
HAL Id: hal-03110741
https://hal.science/hal-03110741

Submitted on 7 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consistency and Certain Answers in Relational to RDF
Data Exchange with Shape Constraints

Iovka Boneva, Slawek Staworko, Jose Martin Lozano Aparicio

To cite this version:
Iovka Boneva, Slawek Staworko, Jose Martin Lozano Aparicio. Consistency and Certain Answers
in Relational to RDF Data Exchange with Shape Constraints. Consistency and Certain Answers
in Relational to RDF Data Exchange with Shape Constraints, pp.97-107, 2020, ADBIS 2020: New
Trends in Databases and Information Systems, �10.1007/978-3-030-54623-6_9�. �hal-03110741�

https://hal.science/hal-03110741
https://hal.archives-ouvertes.fr

Consistency and Certain Answers in Relational
to RDF Data Exchange with Shape Constraints

Iovka Boneva, S lawek Staworko, and Jose Lozano

Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de Recherche
en Informatique Signal et Automatique de Lille, F-59000 Lille, France

Abstract. We investigate the data exchange from relational databases
to RDF graphs inspired by R2RML with the addition of target shape
schemas capturing fragments of SHACL and ShEx. We study the problems
of consistency i.e., checking that every source instance admits a solution,
and certain query answering i.e., finding answers present in every solution.
We identify the class of constructive relational to RDF data exchange that
uses IRI constructors and full tgds (with no existential variables) in its
source to target dependencies. We show that the consistency problem is
coNP-complete. We introduce the notion of universal simulation solution
that allows to compute certain query answers to any class of queries that
is robust under simulation. One such class are nested regular expressions
(NREs) that are forward i.e., do not use the inverse operation. Using
universal simulation solution renders tractable the computation of certain
answers to forward NREs (data-complexity).

1 Introduction

The recent decade has seen RDF raise to the task of interchanging data between
Web applications [25]. In many applications the data is stored in a relational
database and only exported as RDF, as evidenced by the proliferation of languages
for mapping relational databases to RDF, such as R2RML [18], Direct Mapping
[4] or YARRRML [20]. As an example, consider the following R2RML mapping,
itself in RDF format presented in Turtle syntax

<#EmpMap>
rr:logicalTable [rr:sqlQuery ”SELECT id, name, email FROM Emp NATURAL JOIN Email”];
rr:subjectMap [rr:template ”emp:{id}”; rdf:type :TEmp];
rr:predicateObjectMap [rr:predicate :name; rr:objectMap [rr:column ”name”]];
rr:predicateObjectMap [rr:predicate :email; rr:objectMap [rr:column ”email”]].

It exports the join of two relations Emp(id ,name) and Email(id ,name) into a
set of triples. For every employee it creates a dedicated Internationalized Resource
Identifier (IRI) consisting of the prefix emp: and the employee identifier. More
importantly, the class (rdf:type) of each employee IRI is declared as :TEmp.

RDF has been originally proposed schema-less to promote its adoption but the
need for schema languages for RDF has been since identified and deemed partic-
ularly important in the context of exchange of data between applications [23,32].
One family of proposed schema formalisms for RDF is based on shape constraints

2 Iovka Boneva, S lawek Staworko, and Jose Lozano

and this class includes shape constraint language (SHACL) [17,22] and shape
expressions schemas (ShEx) [11,27,28]. The two languages allow to define a
set of types that impose structural constraints on nodes and their immediate
neighborhood in an RDF graph. For instance, the type :TEmp may be defined as

:TEmp { :name xsd:string; :email xsd:string?; :works @:TDept+ }

Essentially, an employee IRI must have a single :name property, an optional :email
property that are both strings, and at least one :works property each leading to
an IRI of type :TDept.

In the present paper we formalize the process of exporting a relational database
to RDF as data exchange, and study two of its fundamental problems: consistency
and certain query answering. In data exchange the mappings from the source
database to the target database are modeled with source-to-target tuple-generating
dependencies (st-tgds). For mappings defined with R2RML we propose a class
of full constructive st-tgds, which use IRI constructors to map entities from
the relational database to IRIs in the RDF. For instance, the R2RML mapping
presented before can be expressed with the following st-tgd

Emp(id ,name) ∧ Email(id , email)⇒ Triple(emp2iri(id), :name,name) ∧
Triple(emp2iri(id), :email, email) ∧
TEmp(emp2iri(id)),

where emp2iri is an IRI constructor that generates an IRI for each employee. To
isolate the concerns, in our analysis of the st-tgds we refrain form inspecting the
definitions of IRI constructors and require only that they are non-overlapping,
i.e. no two IRI constructors are allowed to output the same IRI. We call the
above setting constructive relational to RDF data exchange. We report that in
this setting all 4 use cases of R2RML [6] can be expressed. Furthermore, we
can cover 38 out of 54 test cases for R2RML implementations [31]. Among the
non-covered test cases, 9 use pattern-based function to transform data values
and 7 use SQL statements with aggregation functions. In fact, our assessment
is that the proposed framework allows to fully address all but one out of the 11
core functional requirements for R2RML [6], namely the Apply a Function before
Mapping. Finally, in our investigations we consider a class of shape schemas that
are at the intersection of SHACL and ShEx. They are known to have desirable
computational properties while remaining practical, and furthermore, they posses
a sought-after feature of having an equivalent graphical representation (in the
form of shape graphs) [29].

For a given source relational instance, a solution to data exchange is a target
database (an RDF graph in our case) that satisfies the given set of st-tgds and the
target schema (a shape schema in our case). The number of solutions may vary
from none to infinitely many. The problem of consistency is motivated by the
need for static verification tools that aim to identify potentially erroneous data
exchange settings that are inconsistent i.e., admit no solution for some source
database instance. In general, a consistent data exchange setting may yield many

3

solutions to a given source instance and it is commonplace to apply the possible
world semantics [21] to evaluate queries: a certain answer is an answer returned
in every solution. It is standard practice to construct a solution that allows to
easily compute certain answers. In the case of relational data exchange, universal
solutions have been identified and allow to easily compute certain answers to
conjunctive queries, or any class of queries preserved under homomorphism for
that matter [19]. Unfortunately, for relational to RDF data exchange with target
shape schema, a finite universal solution might not exists, even if the setting
is consistent and admits solutions. Also, the class of conjunctive queries, while
adequate for expressing queries for relational databases, is less so for RDF. Query
languages, like SPARQL, allowing regular path expressions with nesting have
been proposed to better suit the needs of querying RDF [26].

Our contributions are as follows. We formalize the framework of relational
to RDF data exchange with target shape schema and IRI constructors, and
we identify the class of constructive relational to RDF data exchange that uses
shape schemas and full constructive source-to-target dependencies. We provide
an effective characterization of consistency of constructive relational to RDF
data exchange settings and show that the problem is coNP-complete. We propose
a novel notion of universal simulation solution, that can be constructed for
any consistent constructive relational to RDF data exchange setting, and use
it to show tractability of computing certain answers to forward nested regular
expressions. In an extended version of the present paper [14] we present full
details and study further a number of extensions of our framework and show
each time negative computational consequences.

2 Preliminaries

In this section we recall the standard notions of logic and databases [1,24].

Relational databases A relational schema is a pair R = (R, Σfd) where R is
a set of relation names and Σfd is a set of functional dependencies. Each relation
name has a fixed arity and a set of attribute names. A functional dependency is
written as usual R : X → Y where R is a relation name and X and Y are two
sets of attributes of R. An instance I of R is a function that maps every relation
name of R to a set of tuples over a set Lit of constants (also called literal values).
The instance I is consistent if it satisfies all functional dependencies Σfd. In the
sequel, we often view an instance as a relational structure over the signature R.

Graphs An RDF graph G is a labeled graph whose nodes are divided into two
kinds: literal nodes (Lit) and non-literal (Iri) nodes with only the latter allowed
to have outgoing edges. Every node is labeled and we adopt the unique name
assumption (UNA) i.e., no two node have the same label. Consequently, we equate
nodes with their labels and by nodes(G) we denote the set of labels of nodes of
G. Also, each edge is labeled with a predicate name, which is a non-null resource
name Pred. As a result of using chase some nodes may be labeled with names
nulls.

4 Iovka Boneva, S lawek Staworko, and Jose Lozano

Shape Schemas A shapes schema is a pair S = (T , δ), where T is a finite set
of type names and δ : T × Pred → (T ∪ {Literal}) × {1, ?, *, +} defines shape
constraints. A shape constraint δ(T, p) = (S, µ), often presented as δ(T, p) = Sµ,
reads as follows: if a node has type T , then every neighbor reached with an
outgoing p-edge must have type S and the number of such neighbors must be
within the bounds of µ: precisely one if µ = 1, at most one if µ = ?, at least one
if µ = +, and arbitrarily many if µ = *. Whenever µ = 1 or µ = ? we say that
the predicate p is functional for type T .

Dependencies We employ the standard syntax of first-order logic (cf. [24]).
In the sequel, we shall view graphs as relational structures using the ternary
predicate Triple and monadic predicates in T ∪{Literal} to indicate the types of
nodes. Furthermore, in formulas we use the edge labels Pred as constant symbols.
Later on, we additionally introduce functions that allow to map the values in
relational databases to resource names used in RDF graphs, and we allow the
use of function names in formulas but without nesting.

Now, a dependency is a formula of the form ∀x̄.ϕ⇒ ∃ȳ.ψ, where ϕ is called
the body and ψ the head of the dependency, and we typically omit the universally
quantified variables and write simply ϕ ⇒ ∃ȳ.ψ. A dependency is equality-
generating (egd) if its body is a clause and its head consists of an equality
condition x = y on a pair of variables. A tuple-generating dependency (tgd) uses
clauses in both its head and its body. A tgd is full if it has no existentially
quantified variables.

A number of previously introduced concepts can be expressed with depen-
dencies. Any functional dependency is in fact an equality-generating dependency.
Interestingly, any deterministic shape schema S can be expressed with a set
ΣS of equality- and tuple-generating dependencies. More precisely, whenever
δ(T, p) = Sµ the set ΣS contains:

(TP) the type propagation rule: T (x) ∧ Triple(x, p, y)⇒ S(y),
(PF) the predicate functionality rule if µ = 1 or µ = ?:

T (x) ∧ Triple(x, p, y1) ∧ Triple(x, p, y2)⇒ y1 = y2,
(PE) the predicate existence rule if µ = 1 or µ = +: T (x)⇒ ∃y. Triple(x, p, y).

3 Constructive Relational to RDF Data Exchange

An n-ary IRI constructor is a function f : Litn → Iri that maps an n-tuple of
database constants to an RDF resource name. A IRI constructor library is a
pair F = (F , F), where F is a set of IRI constructor names and F is their
interpretation. F is non-overlapping if all its IRI constructors have pairwise
disjoint ranges.

Definition 1. A relational to RDF data exchange setting with fixed IRI con-
structors is a tuple E = (R,S, Σst,F), where R = (R, Σfd) is a source relational
schema, S = (T , δ) is a target shape constraint schema, F = (F , F) is an IRI
constructor library, and Σst is a set of source-to-target tuple generating depen-
dencies (st-tgds) whose bodies are formulas over R and heads are formulas over

5

F ∪T ∪{Literal} without nesting of function symbols in F . E is constructive if
the library of IRI constructors is non-overlapping and the st-tgds Σst are full tgds.
A typed graph J is a solution to E for a source instance I of R, iff J satisfies S
and I ∪J ∪F |= Σst. By solE (I) we denote the set of all solutions for I to E . ut

In the reminder we fix a constructive data exchange setting E , and in particular,
we assume a fixed library of IRI constructors F. Since we work only with
constructive data exchange settings, w.l.o.g. we can assume that the heads of all
st-tgds consist of one atom only. We point out that while a constructive data
exchange setting does not use egds, our constructions need to accommodate egds
and tgds coming from the shapes schema.

The standard chase procedure allows to construct a solution to E for a source
instance I. However, such solution might not exist either because the chase fails
due to an unsatisfiable egd, or because it never terminates. The core pre-solution
for I to E is the result J0 of chase on I with the st-tgds Σst and all TP rules of
S. In essence J0 is obtained by exporting the relational data to RDF triples with
Σst and then propagating any missing types according to S but without creating
any new nodes with PE rules. This process does not introduce any null values
and always terminates yielding a unique result. Naturally, J0 is included in any
solution J ∈ solE (I).

4 Consistency

Recall that a data exchange setting E is consistent if every consistent source
instance I of R admits a solution to E .1 Throughout this section we fix a data
exchange setting E = (R,S, Σst,F) and study its consistency.

Note that only predicate functionality egds can bring inconsistency. We show
that E is inconsistent if and only if there is a source instance I and a predicate
functionality egd T (x) ∧ Triple(x, p, y) ∧ Triple(x, p, y′)⇒ y = y′ in E such that
all solutions to E for I need to satisfy the body of the above rule but y and y′ are
not equatable. We distinguish two situations, that together provide a necessary
and sufficient condition for E to be (in-)consistent.

– value inconsistency when y and y′ are different constants (see Section 4),
– node kind inconsistency when one among y, y′ is a literal and the other is

not (see Section 4).

Value Consistency Let ΣPF
S be the set of predicate functionality rules from ΣS

as defined in Section 3.
An instance I of R is called value inconsistent if J 6|= ΣPF

S , where J is the core
pre-solution for I to E . The data exchange setting E is called value inconsistent
if there exists a consistent instance I of R that is value inconsistent.

We now sketch a decision procedure value-inconsistent(E) that tests whether
E is value inconsistent by constructing a value inconsistent source instance

1 This was called absolute consistency in [9].

6 Iovka Boneva, S lawek Staworko, and Jose Lozano

whenever such exists. It is illustrated on the following example data exchange
setting. The relational signature contains symbols R,S both of arity two, and
the IRI constructors are {g0, g, f} all of arity one. The shapes schema S is given
by δ(U0, r) = U*, δ(U, q) = T *, δ(T, p) = Literal1, and the st-tgds are:

(σ1) R(x0, x1)⇒ U0(g0(x1)) R(x, z) ∧ S(x, y′)⇒ Triple(f(x′), p, y′) (σ)

(σ2) R(x1, x2)⇒ Triple(g0(x1), r, g(x2)) S(x, y)⇒ Triple(f(x), p, y) (σ′)

(σ3) R(x2, x)⇒ Triple(g(x2), q, f(x))

Using that IRI constructors have pairwise disjoint ranges, it follows from the
definition that a source instance is value inconsistent iff its core pre-solution con-
tains a triple of facts of the form {T (f(x)),Triple(f(x), p, b),Triple(f(x), p, b′)}
for some function symbol f , and such that x and y 6= y′ are constants and the
predicate p is functional for type T in S. We call such triple of facts a violation
and (T, p, f) its sort. There is a finite number of possible violation sorts for E . On
the example, the possible violation sorts are (T, p, f), (T, p, g0) and (T, p, g), as
the unique functional predicate rule is for type T and predicate p. The procedure
value-inconsistent(E) enumerates all violation sorts and for each of them tries
to build a value inconsistent instance.

So consider the violation sort (T, p, f). Although none of the st-tgds heads
contains a fact of the form T (f()), we remark that such fact can be ob-
tained using type propagation rules. Indeed, consider the source instance I ′ =
{R(x0, x1), R(x1, x2), R(x2, x)} obtained as the union of the bodies of st-tgds (σ1),
(σ2) and (σ3), where variables are used as constants. Applying on I ′ the st-tgds
(σ1), (σ2) and (σ3) together with the type propagation rules for U0, r and U, q
yields the target instance J ′ = I ′∪{U0(g0(x1)),Triple(g0(x1), r, g(x2)), U(g(x2)),
Triple(g(x2), q, f(x)), T (f(x))} which does contain a fact T (f(x)) as required.
We show that for given T and f , a fact of the form T (f()) exists in some core
pre-solution w.r.t. E if and only if E contains an appropriate finite and elementary
(i.e. without repetitions) sequence of st-tgds such as (σ1), (σ2),(σ3) above that,
combined with type propagation rules, allows to obtain T (f()).

Now we need to add facts of the forms Triple(f(x), p, y) and Triple(f(x), p, y′).
This is done using the st-tgds (σ) and (σ′), called contentious for f and p. So con-
sider I = I ′∪{S(x, y), R(x, z), S(x, y′)} obtained by adding the bodies of (σ) and
(σ′) to I ′. Its core pre-solution is J = J ′ ∪ {Triple(f(x), p, y),Triple(f(x′), p, y′),
Literal(y),Literal(y′)} and it contains a violation of sort (T, p, f) whenever y 6= y′.

Thus, I is an instance over the source signature that is value inconsistent.
This does not imply yet that E is inconsistent, as I might not be consistent
w.r.t the source functional dependencies. If the first attribute of S is a primary
key, then y = y′, I is not value inconsistent and we can actually show that the
example data exchange setting E is consistent. Otherwise, I is value inconsistent,
and so is E .

Here is a NP procedure that checks value inconsistency by guessing an
inconsistent source instance:

– guess a violation sort (T, p, f) of E ,

7

– guess an elementary sequence of st-tgds σ1, . . . , σn that allows to generate a
fact T (f()),

– guess two st-tgds σ, σ′ contentious for f and p,
– construct in PTIME a source instance I as the union of the bodies of
σ1, . . . , σn, σ, σ

′ (after appropriate renaming of variables),
– show in PTIME that I satisfies the source functional dependencies.

Theorem 1. Value consistency of a data exchange setting is in coNP.

Node Kind Consistency Node kind inconsistency is specific to relational to
RDF data exchange due to the presence of two types of values, namely IRIs
and literals. It corresponds to situations in which two values are equated by
a predicate functionality rule while one of them is a literal (that is, has type
Literal) but the other is not (that is, has a type T ∈ T). Therefore we identify
node kind inconsistency with the fact that a node has both types Literal and
T 6= Literal .

For a typed graph J and a node n ∈ nodes(J), let typesJ(n) = {T ∈ T ∪
{Literal} | T (n) ∈ J}. For a source instance I, define its sets of co-occurring types
as CoTypes(I) = {typesJ(n) | J ∈ solE (I), n ∈ nodes(J)}. Let CoTypes(E) =⋃

I instance of R CoTypes(I).
A source instance I is called node kind inconsistent if CoTypes(I) contains

a set X s.t. {Literal , T} ⊆ X for some T in T . The data exchange setting E is
called node kind inconsistent if there is a node kind inconsistent instance I of R.

We show that E is node kind inconsistent iff CoTypes(E) contains a set X such
that {Literal , T} ⊆ X for some T in T . Furthermore, for any X ⊆ T ∪{Literal},
we can test in PTIME whether X belongs to CoTypes(E). Therefore,

Proposition 1. Checking node kind inconsistency of E is in NP.

The central claim of this section is Theorems 2 below. The lower bound is
shown using a reduction to the complement of SAT.

Theorem 2. A constructive relational to RDF data exchange setting E is con-
sistent iff it is value consistent and node kind consistent. Checking consistency of
a constructive relational to data exchange setting is decidable and coNP-complete.

5 Certain Query Answering

In this section we investigate computing certain answers to Boolean queries
focusing on a subclass of nested regular expressions (NREs). In [14] we show that
our results extend to non-Boolean queries but also that handling the full class of
NREs leads to an increase in computational complexity.

Throughout this section we fix a constructive data exchange setting E =
(R,S, Σst,F) and assume E is consistent. We recall that for a Boolean graph
query Q, true is the certain answer to Q in I w.r.t. E iff true is the answer to Q
in every solution to E for I.

8 Iovka Boneva, S lawek Staworko, and Jose Lozano

The standard approach to computing certain answers is to construct a uni-
versal solution with the chase and evaluate the query against it (and to drop any
answers with null values) [19]. However, in our case a finite universal solution may
not exist because the chase may enter an infinite loop due to PE rules when the
shape schema is strongly-recursive i.e., it has a cycle with multiplicities of 1 and
+. Infinite chase corresponds to an attempt to unravel such cycles by inventing
new nodes ad infinitum. Instead, we construct a solution where a new node is
invented only if one satisfying precisely the same types has not been invented
before. Such a solution is not universal, but interestingly, it has a different flavor
of universality, one that can be captured with the standard notion of graph
simulation: any solution can be simulated in it. We also show that this notion of
universality is good enough for classes of queries that are robust under simulation,
and we identify a practical class of forward nested regular expressions with this
property. This yields a practical class of queries with tractable certain answers.

Nested regular expressions In this paper we work with the class of nested
regular expressions (NREs) that have been proposed as the navigational core of
SPARQL [26]. In essence, NREs are regular expressions that use concatenation ·,
union +, Kleene’s closure ∗, inverse −, and permit nesting and testing node and
edge labels. We refer the reader to [14] for detailed definition. We point out that
NREs are incompatible with conjunctive queries but even forward NREs capture
the subclass of acyclic conjunctive queries. Also, forward NREs properly capture
regular path queries.

Graph simulation and robust query classes We adapt the classic notion of
graph simulation to account for null values. Formally, a simulation of a graph G
by a graph H is a relation R ⊆ nodes(G)×nodes(H) such that for any (n,m) ∈ R,
we have 1) n is a literal node if and only if m is a literal node, 2) if n is not
null, then m is not null and n = m, and 3) for any outgoing edge from n with
label p that leads to n′ there is a corresponding outgoing edge from m with
label p that leads to m′ such that (n′,m′) ∈ R. The set of simulations is closed
under union, and consequently, there is always one maximal simulation, and if
(n,m) is contained in it, we say that n is simulated by m. Also, we say that G is
simulated by H if every node of G is simulated by a node of H. We are interested
in simulations because they capture the essence of exploring a graph by means
of following outgoing edges only.

Definition 2. A class Q of Boolean queries on graphs is robust under simulation
iff for any query Q ∈ Q and any two graph G and H such that G is simulated
by H, if Q is true in G, then Q is true in H. ut
Naturally, the class of forward NREs has this very property.

Lemma 1. The class of forward nested regular expressions is robust under
simulation.

Universal simulation solution When dealing with classes of queries that are
robust under simulation we employ simulation instead of homomorphism to define
a solution that allows to find all certain answers.

9

Definition 3. A typed graph U is a universal simulation solution to E for I iff
U is simulated by every solution J to E for I. ut

And indeed, a universal simulation solution does allow us to capture certain
answers for queries from classes robust under simulation.

Theorem 3. Let Q be a class of Boolean graph queries robust under simulation.
For any query Q ∈ Q and any consistent instance I of R, true is the certain
answer to Q in I w.r.t. E if and only if true is the answer to Q in a universal
simulation solution to E for I.

The main challenge is in constructing a universal simulation solution. The
precise construction is presented in [14] and we outline it roughly. First we begin
with the core pre-solution that is obtained from the source instance I with the
the st-tgds Σst and the TP rules for S that propagate the types according to
the shape schema. Then, we add fresh null values that ensure satisfaction of the
schema, as required by the PE rules for S. We point out that each null node
corresponds to a subset of types of S that it needs to satisfy, which bounds
their number by 2|Γ |, and furthermore, using the Chinese reminder theorem we
show that this bound is tight. To ensure that the produced universal simulation
solution has the smallest size, we employ the standard technique of quotient by
bisimulation of the obtained graph [30].

Theorem 4. For an instance I of R, we can construct a size-minimal universal
simulation solution U0 in time polynomial in the size of I and exponential in
the size of S. The size of U is bounded by a polynomial in the size of I and an
exponential function in the size of S.

Complexity We can now characterize the data complexity of certain query
answering. Recall that data complexity assumes the query and the data exchange
setting to be fixed, and thus of fixed size, and only the source instance is
given on the input. Consequently, the size of universal simulation solution U0 is
polynomially-bounded by the size of I. Since the data complexity of evaluating
NREs is know to be PTIME [26], we get the following result.

Theorem 5. The data complexity of computing certain answers to forward
nested regular expressions w.r.t. constructive relational to RDF data exchange
setting is in PTIME.

6 Related Work and Conclusions

R2RML is a W3C standard language for defining custom relational to RDF
mappings [18], other languages such as YARRRML [20] are compiled to R2RML
but they do not consider target constraints. Data exchange has been considered
for graph databases with varying expressive power of mapping formalisms such
as nested regular expressions [7,10], which is however incomparable with shape
schemas. In [13] we have demonstrated a graphical tool for defining constructive

10 Iovka Boneva, S lawek Staworko, and Jose Lozano

relational to RDF mappings. Our results do not follow from the exists results on
the standard relational data exchange [19], which are either too limited in their ex-
pressive power [15,19] or come with a significant complexity penalty [2,9,3,5,8,16]

We have presented a data exchange framework for modeling R2RML scripts,
we have studied the problems of consistency and certain query answering, and
characterized their complexity. In [14] we also show that extending the framework
in a number of natural directions generally leads to an increase of complexity.

References
1. S. Abiteboul, R. Hull, and V Vianu. Foundations of Databases. Addison-Wesley, 1995.
2. S. Amano, C. David, L. Libkin, and F. Murlak. XML schema mappings: Data exchange and metadata

management. J. ACM, 61(2):12:1–12:48, 2014.
3. M. Arenas, P. Barceló, and J. L. Reutter. Query languages for data exchange: Beyond unions of con-

junctive queries. Theory Comput. Syst., 49(2):489–564, 2011.
4. M. Arenas, A. Bertails, E. Prud’hommeaux, and J. Sequeda. A Direct Mapping of relational data to

RDF. W3C Recomm., 2012.
5. M. Arenas and L. Libkin. XML data exchange: Consistency and query answering. J. ACM, 55(2):7:1–

7:72, 2008.
6. S. Auer, L. Feigenbaum, D. Miranker, A. Fogarolli, and J. Sequeda. Use cases and requirements for

mapping relational databases to RDF, 2010. W3C.
7. P. Barceló, J. Pérez and J. L. Reutter. Schema mappings and data exchange for graph databases. In

International Conference on Database Theory (ICDT), pages 189–200, 2013.
8. M. Bienvenu, M. Ortiz, and M. Simkus. Regular path queries in lightweight description logics: Com-

plexity and algorithms. J. Artif. Intell. Res., 53:315–374, 2015.
9. M. Bojańczyk, L. A. Kołodziejczyk, and F. Murlak. Solutions in XML data exchange. J. Comput. Syst.

Sci., 79(6):785–815, 2013.
10. I. Boneva, A. Bonifati, and R. Ciucanu. Graph data exchange with target constraints. In EDBT/ICDT

Workshops (GraphQ), pages 171–176, 2015.
11. I. Boneva, J. E. Labra Gayo, and E. G. Prud’hommeaux. Semantics and validation of shapes schemas

for RDF. In International Semantic Web Conference (ISWC), pages 104–120, 2017.
12. I. Boneva, J. Lozano, and S. Staworko. Relational to RDF data exchange in presence of a shape expres-

sion schema. In Alberto Mendelzon International Workshop (AMW), 2018.
13. I. Boneva, J. Lozano, and S. Staworko. ShERML: Mapping relational data to RDF. In ISWC Satellite

Tracks, pages 213–216, 2019.
14. I. Boneva, S. Staworko, and J. Lozano. Consistency and certain answers in relational to RDF data

exchange with shape constraints. Technical report, arXiv:2003.13831, April 2020.
15. A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for tractable query answer-

ing over ontologies. J. Web Semant., 14:57–83, 2012.
16. D. Calvanese, T. Eiter, and M. Ortiz. Answering regular path queries in expressive description logics

via alternating tree-automata. Inf. Comput., 237:12–55, 2014.
17. J. Corman, J. L. Reutter, and O. Savkovic. Semantics and validation of recursive SHACL. In Interna-

tional Semantic Web Conference, pages 318–336, 2018.
18. S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF mapping language. W3C Recomm., 2011.
19. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and query answering.

Theor. Comput. Sci., pages 89–124, 2005.
20. P. Heyvaert, B. De Meester, A. Dimou, and R. Verborgh. Declarative rules for Linked Data generation

at your fingertips! In The Semantic Web: ESWC Satellite Events, pages 213–217, June 2018.
21. T. Imieliński and W. Lipski, Jr. Incomplete information in relational databases. J. ACM, 31(4):761–791,

September 1984.
22. H. Knublauch and D. Kontokostas. Shapes constraint language (SHACL). W3C Recomm., 2017.
23. J. E. Labra Gayo, E. Prud’hommeaux, I. Boneva, and D. Kontokostas. Validating RDF data. Synthesis

Lectures on the Semantic Web: Theory and Technology, 2017.
24. L. Libkin. Elements of Finite Model Theory. Springer, 2004.
25. F. Michel, J. Montagnat, and C. Faron Zucker. A survey of RDB to RDF translation approaches and

tools. Technical report, University Sophia Antipolis, 2013.

11

26. J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language for RDF. J. Web Semant.,
8(4):255–270, 2010.

27. E. Prud’hommeaux, I. Boneva, J. Labra Gayo Emilio, and G. Kellogg. Shape expressions language 2.1.
W3C Draft, 2018.

28. S. Staworko, I. Boneva, J. E. Labra Gayo, S. Hym, E. G. Prud’hommeaux, and H. R. Solbrig. Complexity
and expressiveness of ShEx for RDF. In International Conference on Database Theory (ICDT), pages
195–211, 2015.

29. S. Staworko and P. Wieczorek. Containment of shape expression schemas for RDF. In ACM Symposium
on Principles of Database Systems (PODS), pages 303–319, 2019.

30. Y. Tzitzikas, C. Lantzaki, and D. Zeginis. Blank node matching and RDF/S comparison functions. In
International Semantic Web Conference (ISWC), pages 591–607, 2012.

31. B. Villazón and M. Hausenblas. R2RML and direct mapping test cases. W3C, 2012.
32. W3C. RDF validation workshop report: Practical assurances for quality RDF data, 2013.

	Consistency and Certain Answers in Relational to RDF Data Exchange with Shape Constraints

