequence can

begin. During this last step, the Feshbach resonance is disabled and a12 6= 0. Bottom row: Rep-

resentation of the different steps in phase space. The impact of the different TOFs is highlighted

by the horizontal arrows and the impact of the different DKCs is highlighted by the curved arrows

(rotation of the atomic distributions in phase space).
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III. THEORETICAL MODEL

A. Mean-field equations

At zero temperature and within the mean-field approximation, the time evolution of

a Bose-Einstein condensate is described by the time-dependent Gross-Pitaevskii equation

(TD-GPE) [74]

i~ ∂tΨ(r, t) =

[
− ~2

2m
∇2

r + U(r, t) +Ng |Ψ(r, t)|2
]

Ψ(r, t) , (1)

where Ψ(r, t) denotes the wave function of the BEC, m is the atomic mass, U(r, t) the time

dependent external potential, N the number of particles in the BEC and g the strength of

the atom-atom interaction related at ultra-low temperature to the s-wave scattering length

of the atomic species, a, by the relation g = 4π~2a/m. The wave function is normalized to

one. In the initial potential, at t = 0, the stationary solution is given by

Ψ(r, t) = Ψ(r, 0) exp
[
− i µ t/~

]
, (2)

where µ is the chemical potential of the quantum gas and the term exp[−iµt/~] is a global

phase. The time-independent GPE reads

µΨ(r, 0) =

[
− ~2

2m
∇2

r + U(r, 0) +Ng |Ψ(r, 0)|2
]

Ψ(r, 0) . (3)

B. Single-species scaling approach

In the case of large atom numbers, the kinetic energy term of Eq. (3) is much smaller than

the interaction energy. In this so-called Thomas-Fermi (TF) limit, it is possible to express

the probability density of the BEC as

ρS(r, 0) = N
∣∣ΨTF(r, 0)

∣∣2 =
[
µ− U(r, 0)

]
/g , (4)

for U(r, 0) 6 µ and ρS(r, 0) = 0 otherwise. The exponent S stands for the case of a single-

species problem and will help to distinguished later the case of a double-species BEC. The

chemical potential µ can be found by the normalization condition. For a harmonic trap,

U(r, 0) =
1

2
m
(
ω2
x(0) x2 + ω2

y(0) y2 + ω2
z(0) z2

)
, this yields

µ =
~ω0

2

(
15Na

aosc

)2/5

, (5)
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where aosc =
√

~/mω0 is the average quantum-mechanical length scale of the 3D harmonic

oscillator and where ω0 = 3
√
ωx(0)ωy(0)ωz(0) is the geometric mean of the three oscillator

frequencies in Cartesian coordinates [74]. The size of the BEC along the directions x, y and

z is characterized by the TF radii R 0
x , R 0

y and R 0
z given by

R 0
α = aosc

(
ω0

ωα(0)

)(
15Na

aosc

)1/5

, (6)

with α ∈ {x, y, z}.
In the TF approximation the parabolic shape of the density given in Eq. (4) remains

unaltered when the frequencies of the harmonic trap vary and the cloud experiences a simple

dilatation or a compression, which can be described by three scaling coefficients, λSα(t), again

with α ∈ {x, y, z}. The size evolution of the cloud is then given by

Rα(t) = λSα(t) R 0
α , (7)

and the evolution of the probability density is written as

ρS(r, t) =
ρS (r ′, 0)

λSx(t)λSy (t)λSz (t)
. (8)

In this expression the coordinates r and r ′ are defined as r = xux + y uy + z uz and

r ′ = (x/λSx(t))ux+(y/λSy (t))uy+(z/λSz (t))uz. Newton’s law applied to the cloud dynamics

yields

λ̈Sα(t) + ω2
α(t)λSα(t) =

ω2
α(0)

λSα(t)λSx(t)λSy (t)λSz (t)
, (9)

where ωα(t) is the time-dependent trapping frequency in the direction α ∈ {x, y, z} [75, 76].

The right hand side of Eq. (9) describes the coupling of the three directions through the mean

field term of the GPE. Knowing the parabolic shape of the wave function, the three typical

sizes Rα(t) can be related to the three standard deviations ∆α(t) of the BEC density. This

relation is ∆α(t) = Rα(t) /
√

7 (see Appendix A for details). Numerically, we also evaluate

these three widths ∆x(t), ∆y(t) and ∆z(t) from the solution of the time-dependent Gross-

Pitaevskii equation (1).

C. Coupled mean-field equations

In the last section the model used to describe single BEC dynamics has been presented.

A similar set of coupled equations can be derived to study the dynamics of an interacting
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mixture of degenerate gases. In the case of a two-component BEC, within the mean field

approximation, the dynamics is described by the time-dependent coupled Gross-Pitaevskii

equations (TD-CGPE)

i~∂tΨ1(r, t) =
[
− ~2∇2

r

2m1

+ U1(r, t) +N1g11|Ψ1(r, t)|2 +N2g12|Ψ2(r, t)|2
]
Ψ1(r, t) (10a)

i~∂tΨ2(r, t) =
[
− ~2∇2

r

2m2

+ U2(r, t) +N2g22|Ψ2(r, t)|2 +N1g12|Ψ1(r, t)|2
]
Ψ2(r, t) (10b)

where Ψi(r, t) with i ∈ {1, 2} denotes the wave function of the species number i. The

constants gij are related to the respective scattering lengths, a11, a12 and a22 by the relation

gij = 2π~2aij/mij, with mij being the reduced mass mimj/(mi+mj). Ni and Ui(r, t) are the

number of atoms and the external potential of the species i, respectively. In the following we

consider the two condensates to be confined in external harmonic traps of frequencies ωi,α(t):

Ui (~r, t) =
1

2
mi

(
ω2
i,x(t) x

2 + ω2
i,y(t) y

2 + ω2
i,z(t) z

2
)
. The last terms of Eqs. (10a) and (10b)

describe the coupling between the two components. Both wave functions are normalized to

1. For large atom numbers and within the TF approximation, the time-independent coupled

Gross-Pitaevskii equations read

µ1 = U1(r, 0) +N1g11|ΨTF
1 (r, 0)|2 +N2g12|ΨTF

2 (r, 0)|2 , (11a)

µ2 = U2(r, 0) +N2g22|ΨTF
2 (r, 0)|2 +N1g12|ΨTF

1 (r, 0)|2 . (11b)

The nature of the solution of Eq. (11) is determined by the competition between the

intra- and inter-species interactions. If the single-species interaction dominates (g11g22 >

g2
12 for a uniform gas) the energy is minimized when the two species occupy the entire

accessible volume. In this case the two BEC wave functions overlap and we are in the

miscible regime [54, 77, 78]. Conversely, if the inter-species interaction dominates (g2
12 >

g11g22 for a uniform gas) the energy of the system is minimized when the two BEC wave

functions are spatially separated. This is the immiscible regime [54, 77, 78]. Having precision

interferometry applications as a motivation, the present study is realized in the miscible

regime and we consider that the three following conditions are fulfilled: g11 > 0, g22 > 0

and G2 = g11 g22 − g2
12 > 0. In this case the density distribution of the two interacting

condensates can be approximated in a similar fashion as in the case of a single component

condensate. Therefore, in the overlap region the density distributions of the two species are
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given by

ρD1 (r, 0) = N1 |ΨTF
1 (r, 0)|2 =

g22

G2
[µ1 − U1(r, 0)]− g12

G2
[µ2 − U2(r, 0)] (12a)

ρD2 (r, 0) = N2 |ΨTF
2 (r, 0)|2 =

g11

G2
[µ2 − U2(r, 0)]− g12

G2
[µ1 − U1(r, 0)] (12b)

for g22[µ1−U1(r, 0)] > g12[µ2−U2(r, 0)] and g11[µ2−U2(r, 0)] > g12[µ1−U1(r, 0)]. These two

conditions define the region of co-existence of the two BECs, where Eqs. (12a) and (12b)

hold. In other regions, the densities are given by the single component of Eq. (4).

D. Dual-species scaling approach

We present now a generalization of the scaling theory introduced in Refs. [75, 76] in order

to account for the mutual interactions between the two species in the region of overlap. As

highlighted in Fig. 2 we consider two distinct domains: In the central one corresponding

to domain A, the two species are present. In the second domain called domain B, which

surrounds the inner domain A, only one of the two species is present, namely species number

2. This naturally leads us to define six scaling factors λDi,α(t) for the domain A, with i ∈ {1, 2}
and α ∈ {x, y, z}, and three scaling factors λS2,α(t) for the domain B. The exponent D denotes

the presence of the two species in domain A and the exponent S is for the outer domain B

with a single species. Since domain B is characterized by the presence of a single species,

the evolution dynamics of the scaling factors λS2,α(t) is governed by Eq. (9).

In analogy with Eqs. (6) and (7), we denote respectively by RA,α(t) and RB,α(t) the outer

limits of the two domains in the direction α at time t according to

RA,α(t) = λD1,α(t) R 0
A,α (13a)

RB,α(t) = λS2,α(t) R 0
B,α (13b)

where the initial sizes R 0
A,α of domain A are defined by the cancellation of the density

distribution of the first species: ρD1 (r, 0) = 0 for r ∈
{
R 0
A,x ux ;R 0

A,y uy ;R 0
A,z uz

}
. Similarly,

the initial sizes R 0
B,α of domain B are defined by the cancellation of the density distribution

of the second species: ρS2 (r, 0) = 0 for r ∈
{
R 0
B,x ux ;R 0

B,y uy ;R 0
B,z uz

}
.

Following the different steps of calculation described in Refs. [75, 76] for a single compo-

nent BEC, we obtain in the case of a double species BEC six coupled first order differential
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−RA,α(t) RA,α(t)

position (α = {x , y , z})

domain A

Species 1& Species 2

−RB,α(t)
0

de
ns

ity
ρ
(r
,t
)

domain B

Species 2

RB,α(t)

domain B

Species 2

Figure 2. Representation of the different domains and density configurations of the two species. In

the central domain (domain A) both species are present and the curvature of the second species

(red) depends on the interspecies and intraspecies s-wave scattering length [54, 79]. In the outer

domain (domain B) only the second species is present.

equations [79]

λ̈Di,α(t) =− ω2
i,α(t)λDi,α(t)

+
gii

λDi,x(t)λ
D
i,y(t)λ

D
i,z(t)

(
gi′i′ mi ω

2
i,α(0) − g12mi′ ω

2
i′,α(0)

miG2λDi,α(t)

)

+
g12

λDi′,x(t)λ
D
i′,y(t)λ

D
i′,z(t)

(
giimi′ ω

2
i′,α(0) − g12mi ω

2
i,α(0)

miG2λDi′,α(t)

)
λDi,α(t)

λDi′,α(t)
(14)

describing the time evolution of the six scaling factors λDi,α(t) in domain A (see Appendix B

for more details). In this equation i′ = 2 when i = 1 and i′ = 1 when i = 2. It is easily

seen that if the two BEC components do not interact (case where g12 = 0), Eq. (14) reduces

to a set of single component equations identical to Eq. (9). By solving these six coupled

first order differential equations (14) we are able to follow the size dynamics of the two-

component condensate without having to solve the coupled Gross-Pitaevskii equations (10).

As we will show in the next section, this turns out to be a reliable approximation which

provides a computationally efficient predictions of the two-species condensate expansion or

compression dynamics as long as the number of domains (i.e. 2 domains) is conserved.
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The evolution of the atomic densities of the two species in domain A is given by

ρD1 (r, t) =
ρD1 (r ′, 0)

λD1,x(t)λ
D
1,y(t)λ

D
1,z(t)

with r ′ =
xux
λD1,x(t)

+
y uy
λD1,y(t)

+
z uz
λD1,z(t)

(15a)

ρD2 (r, t) =
ρD2 (r ′′, 0)

λD2,x(t)λ
D
2,y(t)λ

D
2,z(t)

with r ′′ =
xux
λD2,x(t)

+
y uy
λD2,y(t)

+
z uz
λD2,z(t)

(15b)

Here r ′ and r ′′ denote re-scaled coordinates compared to r = xux + y uy + z uz. In the

outer domain B we obtain

ρS1 (r, t) = 0 (16a)

ρS2 (r, t) =
ρS2 (r ′′′, 0)

λS2,x(t)λ
S
2,y(t)λ

S
2,z(t)

with r ′′′ =
xux
λS2,x(t)

+
y uy
λS2,y(t)

+
z uz
λS2,z(t)

. (16b)

E. Delta-kick collimation

To largely reduce the expansion rate of cold atomic samples, the delta-kick collimation

(DKC) technique [47, 48, 80] is commonly applied. It consists in re-trapping a freely expand-

ing cloud of atoms for a brief duration in order to align its phase-space density distribution

along the position coordinate axis, therefore minimizing its momentum distribution width

in preparation for a further expansion. This is in analogy with the collimation effect of a

lens in optics and DKC is often referred to as an atomic lens. It is worth noticing that the

phase-space density of lensed ensemble is conserved which does not qualify this process to be

a cooling in the strict statistical physics sense. This method was successfully implemented

and led to record-long observation times of several seconds [45, 81, 82]. The DKC effect is

accounted for in the dynamics by simply considering the time-dependent trap frequencies

defined as follows: ω i,α(t) = ω i,α(0) if tiDKC 6 t 6 tfDKC and ω i,α(t) = 0 during the free

expansion. Here, t
i(f)
DKC is the starting (final) time of application of the optical lens.

F. Feshbach magnetic field

Reference [61] reports the discovery of two Feshbach resonances around 35 G and 79 G in

a mixture of 41K and 87Rb, where the mutual interaction, with magnitude a12, is magnetic-

field-dependant. This instrumental feature will be used in the following in order to switch-off

the K-Rb interaction at short times to enhance miscibility. We will thus consider a sequence

where a12(t) = 0 for t 6 tF and a12(t) = 163 a0 for t > tF. Indeed, by switching-off the
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external magnetic field B0 at time tF, the inter-species interaction is naturally at the latter

value. The s-wave scattering lengths of Rubidium and Potassium are constant in the vicinity

of the abovementioned Feshbach resonances and respectively equal to aRb = a11 = 99 a0 and

aK = a22 = 60 a0 [57, 61, 83, 84].

G. Numerical considerations

Two methods are used to describe the ground state or dynamics of the condensates.

The solutions of the TD-CGPE are propagated using the split-operator method reported

in [85] by means of fast Fourier transforms. To find the ground state of the mixture, the

propagation is carried out in imaginary time, so as to let the solution relax to the ground

state following the approach of Ref. [86]. This solution is then used as the initial state of the

real-time propagation. Solutions to the scaling equations are obtained using a fourth order

Runge-Kutta integrator. More details on the numerical algorithm can be found in [79].

IV. ENGINEERED FREE EXPANSION OF A BINARY MIXTURE

The binary mixture described theoretically in the Sec. III is designed as the input of an

atomic interferometer (AI) dedicated to high-precision measurements similar to the UFF test

of reference [39]. The use of a large magnetic field during operation of the AI is not possible

due to several systematic effects that appear in relation with Zeeman shifts. This field is

however essential for the preparation of the mixture to overcome the problem of immiscibility

and shape deformations of the density distribution of the two species after release, during

the free-expansion time of the interferometry sequence. Indeed, the deformation of the

distribution can lead to detrimental wave-front aberrations [87] such as the appearance of

inhomogeneous phases imprinted by the pulses of the interferometry sequence. Moreover,

for state-of-the-art precision measurements, a long-time atom interferometer is required and

one would therefore benefit from slow kinetic expansion rates of the two atomic ensembles

as delivered by DKC. Long-time atom interferometers are nowadays accessible on Earth.

In the case of a Mach-Zehnder-type atom interferometer, the total interferometry time can

be of the order of 2 s but its successful operation requires the control of the environment

over a 10-meter long experiment [27, 88]. In micro-gravity environments [29, 73] or in
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space [35, 38, 41], longer interrogation times of about 10 seconds are available and would be

considered in what follows.

A. Isotropic trap

To simplify the description of the dual-species theoretical treatment of its dynamics, we

choose the external trap to be harmonic and isotropic as it could be realised by crossed

optical traps for example [89]. For the atom number in species i (i = 1 for Rb and i = 2

for K) we denote by ωi(t) the associated frequency, such that Ui(r, 0) = mi ω
2
i (0) r2/2. In

spherical coordinates one can write the wave function as a product of radial and angular parts

such as Ψi(r, t) = χi(r, t) · Y`,m(θ, φ) / r, where, in the particular case of a pure spherical

trap, ` = m = 0. This transformation leads to solve a simplified one dimensional radial

TD-CGPE

i~∂tχ1(r, t) =

[
−~2∂rr

2m1

+ U1(r, t) +
N1g11

4πr2
|χ1(r, t)|2 +

N2g12

4πr2
|χ2(r, t)|2

]
χ1(r, t) (17a)

i~∂tχ2(r, t) =

[
−~2∂rr

2m2

+ U2(r, t) +
N2g22

4πr2
|χ2(r, t)|2 +

N1g12

4πr2
|χ1(r, t)|2

]
χ2(r, t) (17b)

with the normalization conditions

∫ ∞

0

|χi(r, t)|2 dr = 1 for i = 1, 2 . (18)

Using the Thomas-Fermi approximation, the initial density distributions ρD1 (r, 0) and

ρD2 (r, 0) of species 1 and 2 in domain A are still given by Eqs. (12a) and (12b), while

the initial density distribution ρS2 (r, 0) of species 2 in domain B is given by the single species

expression Eq. (4). The only difference is that the vector r in Eqs. (4), (12a) and (12b) is

replaced by the radial coordinate r. In this case of an isotropic harmonic trap, the initial

Thomas-Fermi radii are defined by

R 0
A =

[
2 (g22µ1 − g12µ2)

g22m1ω2
1(0)− g12m2ω2

2(0)

]1/2

(19a)

R 0
B =

[
2µ2

m2ω2
2(0)

]1/2

(19b)
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for domains A and B. In the same way as for single species, the chemical potential is found

thanks to the normalization conditions leading to

µ1 =
g12

g22

µ2 +

(
15

8π

N1G
2

g22

)2/5(
m1ω

2
1(0)

2
− g12m2ω

2
2(0)

2g22

)3/5

, (20a)

µ2 =

(
15

8π
(N2g22 +N1g12)

)2/5(
m2ω

2
2(0)

2

)3/5

. (20b)

The scaling equations (14) describing the size dynamics of the binary mixture simplify

into

λ̈Di (t) + ω2
i (t)λ

D
i (t) =

gii[
λDi (t)

]4
(
gi′i′ mi ω

2
i (0) − g12mi′ ω

2
i′(0)

miG2

)

+
g12 λ

D
i (t)

[
λDi′ (t)

]5
(
giimi′ ω

2
i′(0) − g12mi ω

2
i (0)

miG2

)
, (21)

where, in the following, we treat the case of an identical external trap for the two species

i.e. mi ω
2
i (0) = mi′ ω

2
i′(0) leading to

λ̈Di (t) + ω2
i (t)λ

D
i (t) =

[
gii(gi′i′ − g12)
[
λDi (t)

]4 +
g12(gii − g12)λDi (t)

[
λDi′ (t)

]5

]
ω2
i (0)

G2
. (22)

Finally, the sizes of the two domains are obtained from the calculation of the Thomas-

Fermi radii RA(t) = λD1 (t) R 0
A and RB(t) = λS2 (t) R 0

B. The density distributions ρD1 (r, t) and

ρD2 (r, t) of species 1 and 2 in domain A are given by Eqs. (15a) and (15b), while the density

distribution ρS2 (r, t) of species 2 in domain B is given by Eq. (16b). It should be noted that

the general case of different external traps for the two species can easily be dealt with using

the equation (21) instead of the simplified equation (22).

To compare to the results of this scaling approach specifically designed for binary mixtures

with the TD-CGPE Eq. (10), it is convenient to define the characteristic standard deviations

∆r1(t) and ∆r2(t) of the density distributions of species 1 and 2. Indeed, these characteristic

sizes can be calculated either from the densities obtained with the TD-CGPE or from the

densities obtained with the generalized scaling approach.

B. Initial state

Before looking at the dynamics of the expanding source, we first study the initial sta-

tionary binary mixture confined in a harmonic and isotropic trap. The ground states of this
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Figure 3. Ground-state of a binary mixture of 87Rb and 41K. In the left panel (a) a12 = 163 a0 and

the two BECs repel each other. In the right panel (b) the inter-species scattering length is tuned

to zero and the two BECs do not interact. The calculations have been done with ω1(0) ≡ ωRb =

2π × 50 Hz and ω2(0) ≡ ωK = 2π × 73 Hz, with 105 atoms in each BEC. The blue and red colors

are for the Rb and K species, respectively.

quantum mixture are not trivial and deserve a careful description, especially when the misci-

bility of the two quantum fluids comes into play [54, 77, 78]. An immiscible mixture is not a

suitable source for a high-precision interferometer since an offset between the center-of-mass

of the two gases couples to gravity or magnetic field gradients leading to important system-

atic errors [65]. In our case we consider the two-component super-fluid to be in the miscible

regime characterized by the same center-of-mass and by the same domain of existence.

In Fig. 3, we show how the inter-species interaction length a12 impacts the ground state

density distribution obtained by solving the coupled Gross–Pitaevskii equations. Here the

mixture is created in a trap with mean frequencies ω1(0) ≡ ωRb = 2π × 50 Hz and ω2(0) ≡
ωK = (mRb/mK)1/2ωRb ' 2π × 73 Hz for Rb and K, respectively. In the left panel (a)

the Feshbach field is turned off and a12 = 163 a0. The contact interaction energy is then

dominated by the repulsion between Rb and K atoms, and the two BECs repel each other.

As a consequence, the two BECs do not overlap: the Rb-BEC is located at the center of the

trap, surrounded by the K-BEC, as seen in Fig. 3(a). This state is fragile against external

perturbations and can lead in the non-ideal experimental environment to an immiscible,

asymmetric state where the two gases are located side-by-side.

In the right panel (b) of the same figure, the Feshbach magnetic field is chosen such that

a12 = 0. In this case the two BECs do not interact with each other and they maximally
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overlap since they essentially share the same domain of existence. As we will see later on,

if this cold atomic mixture was released with the Feshbach magnetic field turned off, both

spatial distributions would be highly modified due to strong inter-species repulsion, quickly

leading to a spatial separation of the two species similar to the one seen in Fig. 3(a).

C. Expansion dynamics

In this section we focus on the case where the two BECs overlap at all times. This

regime is defined by the criterion G2 = g11 g22 − g2
12 > 0, equivalent in our Rb-K case

to a12 < 72 a0. This criterion was derived for uniform gases in homogeneous traps and

considers only the different mean-field interactions present in the system [54, 77, 78]. Since

most of the experiments operate in harmonic traps, the density of the atomic clouds is

far from having a uniform profile. In this case, the miscibility is highly dependent on the

number of atoms as well. We nevertheless use this criterion as a rough reference in the

following. As in Fig. 3, we consider the case of a mixture created initially in a trap with

mean frequencies ω1(0) ≡ ωRb = 2π × 50 Hz and ω2(0) ≡ ωK = 2π × 73 Hz. The left

column of Fig. 4 shows the initial density distributions of the two species for an inter-species

scattering length tuned from a12 = 0 in panel (a) to a12 = −56.7 a0 = −3 nm in panel

(b) and to a12 = +56.7 a0 = +3 nm in panel (c). In each panel the blue and red lines are

for Rb and K, respectively. The solid and dashed lines show the solutions of the coupled

Gross-Pitaevskii equations (10) and of the generalized scaling approach (12), respectively.

The vertical dash-dotted and dotted lines mark the limits of domains A and B.

We now verify the accuracy of the generalized scaling approach in the case of a free ex-

pansion of the two condensates. To this end, we first calculate the expansion dynamics using

the time-dependent coupled Gross-Pitaevskii equations and then compare to the generalized

scaling equations for different ground state configurations shown on the left side of Fig. 4.

The right side of Fig. 4 shows the corresponding density distributions calculated with the

TD-CGPE (solid lines) and with the generalized scaling approach (dashed lines) after a

Time-of-Flight (TOF) tTOF = 100 ms in the case where the inter-species scattering length is

tuned from a12 = 0 in the upper panel (d) to a12 = −56.7 a0 in the middle panel (e) and to

a12 = +56.7 a0 in the lower panel (f).

As expected, it can first be noticed that the generalized scaling approach is very accurate
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Figure 4. Representation of the density distribution of the BEC mixture in different situations.

The left panel is the initial density at t = 0. The right panel is after a Time-of-Flight (TOF)

tTOF = 100 ms. The blue and red colors are for Rb and K. The straight and dashed lines show the

results of the calculations with the TD-CGPE approach and with the generalized scaling approach

(GSA), respectively. The inter-species scattering length is a12 = 0 in the upper panels (a) and (d),

a12 = −56.7 a0 in middle panels (b) and (e) and a12 = +56.7 a0 in the lower panels (c) and (f).

The vertical dash-dotted and dashed lines mark the expected sizes of the two domains, RA(t) and

RB(t).

for a12 = 0. This approach also provides a rather good and almost quantitative description
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of the two-species cloud expansion dynamics for the cases presented in panels (e) and (f)

with g11g22/g
2
12 ' 1.6. However, when a12 6= 0, the density distribution predicted for K by

the generalized scaling approach becomes discontinuous at the boundary between the two

domains. This comes from the fact that the spatial density of K is described by Eq. (15b) in

the inner domain A and by Eq. (16b) in the outer domain B. The Rb species, which is not

present in domain B does not show such a discontinuity. We see here that when g2
12 < g11g22

the main features of the density distributions of the two species are caught by the generalized

scaling approach but not their fine details such as the oscillation of the K density seen in

domain A in Fig. 4(f) for instance. Such an accuracy level is however sufficient to predict

the expansion rates of the two components [79]. In addition, solving the generalized scaling

approach is numerically much more efficient than solving the time-dependent coupled Gross-

Pitaevskii equations.

We also note that in the case of negative inter-species scattering length the expansion

rates of the two clouds are reduced by the inter-species attraction. This feature can be

qualitatively understood if one interprets the inter-species mean-field energy, i.e. the last

term of Eq. (10), as a confining potential. Nevertheless, this result has to be considered with

caution since we only account for mean-field interactions in this study. Considering the first

order Lee-Huang-Yang correction to the mean field approach [90], a creation of quantum

droplets in an attractive mixture has recently been predicted [91] and investigated in the

case of 87Rb and 41K [92], showing a stabilization of the mixture instead of a collapse.

It should also be emphasized that for a12 6= 0, the generalized scaling approach does

not conserve the total number of atoms. This feature is inherent to the model. Indeed,

this model assumes that there are initially two separate, uncoupled domains, for which a

separate scaling approach is performed. However, in reality, since the expansion dynamics

is different for Rb and K, it can happen that a fraction of the atoms of a given species

leaves one of the domains in favor of the other one. This phenomenon is naturally taken

into account in the TD-CGPE approach but not in the generalized scaling approach which

simply consists of associating two scaling parameters λARb and λAK to domain A and one

scaling parameter λBK to domain B. In the results presented in Fig. 4, at the end of a TOF

dynamics, we obtain λAK > λARb, meaning that the K cloud initially in domain A expands

faster than the Rb cloud. Since domain A is defined as the domain shared by the two species,

we can conclude that a fraction of the K atoms initially in domain A leaves this domain
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during the TOF dynamics. The number of K atoms in domain A therefore decreases with

time. This population transfer is not accounted for by the model since it does not include

any term coupling the two different domains. Similarly, the number of K atoms in domain B

is not constant either. This is obviously one of the limitations of this model. This limitation

may be usefully used as a measure of the model accuracy: In the three cases shown Fig. 4,

after 100 ms of TOF we obtain ∆NK /NK = 0 when a12 = 0 [panel (d)], ∆NK /NK = 7.5%

when a12 = −56.7 a0 [panel (e)] and ∆NK /NK = 13.1% when a12 = +56.7 a0 [panel (f)].

It is interesting to note that this error is smaller when the inter-species interaction is

attractive compared to repulsive. This situation of an attractive inter-species interaction

favors the cohesion of the two-species in domain A. When the inter-species interaction is

repulsive, Rb and K have a higher tendency to separate from each other, leading to a higher

number of losses of K atoms from domain A to domain B, and we see that the error ∆NK /NK

increases. Additional numerical simulations (not shown) indicate that the error ∆NK /NK

is mainly accumulated in the first milliseconds of expansion. This is consistent with the fact

that when the clouds are very dilute, the effective strength of the inter-species interaction

becomes negligible, and the model becomes close to exact. This fact is obviously important

for simulating accurately long expansion times.

D. Single species collimation

We now consider the case where the Feshbach field is tuned such that the two BECs

do not interact with each other at any time. We are interested in the kinetic expansion

of the two clouds with a DKC pulse optimized to collimate one of the two species after a

first free-expansion step of 100 ms from the initial trap. Fig. 5 shows the characteristic size

evolution of the BECs, i.e. the standard deviations ∆r of the BECs calculated with the

TD-CGPE (10), when the lens is optimized either to collimate the K-BEC, panel (a) with

a lens duration of 1.12 ms, or to collimate the Rb-BEC, panel (b) with a lens duration of

2.3 ms. In both cases the blue and red lines show the characteristic size evolution of the

Rb and K BECs, respectively. In the first configuration [panel (a)], the lens is too short

to collimate the Rb BEC. After the lens, the expansion speed of the Rb cloud is equal to

165µm/s, corresponding to an expansion energy of 287 pK. In this configuration, the K cloud

is well collimated and its expansion speed is only 23µm/s, equivalent to an energy 5.6 pK.
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Figure 5. Evolution of the characteristic sizes (standard deviation ∆r) of a Rb-K mixture when

a12 = 0. Panel (a): the DKC pulse is optimized to collimate the K cloud. Panel (b): the DKC

pulse is optimized to collimate the Rb cloud. The blue and red lines are for Rb and K, respectively.

The initial trap frequencies are ωRb = 2π × 10 Hz and ωK = 2π × 15 Hz.

In the second configuration [panel (b)], the lens collimates the Rb cloud, leading to a slow

expansion speed of 20µm/s (4.2 pK) but it focuses the K cloud. At later times (t > 200 ms)

the K cloud expands at a speed of 509µm/s (2.7 nK).

In addition to the fact that the presence of a Feshbach field is not suitable for an interfer-

ometry sequence, the configuration depicted in the Fig. 5 leads to a fast expansion of one of

the two BECs, an effect which limits drastically the sensitivity of a dual species interferom-

eter [37, 39, 65, 67, 87]. These two configurations highlight the particular importance of the

timing of the DKC pulse and the difficulty to limit the expansion speeds of the two ensem-

bles below 100µm/s, as required in [39] to operate at the same level than state-of-the-art

classical implementations developed for testing the UFF [23].

E. Dual-species collimation with a multi-pulse atomic lenses

To further control the dynamics of the two coupled atomic ensembles, the use of a sequence

of two DKC pulses is advantageous. The strategy proposed is to prepare the two species in

a trap in presence of a Feshbach resonance such that a12 = 0 and to keep the Feshbach field
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Figure 6. Evolution of the densities [panels (a), (b) and (c)] and of the characteristic sizes or

standard deviations ∆r [panel (d)] of a dual species BEC with a sequence of two DKC pulses. The

state preparation is made of a 5-step sequence: First a free expansion during 50 ms, followed by

a DKC pulse of duration ∆t1 = 2.75 ms and by a second free expansion during 400 ms, followed

by a second DKC pulse of duration ∆t2 = 0.35 ms. This sequence takes place in presence of a

Feshbach magnetic field which suppresses Rb-K interactions. The last step is a TOF where the

Feshbach field is switched off 1 ms after the second lens. The blue and red colors are for Rb and

K, respectively. Panels (a-c) show representations of the TD-CGPE density distributions after the

second lens for different TOFs: (a) 1 ms, (b) 500 ms and (c) 1 s. In panel (d), the straight and

dashed lines are the results obtained with the TD-CGPE and with the generalized scaling approach

(GSA), respectively. The two vertical dashed and dash-dotted lines mark the times at which the

two DKC pulses are operating.

on during all the preparation sequence. After a first release, a first DKC pulse is switched
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on during ∆t1 . This duration is tuned in order to slow down the expansion of the Rb cloud

and to focus the K BEC. This step is followed by a second release whose duration is long

enough to pass the focus point of the K cloud. At this stage, the two clouds expand in size,

and a second DKC pulse of duration ∆t2 is applied to collimate both species simultaneously.

The Feshbach field is then turned off 1 ms after the last pulse, to be able to perform the

interferometry sequence.

In Fig. 6(d) we show the evolution of the characteristic sizes (standard deviation) of the

two BECs calculated with the TD-CGPE (straight lines) and with the generalized scaling

approach (dashed lines) in the case where, after a first free expansion during 50 ms, a first

lens is applied for a duration ∆t1 = 2.75 ms followed by a second free expansion during

400 ms and by a second DKC pulse of duration ∆t2 = 0.35 ms. The starting times of the

two lenses are marked by vertical dashed and dash-dotted lines. The density distributions

of the two species, calculated with the TD-CGPE, are shown for different TOFs after the

second lens in panels (a), (b) and (c). They highlight the influence of the remaining mean-

field inter-species interaction which deform progressively the density profile of the Rb cloud.

After the final release, the 3D kinetic expansion speed of the Rb and K BECs, calculated

with the TD-CGPE, are respectively 37.6µm/s and 34.6µm/s, corresponding to 14.9 pK

and 12.6 pK in units of expansion energy. These expansion rates are appropriate for the

most demanding high-precision dual species AI. This optimized configuration was found by

scanning the large parameter space offered by the proposed strategy of using a sequences

of two DKC pulses. The characteristic sizes predicted by the scaling approach during the

expansion of both clouds are in good agreement with the exact calculation. This is one of

the clear interest of this approach which is numerically much less demanding than solving

the coupled time-dependent Gross-Pitaevskii equations and serves as a guide to effortlessly

optimise the dual-lens sequence.

F. Impact of the inter-species mean-field interactions

The sequence proposed in Fig. 6 has been optimized in the case where the inter-species

interaction is suppressed during the preparation stage and then switched back 1 ms after the

second lens. As already mentioned, this first proposal suffers from a progressive distortion

of the Rb cloud. This distortion is even more pronounced for longer TOFs, as shown by the
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Figure 7. Evolution of the densities [panels (a) and (b)] and of the characteristic sizes or standard

deviations ∆r [panel (c)] of a dual species BEC with a sequence of two DKC pulses. The state

preparation sequence is the same as in Fig. 6. The dashed and straight lines in the upper panels

(a) and (b) denote the case where the Feshbach magnetic field is turned off respectively 1 ms or

2 s after the second DKC pulse. The blue and red colors denote the Rb and K species. Panel

(a): Representation of the density distributions after 2 s of TOF. Panel (b): Representation of the

density distributions after 10 s of TOF. Panel (c): Characteristic size evolution of the two BECs

when the Feshbach magnetic field is turned off 2 s after the second DKC pulse. The timings of

the second DKC pulse and of the time at which the Feshbach field is switched off are marked by

vertical dash-dotted and dotted lines in this panel.

dashed lines of panels (a) and (b) of Fig. 7. These two panels present in red and blue dashed

lines the K and Rb density profiles after a TOF of 2 and 10 s. This distortion arises from the

23



fact that the inter-species mean-field interaction is not yet negligible when the Feshbach field

is switched off: The residual inter-species repulsion leads to a deformation of the density

distribution of the Rb cloud, which is pushed away from the central region occupied by K.

Minimizing the detrimental impact of the residual inter-species mean-field repulsion on the

Rb density profile requires to keep the Feshbach magnetic field for longer. Fig. 7 depicts the

case where the Feshbach magnetic field is kept for an extra 2 s after the second DKC pulse.

In panels (a) and (b) we show in solid lines the Rb and K density profiles calculated with

the TD-CGPE after a TOF of 2 and 10 s. The timings of the second DKC pulse and of

the time at which the Feshbach field is switched off are marked by vertical dash-dotted and

dotted lines in panel (c). In this optimized situation the shapes of the density distributions

do not change and the two BECs just experience a simple size expansion. Both clouds are

undistorted after 10 s of TOF because the clouds are already so dilute when the Feshbach

magnetic field is switched off that the inter-species repulsion is negligible. The kinetic

expansion speeds of the Rb and K clouds are then 31.8µm/s and 32.6µm/s, corresponding

to energies of 10.7 pK and 11.2 pK. These expansion velocities, smaller than the ones of the

previous section, are even more suitable for a high precision dual species AI.

V. DEVELOPED SOURCE CONCEPT AND REQUIREMENTS OF THE UFF

TEST

The results of the previous section suggest the possibility of a high degree of control of the

expansion rates of the two gases by exploiting the non-linear interactions and by using DKC

techniques. In this section, we review systematic and statistical error sources in a test of the

UFF, linked to the phase-space properties of the proposed binary source, such as wave front

aberrations, mean-field fluctuations and couplings to gravity gradients and rotations. We

discuss the main scaling properties and orders of magnitude involved to keep these effects

below a target performance of δη ≤ 10−15 in the so-called Eötvös ratio [15] through careful

interferometer input state engineering. The interferometric sequence is initiated with a light

pulse, which serves as a beam splitter by putting each atom into a superposition of two

motional states. The two separating trajectories are subsequently redirected by a second

(mirror) pulse, such that a final beam splitter closes the interferometer. In this process,

the accumulated phase difference between the two paths is mapped to a relative population
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difference between the two output ports, which correspond to the different momentum states.

The total phase difference in this setup depends on the acceleration a of the atoms and is

given by ∆φ = k a T 2 to leading order. Here, the magnitude of the momentum transfer,

quantified by the effective wave number k of the beam splitting light, and the separation

time T between the pulses define the scale factor of the sensor. The simultaneous operation

of two such interferometers with different atomic species (e.g. rubidium and potassium)

hence constitutes a test of the UFF, as the inferred accelerations ai (i = Rb, K) allow to

assess a potential UFF violation quantified by the Eötvös ratio

η = 2

(
aRb − aK

aRb + aK

)
. (23)

In the following assessment, we suppose a pulse separation time T = 5 s, an effective

momentum transfer ki = 4 × 2π/λi, with λRb = 780 nm and λK = 767 nm, and a number

of atoms N = 106 per shot to reach the performance goal in shot-noise-limited operations,

which are typical parameters for a space-borne quantum test of the UFF along the lines

of [65, 93, 94].

A. Excitation rates

The efficient transfer of atoms between desired momentum states through coherent ma-

nipulation with light is essential for high-contrast interferometry. However, two-photon beam

splitting mechanisms based on counter-propagating beams are Doppler-sensitive, such that

velocity selection leads to spurious atoms in unwanted states affecting the signal-to-noise

ratio of the interferometer. Moreover, efficient excitation requires a homogeneous beam pro-

file over the spatial extent of the atoms. Both aspects constrain the sizes and expansion

rates of the atomic ensembles, in particular in scenarios involving long drift times in the

order of seconds. As an example, starting from a mm size, a Rb cloud with an effective µK

expansion temperature expands up to several tens of centimeters in a few seconds, whereas

for an expansion in the nK regime, the ensemble size is barely changing. Especially in

space missions with limited optical power, the beam waist, and consequently the ensemble

size, needs to be kept small in order to reach sufficiently high Rabi frequencies. Moreover,

beam splitters based on Bragg diffraction [13, 95–97] and Bloch oscillations [98, 99] feature

relatively long interrogation times, resulting in a sharp velocity acceptance such that the
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velocity width of the atomic distribution typically needs to be much smaller than the recoil

velocity [100], equivalent to a few tens of nK. With DKC, these requirements are readily

met as described in the previous sections of this paper as well as implemented in various

experiments [45, 101–104].

B. Wave front aberrations

Following the discussions of references,[87, 105], the wave front distortion associated with

a curvature radius R leads to a bias acceleration

aWF =
σ2
v

R
, (24)

which scales with the square of the expansion rate σv if a Gaussian atomic density profile

is assumed. Consequently, the resulting bias in the Eötvös parameter (23) is determined by

the relative differential expansion rate of the two ensembles

∆σv
σv
≡ 2

∣∣σRb
v − σK

v

∣∣
σRb
v + σK

v

. (25)

The expansion rate matching ∆σv/σv is hence the figure of merit for the mitigation of this

effect and is traded-off against the curvature of the beam. For example, a 10−15 UFF test

assuming a joint low expansion rate in the order of 10 pK requires (∆σv/σv)/R of the order

of 10−6/m.

It was shown here that scattering-free dual-pulse DKC can lead to a simultaneous reduc-

tion in the expansion rates of both species. With this technique, the inter-species scattering

length a12 is tuned to zero after the free expansion following the second lens, when the

clouds are sufficiently dilute. Alternatively, a12 can be tuned to an arbitrary non-vanishing

value for a certain duration after the second lens, which can be used to manipulate the

resulting differential expansion rate. The results of this mean-field assisted dual-DKC are

shown in Fig. 8(a), supposing a lens sequence as described in Sec. IV F and switching off the

Feshbach-field 1 s after the second lens. Obviously, there are optimal values for a12 which

lead to ∆σv/σv ∼ 10−3. However, this requires a control of the inter-species scattering

length to a level better than 0.1 a0, which is a challenging stability control of the Feshbach

field.

A more realistic alternative illustrated in Fig.8(b) consists in controlling the duration

between the two lenses followed by an immediate switch off of the Feshbach field after the
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Figure 8. Expansion rate matching with two different dual-pulse lens sequences. Panel (a): ∆σv/σv

as a function of the inter-species scattering length a12 after the second DKC pulse and during 1 s,

time at which the Feshbach field is switched off. Panel (b): ∆σv/σv as a function of the duration

texp,2 of the free expansion between the two DKC pulses. The Feshbach field is turned off 1 ms

after the second DKC pulse.

second lens. Again, an optimum can be found, such that ∆σv/σv < 10−4 can be achieved

given a control of the timing between the two lenses to a level better than 100µs, which is
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experimentally easily accessible and relaxes the requirements on the curvature to R < 100 m.

The promising proposed mitigation of the wave front systematic effects supposes Gaussian

atomic density profiles. Deviations from that shape, as will appear for certain configura-

tions (c.f. the dashed blue line in Fig. 7(b) for instance), would require a modified treatment.

However, due to the large parameter space of the applied techniques (including the timings

of the lenses, the durations and magnitudes of the Feshbach-fields and the possibility to

include more lensing steps in the sequence), the final trade-off between overall and differen-

tial expansion rate, shape of the atomic distributions and available preparation time in an

experiment should be possible in every specific case.

C. Gravity gradients and rotations

Gravity gradients γ and rotations Ω couple to the initial position and velocity of the atoms

and translates any uncertainty in their determination into an acceleration uncertainty in the

interferometry measurement. Concerning the initial velocity v0, the induced accelerations

are given by aγ ∼ γv0T and aΩ ∼ Ωv0. Consequently, the initial center-of-mass position

r0 and velocity v0 need to be well characterized and, in order to mitigate these systematic

effects in a differential measurement, the center-of-mass overlap of the two species has to

be realized to a high degree of accuracy. Thanks to recent gravity gradient compensation

proposals [106], also implemented in [107, 108], the requirement on the mean position and

velocity uncertainties is on the order of µm and µm/s, respectively for a UFF test at the

10−15 level and below [109]. For single species, this is within reach as confirmed by recent

theoretical studies [80, 110] and in line with state-of-the-art experimental realisations [82]

such that the extension to binary mixtures is straightforward with the tools presented in

this paper.

In a similar way, constant rotation rates, for example due to Earth’s rotation, may

be accounted for by counter-rotating the light-field between subsequent interferometry

pulses [111]. However, spurious rotations couple to the center of mass velocity jitter of the

atomic clouds and constrain the initial velocity mismatch to 0.3 nm/s for typically assumed

residual rotation rates in the order of 10−6 rad/s. Verification of this control over the center-

of-mass velocity, several realizations of the source preparation process are required [65, 67].

As the mean velocity uncertainty scales as δv0 = σv/
√
νN for a given expansion rate σv and
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number of atoms N per shot, a joint, low effective expansion rate of both species of 10 pK

reduces the required number of cycles to a reasonable ν ∼ 104 shots.

D. Mean-field

Variations in the mean-field energy due to atomic density fluctuations give rise to phase

noise (and hence to an acceleration error) which can be calculated by averaging over the

spatial distribution and integrating over the duration 2T of the interferometer. In a simplified

model assuming that the clouds are overlapping and not separating during the interferometry

sequence, the resulting acceleration uncertainty

δai =
3~
√
Ni(a2

ii + a2
12)

mikiT 2

∫ 2T

0

dt

(R2
i,0 + σ2

vt
2)3

(26)

of species i = K, Rb defines a minimum cloud size Ri,0 at the application of the first

beam splitter for a given atom number fluctuation
√
Ni, intra-species (inter-species) s-wave

scattering lengths aii (a12), effective expansion rate σv and atomic mass mi. For both species,

the required cloud size is in the order of a few mm at the application of the first beam splitter,

which can easily be realized by letting the ensembles expand to a sufficiently large size before

lensing. In fact, this increased ratio of size-at-lens and cloud size upon release from the trap

generally leads to an improved DKC performance as shown in this paper.

VI. DISCUSSION AND PERSPECTIVES

In this paper, we presented a source concept for a dual-species interacting mixture of

two quantum gases suitable to input an atom interferometer testing the universality of free

fall at levels better than 10−15. The main limitation to such a test consists in the stringent

requirement of observing the two gases at drift times of several seconds (about 10 s), in

principle accessible to condensed gases only. We satisfy this requirement by devising a

dual-delta-kick collimation stage acting as a telescope for each one of the matter waves.

The engineering of such an atom optical scheme is complicated by the inter- and intra-

species atomic interactions that need to be accounted for and prevent a geometric-optics-

like solution. The control of these interactions is considered here by operating the atomic

source close to already reported Feshbach transitions at low magnetic fields. A complete
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preparation sequence, alternating free expansion and DKC pulses of different durations, is

found leading to an impressive compactness of the source with expansion energies of the

two species in the 10 pK regime. Optimising this sequence relies on a developed 2-species

scaling approach, which validity in the relevant miscible regime is confirmed by contrasting

it to the dynamics found by solving coupled-Gross-Pitaevskii equations. The compatibility

of the result of our source optimisation is assessed with respect to the requirements of a

beyond-state-of-the-art UFF test. Main known systematics as the wave front aberrations

are mitigated taking advantage of the control over the non-linear dynamics of the degenerate

clouds. Their expansion rates could, for example, be matched to the 10−4 level greatly

relaxing the demand on the effective wave front curvature. Other requirements as a minimal

coupling to gravity gradients or rotations, mean-field effects or the excitation rates by the

interferometry pulses are checked to be fulfilling the UFF test requirement. We conclude

that this source concept would be suitable for space mission proposals as STE-QUEST [65].

The same approach that we developed here and illustrated with the example of Rb-K could

be generalised to any interacting quantum mixtures in a stable miscible regime. The use of

anisotropic DKC traps slightly complicates the proposed scheme since more than two DKC

pulses would be required. This can, however, be experimentally taken care of by a proper

gauging of the external potentials forming the atomic lens.
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Appendix A: Standard deviation and Thomas-Fermi Radius

Let’s define the Thomas-Fermi density

∣∣ΨTF(x, y, z)
∣∣2 =

1

gN

(
µTF −

m

2

∑

α=x,y,z

ω2
αα

2

)
. (A1)

Using this assumption, it is easy to show by integration in the restricted volume defined by

ω2
xx

2 + ω2
yy

2 + ω2
zz

2 ≤ 2µTF/m, that

∆α2 = 〈α2〉 − 〈α〉2 = 〈α2〉 =
2µTF

7mω2
α

for α = x, y, z . (A2)

We therefore see that ∆α = Rα/
√

7, where Rα denotes the Thomas-Fermi Radius along the

direction α = x, y, z.
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Appendix B: Derivation of the two-component scaling laws

In the same way as for a single species [75, 76], we introduce the force seen by the particles

of each species

~F1(~r, t) = −~∇
(
U1(~r, t) +N1g11ρ

D
1 (~r, t) +N2g12ρ

D
2 (~r, t)

)
, (B1a)

~F2(~r, t) = −~∇
(
U2(~r, t) +N2g22ρ

D
2 (~r, t) +N1g12ρ

D
1 (~r, t)

)
, (B1b)

where the time-dependent spatial density of the two species are given by Eqs. (12) and (15)

through the equilibrium condition at time t = 0: ~F1(~r, 0) = ~F2(~r, t) = ~0. In the case of an

external harmonic trap,

U1 (~r, t) =
1

2
m1

(
ω2

1,x(t) x
2 + ω2

1,y(t) y
2 + ω2

1,z(t) z
2
)
, (B2a)

U2 (~r, t) =
1

2
m2

(
ω2

2,x(t) x
2 + ω2

2,y(t) y
2 + ω2

2,z(t) z
2
)
, (B2b)

the projection along the direction α = x, y, z of the force acting on species i is given by

Fi,α(α, t) =−miω
2
i,α(t) α

+

[
gii

λDi,x(t)λ
D
i,y(t)λ

D
i,z(t)

{
gi′i′miω

2
i,α(0)− g12mi′ω

2
i′,α(0)

G2
(
λDi,α(t)

)2

}]
α

+

[
g12

λDi′,x(t)λ
D
i′,y(t)λ

D
i′,z(t)

{
giimi′ω

2
i′,α(0)− g12miω

2
i,α(0)

G2
(
λDi′,α(t)

)2

}]
α (B3)

where i′ = 2 when i = 1 and i′ = 1 when i = 2. Newton’s law applied in the overlapping

region implies

λ̈Di,α(t) =− ω2
i,α(t)λDi,α(t)

+
gii

λDi,x(t)λ
D
i,y(t)λ

D
i,z(t)

(
gi′i′ mi ω

2
i,α(0) − g12mi′ ω

2
i′,α(0)

miG2λDi,α(t)

)

+
g12

λDi′,x(t)λ
D
i′,y(t)λ

D
i′,z(t)

(
giimi′ ω

2
i′,α(0) − g12mi ω

2
i,α(0)

miG2λDi′,α(t)

)
λDi,α(t)

λDi′,α(t)
. (B4)
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Science 328, 1540 (2010).

[30] J. Rudolph, N. Gaaloul, Y. Singh, H. Ahlers, W. Herr, T. A. Schulze, S. T. Seidel, C. Rode,

V. Schkolnik, W. Ertmer, E. M. Rasel, H. Müntinga, T. Könemann, A. Resch, S. Herrmann,

C. Lämmerzahl, T. v. Zoest, H. Dittus, A. Vogel, A. Wenzlawski, K. Sengstock, N. Meyer,

K. Bongs, M. Krutzik, W. Lewoczko-Adamczyk, M. Schiemangk, A. Peters, M. Eckart,

E. Kajari, S. Arnold, G. Nandi, W. P. Schleich, R. Walser, T. Steinmetz, T. W. Hänsch,
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[41] B. Battelier, J. Bergé, A. Bertoldi, L. Blanchet, K. Bongs, P. Bouyer, C. Braxmaier,

D. Calonico, P. Fayet, N. Gaaloul, C. Guerlin, A. Hees, P. Jetzer, C. Lämmerzahl, S. Lecomte,
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