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We study a stochastic version of the classical Becker-Döring model, a well-known kinetic model for cluster formation that predicts the existence of a long-lived metastable state before a thermodynamically unfavorable nucleation occurs, leading to a phase transition phenomena. This continuous-time Markov chain model has received little attention, compared to its deterministic differential equations counterpart. We show that the stochastic formulation leads to a precise and quantitative description of stochastic nucleation events thanks to an exponentially ergodic quasi-stationary distribution for the process conditionally on nucleation has not yet occurred.

Introduction

The Becker We assume an infinite reservoir of monomer, cluster of size 1, represented in (1.1) by ∅. The parameter z represents the fixed concentration of monomer and will play a key role in the sequel. A cluster of size i ≥ 2, whose population is represented in (1.1) by C i , lengthen to give rise to a cluster of size i + 1 at rate a i z or shorten to give rise a cluster of size i -1 at rate b i . The rate of apparition of a new cluster of size 2 is a 1 z 2 (without loss of generality). All parameters are positives.

The Becker-Döring (BD) model goes back to the seminal work "Kinetic treatment of nucleation in supersaturated vapors" in [START_REF] Becker | Kinetische behandlung der keimbildung in übersättigten dämpfen[END_REF]. Since then, the model met very different applications ranging from physics to biology. From the mathematical point of view, this model received much more attention in the deterministic literature than the probabilistic one. We refer to our review [START_REF] Hingant | Deterministic and stochastic Becker-Döring equations: past and recent mathematical developments[END_REF] for historical comments and detailed literature review on theoretical results from the deterministic side. See also [START_REF]The Becker-Döring process: pathwise convergence and phase transition phenomena[END_REF][START_REF] Sun | A functional central limit theorem for the Becker-Döring model[END_REF] for recent results on functional law of large number and central limit theorem.

The model was initially designed to explain critical phase condensation phenomena where macroscopic droplets self-assemble and segregate from an initially supersaturated homogeneous mixture of particles, at a rate that is exponentially small in the excess of particles. This led to important applications in kinetic nucleation theory [START_REF] Penrose | Metastable states for the Becker-Döring cluster equations[END_REF][START_REF]The Becker-Döring process: pathwise convergence and phase transition phenomena[END_REF]. Mathematical studies in the 90's showed that (in the deterministic context), departing from certain initial conditions, the size distribution of clusters reaches quickly a metastable configuration composed of "small" clusters, and remains arbitrary close to that state for a very large time, before it converges to the true stationary solution that leads to "infinitely large" clusters (interpreted as droplets) [START_REF] Kreer | Classical Becker-Döring cluster equations: rigorous results on metastability and long-time behaviour[END_REF][START_REF] Penrose | Metastable states for the Becker-Döring cluster equations[END_REF].

Our objective in this note is to re-visit the metastability theory in Becker-Döring model in terms of quasi-stationary distribution (QSD) for the associated continuous-time Markov chain. We prove existence, uniqueness and exponential ergodicity of a QSD for the BD model conditioned on the event that large clusters have not yet appeared. We prove furthermore that the convergence rate towards the QSD is faster than the rate of apparition of (sufficiently) large clusters. Quantitative results are obtained thanks to a surprisingly simple analytical formula for the QSD, that provides also an exact rate of apparition of stable large clusters, consistently with the original heuristic development of Becker and Döring. Outline: Sec. 2: Construction of the BD model. Sec. 3: Collection of few (known) results. Sec. 4: Exponential decay in total variation towards the stationary measure. Sec.

5: Similar result conditionally on no clusters larger than n are formed (QSD). Sec. 6: Estimate on the time for the first cluster larger than n to appear. Sec. 7: Interpretation of the QSD as a long-lived metastable state when n is the critical nucleus size. Notation: We denote by N i the set of non-negatives integers greater or equal to i, [[ ]] for integers interval. For a set A, #A its cardinality, 1 A the indicator function on it. 1 and 0 the constant functions equal to 1 and 0. For two numbers a, b, their minimum is a ∧ b. For probability measures µ and ν on a countable state space S, the total variation distance is

µ -ν = 1 2 x∈S |µ(x) -µ(x)| = inf γ∈Γ S×S 1 x =y γ(dx, dy) ,
where Γ is the set of probability measures on S × S with marginals µ and ν. E (resp. E µ ) denotes the expectation with respect to the usual probability measure P (resp. µ). We set E = 1 (N 2 , N 0 ) the space of summable N 0 -valued sequences indexed by N 2 .

The model

The stochastic Becker-Döring (BD) process is a continuous-time Markov chain on the countable state space E with infinitesimal generator A, given for all ψ with finite support on E and C ∈ E, by

Aψ(C) = +∞ i=1 a i zC i [ψ(C + ∆ i ) -ψ(C)] + b i+1 C i+1 [ψ(C -∆ i ) -ψ(C)]
with the convention C 1 = z, ∆ 1 = e 2 and ∆ i = e i+1 -e i , for each i ≥ 2, where {e 2 , e 3 , . . .} denotes the canonical basis of E namely, e i,k = 1 if k = i and 0 otherwise.

We shall however use a different approach, modeling explicitly the size of each individual cluster. On a sufficiently large probability space (Ω, F, P), we introduce:

• N 1 , N 2 , . . . a denumerable family of independent Poisson point measure with intensity the Lebesgue measure dsdu on R 2 + .

• T 1 , T 2 , . . . a collection of random times such that the T k -T k-1 are independent exponential random variable of parameter a 1 z 2 , independent from the above Poisson point measure as well, with T 0 = 0.

QSD and metastability for the Becker-Döring model Let Π in a probability distribution on E and C(0) = (C 2 (0), C 3 (0), . . .) an E-valued random variable distributed according to Π in . We denote by N in = ∞ i=2 C i (0). By construction N in < ∞ almost surely (a.s.). Then, given C(0), we define X 1 (0), X 2 (0), . . . a denumerable collection of random variables on N 2 such that, a.s. for each i ≥ 2,

C i (0) = # k ∈ [[1, N in ]] X k (0) = i , (2.1)
and X in k = 2 for all k > N in . Note this construction may be achieved by a bijective labeling function 1 . Finally, we consider the denumerable collection of stochastic processes X 1 , X 2 , . . . on N 1 solution of the stochastic differential equations, for all t ≥ 0 and k ≥ 1,

X k (t) = X k (0)+ ∞ i=2 t 0 R + 1 s>T k-N in 1 X k (s -)=i 1 u≤aiz -1 aiz<u≤aiz+bi N k (ds, du) , (2.2)
where by convention

T k = 0 if k ≤ 0. The pathwise construction (2.2
) is what we call thereafter the particle description of the BD process. The interpretation is clear:

X k (t) denotes the size of the cluster labeled by k at time t; for k ≤ N in , clusters are initially "actives" while for k > N in clusters are initially "inactive" at state 2, and become "activated" at the random arrival times T k-N in . We ensured X k (0) < ∞ a.s. because the C i (0)'s are integer-valued random variables and belong to E, the sequence C(0) is a.s. equally 0 from a certain range. Thus, local existence of càdlàg processes t → X k (t) on N 1 solution to (2.2) can classically be obtained inductively. It is clear from (2.2) that each X k evolves like a Birth-Death process for t > T k (that will be detailed in the next Sec. 3) and are mutually independent conditionally to their initial value. The Reuter's criterion gives a well-known necessary and sufficient condition so that each process X k is non-explosive, namely

∞ n=2 Q n z n ∞ k=n 1 a k Q k z k+1 = ∞ , with Q 1 = 1 , Q i = a 1 a 2 • • • a i-1 b 2 • • • b i , i ≥ 2 . ( H0 
)
It is now convenient to go back to the original description at stake. The number of "active" clusters at time t ≥ 0 is given by the counting process

N (t) = N in + k≥1 1 t≥T k , while the number of cluster of size i ≥ 2 is C i (t) = # {k ∈ [[1, N (t)]] | X k (t) = i} . Now, noticing that C i (t) = N (t) k=1 1 i (X k (t))
, we can prove from standard stochastic calculus that the process C given by C(t) = (C 2 (t), C 3 (t), . . .) for all t ≥ 0 has infinitesimal generator A, and being non-explosive under condition (H0), it is the unique regular jump homogeneous Markov chain on E with infinitesimal generator A and initial distribution Π in , say the BD process. The proof is left to the reader and follows from classical theory. In the sequel, C(t) always denote a BD process, and P Π in {C ∈ •} its (unique) finite dimensional probability distribution given that C(0) is distributed according to Π in . We also set by convention P C = P δ C for a deterministic C ∈ E and we recover

P Π in {•} = C∈E P C {•} Π in (C).

Behaviour of one cluster

Let X the continuous-time Markov chain on N 1 with transition rate matrix (q i,j ) i,j≥1 whose nonzero entries are

q i,i+1 = a i z , q i,i-1 = b i , q i,i = -(a i z + b i ) , i ≥ 2 . 
(3.1)

Remark that i = 1 is absorbing in agreement with (1.1): when a cluster size reaches 1, it "leaves the system". We shall assume standard hypotheses in the BD model [START_REF] Kreer | Classical Becker-Döring cluster equations: rigorous results on metastability and long-time behaviour[END_REF][START_REF] Penrose | Metastable states for the Becker-Döring cluster equations[END_REF]:

lim i→∞ b i /a i = z s > 0 , and lim i→∞ b i+1 /b i = 1 . (H1)
Hypothesis (H1) then guarantee (H0) for z = z s for the following reason. The convergence of both series

∞ k=2 Q k z k and ∞ k=2 1 a k Q k z k+1 ,
depends on the value of z. Indeed, z s is the radius of convergence of the first series while the second series converges for z > z s and diverges for z < z s . We have a dichotomy in the long time behavior of X related to this value. The case z < z s is called the sub-critical case, for which absorption at state 1 is certain and the expected time of absorption is finite (also called ergodic absorption). The case z > z s is called the super-critical case and absorption at 1 is not certain (also called transient absorption), and the probability to be absorbed at 1 is, according to [START_REF] Karlin | The classification of birth and death processes[END_REF],

lim t→∞ p i1 (t) = J ∞ k=i 1 a k Q k z k+1 , with J = ∞ k=1 1 a k Q k z k+1 -1 , (3.2) 
where p ij (t) = P {X(t) = j | X(0) = i} the probability transition function of X. The limit case z = z s is somewhat technical and depends more deeply on the shape of the coefficients. It is not considered in this note.

Following [START_REF] Kreer | Classical Becker-Döring cluster equations: rigorous results on metastability and long-time behaviour[END_REF], a precise long time estimate on transient states can be obtained, under the hypothesis (H1) and

b i+1 b i -1 = O(i -1 ) , a i+1 a i -1 = O(i -1 ) , a i = O(i) and lim i→+∞ a i = +∞ . (H2)
In such a case, the infinite matrix (q i,j ) i,j≥2 in (3.1) is self-adjoint on the Hilbert space H consisting of the real sequences x = (x 2 , x 3 , . . .

) whose norm is x 2 H = ∞ i=2
x 2 i Qiz i . We denote by •, • H the associated scalar product. It turns that (q i,j ) i,j≥2 has a negative maximum eigenvalue -λ, and the following estimate holds for any i ≥ 2,

(p ij (t)) j≥2 H ≤ e -λt (p ij (0)) j≥2 H = e -λt Q i z i . (3.3)
We will also consider the chain X conditioned to remain below a given state n + 1 ≥ 2.

We define the exit time 

T n = inf (t ≥ 0 | X(t) / ∈ [[1, n]]) = inf (t ≥ 0 | X(t) ≥ n + 1) . (3.4) Let Y the birth-death process defined by Y (t) = X(t ∧ T n ).
lim t→+∞ p n i1 (t) = J n n k=i 1 a k Q k z k+1 , with J n = 1 a k Q k z k+1 -1 , (3.5) where p n ij (t) = P (Y (t) = j | Y (0) = i) is the probability transition function of Y and clearly P {T n > t | X(0) = i} ≥ lim t→+∞ P {T n > t | X(0) = i} = J n n k=i 1 a k Q k z k+1 . (3.6)
Again, in [START_REF] Kreer | Classical Becker-Döring cluster equations: rigorous results on metastability and long-time behaviour[END_REF], the author shows that the truncated matrix (q i,j ) i,j=2,...,n is similar to a symmetric one and then there exists γ n > 0 such that for each i = 2, . . . , n,

n j=2 p n ij (t) 2 Q j z j ≤ e -γnt Q i z i . (3.7)
Note the probability to be absorbed in 1 before time t, p n i1 (t), is monotonously increasing and lim t→+∞ p n i1 (t) = 1 -lim t→+∞ p n i(n+1) (t), thus we deduce that

n j=2 P {Y (t) = j | Y (0) = i , T n > t} = n j=2 p n ij (t) 1 -p n i(n+1) (t) ≤ M i,n e -γnt ,
where the constant M i,n , obtained thanks to (3.7), Cauchy-Schwarz inequality and (3.5), is given by

M i,n =   1 Q i z i n j=2 Q j z j   1 2 1 J n n k=i 1 a k Q k z k+1 .
We end this preliminary section, noticing that X(t) = Y (t) on {T n > t}, with

P {X(t) = 1 | X(0) = i , T n > t} ≥ 1 -M i,n e -γnt ∧ 1 . (3.8)

Long-time behaviour of the BD process

In this section we are concerned with the long-time behaviour of the BD process.

Formally the measure Π eq , given by

Π eq (C) = ∞ i=2 e -c eq i (c eq i ) Ci C i ! , with c eq i = Q i z i
for all C ∈ E, satisfies E Π eq [Aψ(C)] = 0 for any function ψ on E with finite support 2 . Actually, Π eq satisfies the detailed balance condition a i zC i Π eq (C) = b i+1 (C i+1 + 1)Π eq (C + ∆ i ), for all i ≥ 1 and all C ∈ E (with the convention that C 1 = z), as a consequence of the relation

a i Q i = b i+1 Q i+1 .
In the sub-critical case, Π eq is a probability measure on

E (indeed Π eq (N N2 0 ) = 1 with support in E because of E Π eq [ ∞ i=2 C i ] = ∞ i=2 c eq i < ∞
) and we prove exponential ergodicity towards Π eq . In the super-critical case, Π eq is not a limiting distribution (and ∞ i=2 c eq i = ∞) but the measure defined by

Π stat (C) = ∞ i=2 e -fi (f i ) Ci C i ! , with f i = JQ i z i ∞ k=i 1 a k Q k z k , (4.1)
for all C ∈ E, where J is given in (3.2), characterizes the long-time behaviour of any finite-number of marginals. Now on, we note f = (f i ) i≥2 , with f i defined in (4.1). Theorem 4.1. Under hypotheses (H1) and (H2). Let Π in a probability distribution on E such that

E Π in C, Q H < ∞ , (4.2)
where

√ Q = ( Q i z i ) i≥2 . With λ > 0 introduced in Sec. 3, see (3.
3), we have:

• In the sub-critical case (z < z s ), for all t ≥ 0,

P Π in {C(t) ∈ •} -Π eq ≤ R in e -λt , with R in = K(E Π in C, √ Q H + E Π eq C, √ Q H ) and K = ( ∞ k=2 c eq i ) 1 2 ; 
• In the super-critical case (z > z s ), for all t ≥ 0, and for all n ≥ 2,

P Π in {(C 2 (t), . . . , C n (t)) ∈ •} -Π stat (• × ∞ k=n+1 N 0 ) ≤ R in n e -λt , with R in n = K n E Π in C, √ Q H + f H and K n = ( n k=2 c eq i ) 1 2 . Not least, remark that E Π eq C, √ Q H = ∞ i=2
Q i z i < ∞ for z < z s and that f ∈ H for z > z s (see [START_REF] Kreer | Classical Becker-Döring cluster equations: rigorous results on metastability and long-time behaviour[END_REF]). In the sequel, K n and K always refer to the constants given above. The proof is based on a coupling (described below) to a distribution starting from 0, so that the control of the initial particles in C(0) are a key point. Lemma 4.2. Under the hypothesis of Theorem 4.1. Let the collection of processes X 1 , X 2 , . . . being a particle description of the BD process C. We have, for each n ≥ 2,

P Π in ∀k ∈ [[1, N in ]] , X k (t) / ∈ [[2, n]] ≥ 1 -K n E Π in C, Q H e -λt .
In particular, for the sub-critical case,

P Π in ∀k ∈ [[1, N in ]] , X k (t) = 1 ≥ 1 -KE Π in C, Q H e -λt . Proof. Fix n ≥ 2. Let C ∈ E deterministic, define N = ∞ i=2 C i and (i 1 , . . . , i N ) ∈ N N 2
given by the labeling function, e.g. C(0) = C and X 1 (0) = i 1 , . . . X N (0) = i N satisfy relation (2.1). Since each processes X 1 , . . . X N are independent copy of the chain X given in Sec. 3, conditionally on their initial condition, we have

P C {∀k ∈ [[1, N ]] , X k (t) / ∈ [[2, n]]} = N k=1 P {X(t) / ∈ [[2, n]] | X(0) = i k } , (4.3) 
for all t ≥ 0. Thanks to Cauchy-Schwarz inequality and (3.3),

P {X(t) ∈ [[2, n]] | X(0) = i} = n j=2 p ij (t) ≤ 1 Q i z i K n e -λt ∧ 1 .
Hence, with (4.3), we have

P C {∀k ∈ [[1, N ]] , X k (t) / ∈ [[2, n]]} ≥ 1 -K n e -λt N k=1 1 Q i k z i k , remarking that N i=1 (1 -x i ∧ 1) ≥ 1 - N i=1
x i for any non-negatives x 1 , . . . , x N . Finally, we conclude that

P Π in ∀k ∈ [[1, N in ]] , X k (t) / ∈ [[2, n]] ≥ 1 -K n e -λt C∈E N k=1 1 Q i k z i k Π in (C) = 1 -K n e -λt E Π in ∞ i=2 # k ∈ [[1, N in ]] X k (0) = i Q i z i ,
and the proof ends.

We now show, by a coupling argument, that any solution satisfying (4.2) is in total variation exponentially close to the solution that starts with no cluster, namely the deterministic initial condition at 0. 

P Π in {C(t) ∈ •} -P 0 {C(t) ∈ •} ≤ KE Π in C, Q H e -λt ;
• In the super-critical case (z > z s ), for all n ≥ 2,

P Π in {(C 2 (t), . . . , C n (t)) ∈ •} -P 0 {(C 2 (t), . . . , C n (t)) ∈ •} ≤ K n E Π in C, Q H e -λt .
Proof. Let the collection of processes X 1 , X 2 , . . . (resp. Y 1 , Y 2 , . . .) being a particle description of the BD process that starts from the initial distribution Π in (resp. from δ 0 ). We couple the processes X 1 , X 2 , . . . to the processes Y 1 , Y 2 , . . . such that all new particle "activates" simultaneously and evolves with the same jumps. Namely, Y k (t) = X k+N in (t) for all k ≥ 1 and all t ≥ 0, where N in is distributed according to Π in .

In the sub-critical case the proof readily follows from Lemma 4.2 and the definition of the total variation since

P Π in {C(t) ∈ •} -P 0 {C(t) ∈ •} ≤ 1 -P Π in ∀k ∈ [[1, N in ]], X k (t) = 1 ,
because all "active" clusters are equal whenever all initial clusters from Π in have been absorbed. A very similar argument holds in the super-critical case.

Proof of Theorem 4.1. We consider first the sub-critical case. As said, condition (4.2) is satisfied for Π eq since E Π eq C, √ Q H < ∞, thus Lemma 4.3 applies for Π eq as initial distribution. Because the constructed BD process is regular and Π eq is a stationary distribution (i.e. P Π eq {C(t) ∈ •} = Π eq ), we deduce

P 0 {C(t) ∈ •} -Π eq ≤ KE Π eq C, Q H e -λt .
Going back to any Π in satisfying condition (4.2), applying Lemma 4.3 again and the triangular inequality yield the desired result.

Consider now the super-critical case. Π stat is a product of Poisson distribution P(f i ) on N 0 with mean f i . According to a classical result on Markov population processes, see e.g. [START_REF] Kingman | Markov population processes[END_REF]Sec. 4], the law P 0 {C(t) ∈ •} is also a product of Poisson distribution P(c i (t)) on N 0 with mean c i (t) such that c(t) = (c 2 (t), c 3 (t), . . .) solves the deterministic (linear) Becker-Döring equations namely, c(t) = Ac(t) + a 1 z 2 e 2 where A = (q j,i ) i,j≥2 the matrix with entries in (3.1), and initial condition c(0) = 0. Thanks to [8, Theorem III], we have

c(t) -f H ≤ f H e -λt , (4.4) 
and we easily obtain that P(c i (t)) -P(f i ) ≤ |c i (t) -f i |. The latter, with independence of the marginals of Π stat and of P 0 {C(t) ∈ •}, estimate (4.4) and Cauchy-Schwarz inequality, entail

P 0 {(C 2 (t), . . . , C n (t)) ∈ •} -Π stat (• × ∞ k=n+1 N 0 ) ≤ n i=2 |d i (t) -f i | ≤ K n f H e -λt .
We conclude again by Lemma 4.3 and the triangular inequality.

A quasi-stationary distribution

Let E n = {C ∈ E | C i = 0 , i ≥ n + 1}. We define the first exit time from E n , τ n = inf {t ≥ 0 | C(t) / ∈ E n } . (5.1) 
Remark that P Π in {τ n > t} > 0 for all times t > 0 and for any Π in supported on E n . We will give in the next Sec. 6 a tight lower bound on that probability in the super-critical case. In this section, we prove exponential ergodicity towards a unique QSD for the BD process conditioned to τ n > t. It is remarkable that we have at hand an explicit QSD, given, for all C ∈ E n , by

Π qsd n (C) = n i=2 (f n i ) Ci C i ! e -f n i , with f n i (z) = J n Q i z i n k=i 1 a k Q k z k+1 , (5.2) 
for i = 2, . . . , n and J n defined in (3.5).

Proposition 5.1. Under assumption (H0). The distribution Π qsd n is a quasi-stationary distribution for the BD process conditioned to stay on E n namely,

P Π qsd n {C(t) ∈ • | t < τ n } = Π qsd n and P Π qsd n {t < τ n } = exp (-J n t) .
Proof. Recall assumption (H0) ensures the BD process is regular. Fix n ≥ 2. Let the semi-group 

P n t ψ(C) = E C [ψ(C(t))1 t<τn ] for t ≥ 0 (i.e. C(0) is distributed according to δ C ), whose generator is A n ψ(C) = n-1 i=1 a i zC i [ψ(C + ∆ i ) -ψ(c)] + b i+1 C i+1 [ψ(C -∆ i ) -ψ(C)] -a n zC n ψ(C) ,
A * n Π qsd n (C) = Π qsd n (C) b 2 f n 2 -a 1 z 2 + n i=2 C i f n i a i-1 zf n i-1 -(a i z + b i )f n i + 1 i<n b i+1 f n i+1 ,
with the convention f n 1 = z. Since the f n i given by (5.2) verifies a i zf n i -1 i<n b i+1 f n i+1 = J n for all i ∈ [ [1, n]], all terms but the first cancel in the above expression, so that we obtain A * n Π qsd n = -J n Π qsd n which is the classical spectral criteria of QSD, noticing that J n ≤ a 1 z 2 , see [START_REF] Collet | Quasi-stationary distributions, Probability and its Applications[END_REF]Thm 4.4].

The next theorem shows the QSD is a quasi-limiting distribution for a wide range of initial distribution supported on E n , with an exponential rate of convergence and an explicit (non-uniform) pre-factor.

Theorem 5.2. Under assumption (H0). Let Π in a probability distribution on

E n such that E Π in [ ∞ i=2 C i ] < ∞.
We have for all t ≥ 0,

P Π in {C(t) ∈ • | τ n > t} -Π qsd n ≤ K n H in n P Π in {τ n > t} + e Jnt H qsd n e -γnt ,
where τ n is defined in (5.1), J n in (3.5), K n in Theorem (4.1), γ n in (3.7),

H in n = n i=2 Q i z i E Π in [C i ] f n i and H qsd n = n i=2 Q i z i . ECP (), paper .
where in the second line, N and (i k ) k=1..N are given by the labeling function for each C ∈ E n , and using that P C {τ n > t} ≤ 1 in the last inequality. Remark the expression of H in n is obtained thanks to the definition of M i,n in (3.8) and f n i in (5.2).

Proof of the Theorem 5.2. Let the collection of processes X 1 , X 2 , . . . (resp. Y 1 , Y 2 , . . .) being a particle description of the BD process that starts from the initial distribution Π in (resp. from δ 0 ). We couple the processes X 1 , X 2 , . . . to the processes Y 1 , Y 2 , . . . as in the proof of Theorem 5.2, namely, Y k (t) = X k+N in (t) for all k ≥ 1 and all t ≥ 0, where N in is distributed according to Π in .

To avoid notation confusion, we write τ X n and τ Y n the first exit time from E n for the collection of processes {X k } and {Y k }, respectively. We define τ 0,X n and τ 0,Y n , respectively to the processes {X k } and {Y k } likewise τ 0 n in (5.4). Due to the coupling between the 

{X k } and {Y k }, we have τ 0,Y n = τ Y n = inf {t ≥ 0 | ∃k > 0 , Y k (t) ≥ n + 1} = inf t ≥ 0 ∃k > N in , X k (t) ≥ n + 1 = τ 0,X n . (5.7) Remark that each Y k , for k ≥ 1, is independent of X i for i ≤ N in ,
, # {k | X k (t) = i} = # {k | Y k (t) =
i} on the event A t , given in (5.5), since all initial particles being absorbed. Finally, we deduce that

P Π in {C(t) ∈ • | τ n > t} -P 0 {C(t) ∈ • | τ n > t} ≤ P ∃i ≥ 2, # {k | X k (t) = i} = # {k | Y k (t) = i} τ X n > t ≤ P Π in A c t t < τ X n .
The latter, with Lemma 5.3, entails 

P Π in {C(t) ∈ • | τ n > t} -P 0 {C(t) ∈ • | τ n > t} ≤ e -γnt K n H in n P Π in {t < τ n } . ( 5 
Π qsd n -P 0 {C(t) ∈ • | t < τ n } ≤ e -γnt K n e Jnt H qsd n .
We end the proof by triangular inequality.

Estimates on τ n and the largest cluster

In this section we consider the super-critical case z > z s . The analysis of the τ n in (5.1) leads off the simple observation

τ n > t ⇔ ∀s ≤ t, max 1≤k≤N (s) X k (s) ≤ n ,
where X 1 , X 2 , . . . is the particle description of the BD process. We prove Theorem 6.1. Under assumption (H0). Let z > z s and Π in a probability distribution on

E n such that E Π in [ ∞ i=2 C i ] < ∞. We have P Π in {τ n > t} ≥ G in n e -Jnt ,
where

G in n = E Π in n i=1 f n i Q i z i Ci ≥ 1 - n i=2 E Π in [C i ] (1 - f n i Qiz i ) .
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In fact, as in the coupling strategy, (5.3) provides a useful understanding of the statistics of τ n by decomposing between the initial cluster from the ones that will appear at later times. We start with the statistics of the later, namely of τ 0 n . The next lemma clearly applies for the initial distribution Π in = δ 0 but is more general. Lemma 6.2. Under assumption (H0) and z > z s . For any probability distribution Π in on E n such that for all i ∈ [[2, n]] and k ∈ N,

P Π in    i≤j≤n C j ≥ k    ≤ P Π qsd    i≤j≤n C j ≥ k    , (6.1) 
we have

P Π in {τ n > t} ≥ e -Jnt .
Proof of Lemma 6.2. It is classical that condition (6. C qsd ) such that, a.s., for all i ≥ 1, X i (0) ≤ Y i (0). A standard coupling between two copies of the chain X from Sec. 3 consists in having the same jumps in the two copies as soon as they are equal. Such coupling applied to each couple (X i , Y i ) then ensures that, for all i ≥ 1 and t ≥ 0, we have X i (t) ≤ Y i (t) a.s. In particular, 

inf{t > 0 | max k X k (t) > n} ≥ inf{t > 0 | max k Y k (t
1 a k Q k z k+1 = f n i Q i z i . (6.2)
Let ψ n (t, x) = 1 if max 0≤τ ≤t x(τ ) ≤ n and 0 otherwise. We have

P Π in {τ n > t} = C∈En P C    N (t) i=1 ψ n (t, X i ) = 1    Π in (C) ,
where X 1 , X 2 , . . . the particle description of the BD process C (starting at δ C ). By independence of the particles conditionally to their initial condition,

P C    N (t) i=1 ψ n (t, X i ) = 1    = P C    N (t) i=N in +1 ψ n (t, X i ) = 1    P C    N in i=1 ψ n (t, X i ) = 1    = P 0 {τ n > t} N k=1
g n,i k (t) , (6.3) where again, N and (i k ) k=1..N are given by the labeling function associated to C ∈ E n . Combining relations (6.2) and (6.3) with Lemma 6.2 and summing over all initial conditions ends the proof. ECP (), paper .

2 -C 2 ,

 22 -Döring model is a kinetic model for phase transition phenomenon represented schematically by the reaction network ∅ a1z and C i aiz ------bi+1 C i+1 , i = 2, 3, . . .

Lemma 4 . 3 .

 43 Under the hypothesis of Theorem 4.1. For all t ≥ 0, we have • In the subcritical case (z < z s ),

  for all C ∈ E n (recall C 1 = z) and bounded function ψ on E n . Denote by A * n the dual operator for the generator A n . Some calculations show that the distribution (5.2) satisfies, for any C ∈ E n ,

  Hence, Y is absorbed either in 1 or n + 1, and the probability to be absorbed at 1 (without visiting state n + 1) is,

	according to [6, p.387],

  thus independent of T 1 n , . . . , T N in n the exit times arising in (5.3). Hence, by (5.3) and (5.7), the laws of the collection of processes {Y k } conditioned to τ Y n > t equals to the laws of the collection of processes {Y k } conditioned to τ X n > t. Also, we have, for any i ≥ 2 and t > 0

  1) ensures there exists randoms C in and C qsd distributed according to Π in and Π qsd , respectively, such that for each i ∈ [[2, n]], e.g.[START_REF] Grimmett | Probability and random processes[END_REF] Sec. 4.12]. Then, we may construct the collection of processes X 1 , X 2 , . . . (resp. Y 1 , Y 2 , . . .) as a particle description of the BD process associated to C in (resp. to

	C in j ≤	C qsd j	, a.s.
	i≤j≤n	i≤j≤n	

see

  P Π in {τ n > t} ≥ P Π qsd {τ n > t} = e -Jnt .

) > n} a.s. thus, with Proposition 5.1, Proof of Theorem 6.1. Let n ≥ 2 and i ∈ [[2, n]]. Define g n,i (t) = P {T n > t | X(0) = i} where T n and X are given in Sec. 3. Thanks to (3.6), we have g n,i (t) ≥ lim t→+∞ g n,i (t) = J n n k=i

http://www.imstat.org/ecp/

A function (that exists) which associates, to each c ∈ E such that N = ∞ i=2 c i < ∞, a unique sequence (x 1 , . . . , x N ) in N

satisfying c i = # {k ∈ [[1, N ]] | x k = i}.

n k=1

In the sequel C in expectation formula always refers to the free variable of integration. ECP (), paper .
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The proof of Theorem 5.2 is similar to the proof of Theorem 4.1 and consists in a coupling argument together with a control of the initial clusters in Π in . We start by the later, which is the analogous of Lemma 4.2.

Lemma 5.3. Under the hypothesis of Theorem 5.2. Let the collection of processes X 1 , X 2 , . . . being a particle description of the BD process C. We have

Proof. We start by observing that the following relation holds true,

where

Conditionally on their initial condition, all clusters X k (t) (starting at i k ) are independent from each other, thus the event

is independent of (X k ) k>N and thus independent of τ 0 n . Then,

Still by independence of the clusters from each other, we claim that

where X is defined in Sec. 3 and T n in (3.4). This equation is clear for N = 1, and is easily proved by induction. We do it only for N = 2, for the sake of simplicity.

. By definition of A t , independence of the X 1 and X 2 conditionally on their initial condition, and since they are copy of X in Sec. 3,

This proves the desired result. Thus, going back to (5.6) and thanks to (3.8) we have

Finally, we obtain

Metastability close to z s

In this section we assume additionally to (H1) and (H2), to fit with [START_REF] Kreer | Classical Becker-Döring cluster equations: rigorous results on metastability and long-time behaviour[END_REF][START_REF] Penrose | Metastable states for the Becker-Döring cluster equations[END_REF], that

for all i ≥ 2, where α, γ ∈ (0, 1), γ , ν > 0, κ, A , A, G and G positives. We also use the terminology of [START_REF] Penrose | Metastable states for the Becker-Döring cluster equations[END_REF] namely a quantity q(z) of z is: exponentially small if q(z)/(z -z s ) m is bounded for all m > 0 as z z s (z converges to z s and z > z s ); and at most algebraically large if (z -z s ) m0 q(z) is bounded for some m 0 > 0 as z z s . Assumption (H3) ensures the existence of a unique n * (depending on z) such that b n * +1 /a n * +1 < z < b n * /a n * . The size n * is interpreted as the nucleus size: for a cluster X(t) ≤ n * , X(t) tends to shorten, while for X(t) > n * , it tends to grow. With assumption (H3), n * → ∞ as z z s . In [START_REF] Kreer | Classical Becker-Döring cluster equations: rigorous results on metastability and long-time behaviour[END_REF][START_REF] Penrose | Metastable states for the Becker-Döring cluster equations[END_REF], n * is proved to be at most algebraically large. Moreover, the time scale 1/γ n * (in Theorem (5.2)) is also at most algebraically large, and J n * (in Theorem 6.1) is exponentially small. We now choose an initial distribution Π in with support on E j , with j independent of z (no generality is claimed here). We have

which is arbitrary close to one for times t 1/J n * as f n * i /(Q i z i ) → 1 when z z s .

Moreover, we have

which is arbitrary small for times 1/γ n * t 1/J n * . Indeed, note that a i Q i z i is decreasing up to the size n * , thus K 2 n * ≤ a1z A n * . Hence, K n * as well as H qsd n * are at most algebraically large. Equations (7.1)-(7.2) show the QSD is indeed a metastable state.