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Recent experiments of x-ray spectroscopy have clearly shown that it is possible to get microscopic infor-
mation on magnetic parity-breaking multipoles through these techniques. The aim of the present paper is to
highlight some theoretical aspects related to the resonant x-ray scattering and analyze the main features of the
signal in GaFeO3 through quantitative numerical calculations. Our results show that none of toroidal moments
and octupoles as well as magnetic quadrupoles are negligible and that the signal depends on many specific
crystallographic features of the system.
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I. INTRODUCTION

The availability of second- and third-generation synchro-
tron radiation sources has opened new directions in the ap-
plications of resonant x-ray scattering �RXS� to detect differ-
ent kinds of order parameters in crystals. Nowadays, RXS is
a very powerful and widespread technique to get information
about charge, orbital, and magnetic degrees of freedom,1–3

due to the high sensitivity to ordered structures characteristic
of x-ray diffraction, combined with the significant enhance-
ment of the signal at energies close to an absorption edge. It
is customary to express dispersion close to the edge as real
and imaginary anomalous scattering terms f�+ if�, related by
Kramers-Kronig transform, to be added to the Thomson
atomic scattering factor f0, in order to get the total x-ray
amplitude as f = f0+ f�+ if� �see Eq. �1��. Up to the beginning
of the 1980s, it was usually assumed that f� and f� were real
quantities, with a simple, scalar, polarization dependence:
however, after the seminal papers by Templeton and
Templeton4 and Dmitrienko,5 nowadays we know that many
effects can be singled out by the tensor character of the po-
larization and wave-vector dependence, and this is at the
origin of the success of this technique to detect orbital and
charge orderings, as well as structural anisotropies. More-
over, it became clear that f� and f� were not even real quan-
tities, depending on the behavior of the transition matrix el-
ements included in their definitions, as shown, e.g., in Eqs.
�2� and �3�. For example, in the dipole-dipole �E1-E1� ap-
proximation both f� and f� can be complex, due to an imagi-
nary contribution coming from the transition matrix elements
�3�. As detailed below, all these features of the x-ray ampli-
tude allow one to select, through an intricated interplay of
interference effects, the physical variables of interest.

While the theory and phenomenology of magnetic reso-
nant diffraction in E1-E1 conditions are very well studied,6

the possibility to detect small effects related to mag-
netic parity-breaking signals with RXS is still at its infancy.
The latter, in fact, would require a way to select just mag-
netic terms in the dipole-quadrupole �E1-E2� channel, which
are small compared to nonmagnetic terms due to the ��

mc2

factor ��� is the energy of the incoming photon and mc2

=511 keV the electron rest energy� and are further depressed
compared to magnetic E1-E1 terms because of the radial E2

matrix element. Therefore, some tricks are required in order
to measure this signal: for example, a theoretical suggestion7

to reveal the ordered antiferromagnetic arrangement of toroi-
dal moments in Li2VOSiO4 has been recently advanced, for
a class of reflections where any other multipolar contribution
is forbidden. Still more clever appears, however, the recent
experiment performed on GaFeO3 by Arima et al.,8 who
found a beautiful way to take full advantage of the interfer-
ence properties intrinsic in RXS. In fact, noticing that the
magnetic anomalous amplitude in the E1-E2 channel is in
phase with the nonmagnetic E1-E1 and Thomson parts, they
could measure the existence of the magnetic, parity-breaking
E1-E2 terms, mainly associated with toroidal moments,
through their reciprocal interference: we shall call this tech-
nique MEXS �magnetoelectric x-ray scattering�, after them.

The interest in measuring toroidal moments with RXS
stems from the fact that they represent a good indicator of
correlations between magnetism and ferroelectricity9 and
they could even play a role in the physics of magnetic inter-
faces, since the inversion symmetry is broken at interfaces.
Moreover, resonant techniques do in general allow micro-
scopic information that cannot be reached through the usual
macroscopic measurements like the magnetoelectric suscep-
tibility. Indeed, while the latter is related to bulk properties,
RXS spectra give direct information on the density of states
projected on the resonant ion, both in energy space and in
real space, through the azimuthal dependence.

The aim of this paper is threefold: first, we want to put the
achievements of Ref. 8 on a more quantitative basis, by
means of a series of numerical ab initio calculations with the
FDMNES program,10 in order to confirm the physical origin of
the detected signal also through a different method than in
Ref. 8. In the second place we show, both analytically and
numerically, some subtleties inherent with the interference
technique and apparently overlooked by the authors of Ref.
8. In particular, detailed calculations show that the signal
strongly depends on the iron filling at both Fe sites and Ga
sites. Here Fe sites are the sites nominally occupied by Fe
atoms and Ga sites those nominally occupied by Ga atoms:
indeed, Fe ions have a finite probability to occupy Ga sites,
as shown in Ref. 11. Actually, the inversion of the signal at
�040� compared to �040� is strongly related to this aspect. In
principle, this characteristic could be used to confirm the
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filling values obtained from the neutron scattering,11 even
though the sensitivity of this technique to the Fe partial oc-
cupancy of Ga sites is not so developed as with neutron
powder diffraction. Finally, after demonstrating that MEXS
has indeed detected magnetic, parity-breaking quantities, we
focus on the possibility to single out the toroidal contribution
and the one arising from the magnetic quadrupole,7,9,12 on
the basis of the polarization and wave-vector dependence of
the signal. We believe that all these characteristics offer a
good example to show the precise role of interference be-
tween anomalous and Thomson parts, and therefore reveal
all the opportunities that can be covered by this technique, as
well as the necessity to perform detailed quantitative calcu-
lations in order to correctly interpret the experimental data.

II. THOMSON-ANOMALOUS INTERFERENCE IN RXS:
THE CASE OF GaFeO3

In RXS the global process of photon absorption, virtual
photoelectron excitation, and photon reemission is coherent
throughout the crystal, thus giving rise to the usual Bragg
diffraction condition

F = �
j

eiQ� ·R� j
„f0�j� + f j� + if j�… . �1�

Here R� j stands for the position of the scattering ion j, Q� is
the diffraction vector, and f0�j� is the Thomson factor of the
jth atom. The resonant part f j�+ if j� is the anomalous atomic
scattering factor, given, at resonance where ����En−Eg�,
by the expression13

f j� − if j� � f j��� = me�
2�

n

Mng
o*�j�Mng

i �j�
�� − �En − Eg� + i�n/2

, �2�

where �� is the photon energy, me the electron mass, Eg the
ground-state energy, and En and �n are the energy and in-
verse lifetime of the excited states.14 The sum is extended
over all the excited states of the system. In Eq. �2�, f j� and f j�
can be identified with the real and imaginary parts as deter-
mined by the resonant denominator. Moreover, we intro-
duced the transition matrix elements of matter-radiation in-
teraction in the x-ray regime:

Mng
i�o��j� = ��n	Ôi�o�	�g�j�
 , �3�

where the operator Ô is written through the multipolar ex-
pansion of the photon field up to electric dipole �E1� and
quadrupole �E2� terms:15

Ôi�o� = ��i�o� · r��1 +
1

2
iq� i�o� · r�� . �4�

In Eq. �3�, �g�j� is the core ground state centered around
the jth atom and �n the photoexcited state, whereas in Eq.
�4�, r� is the electron position measured from the absorbing
ion, ��i�o� is the polarization of the incoming �outgoing� pho-
ton, and q� i�o� is its corresponding wave vector. In general the
matrix element �3� can be complex, and therefore there is no
advantage in considering f j� and f j� separately, and in what

follows we shall deal mainly with f j �except for the analysis
of Appendix B, where f� and f� are used as they are known
to be real�.

In the case of the RXS interference technique, the anoma-
lous scattering amplitude interferes with the Thomson factor
of all other charge distributions: at the Fe K edge in GaFeO3,
for example, the Fe resonant signal interferes not only with
Fe Thomson f0, but also with those of Ga and O, and the
latter turn out to be not negligible, as we shall see below.

The case of GaFeO3

The system under consideration, GaFeO3, is an ortho-
rhombic piezoelectric crystal which also shows a spontane-
ous magnetization, below about Tc�200 K.16 Its magnetic
Shubnikov group is m�2�m. In the unit cell there are two
groups of inequivalent Fe atoms, two groups of inequivalent
Ga atoms, and six groups of inequivalent O atoms, each with
4a Wyckoff number and no local symmetries �see Fig. 1�.
We have chosen, as in previous works about this system,11,17

the space group Pc21n, rotated with respect to the No. 33 of
the International Tables for Crystallography18 �Pna21�, in
such a way that the magnetization lies along the c axis and
electric polarization is along b. The coordinates of the
equivalent positions are, for all Fe, Ga, O atoms, s1

FIG. 1. �Color online� Structure of GaFeO3: magnetic moments
are shown along the crystallographic c axis. Electric polarizations
are along the b axis. Toroidal moments are directed along the a axis.
Oxygen atoms, not shown, form strongly distorted octahedra around
Ga2 and Fe ions and strongly distorted tetrahedra around Ga1 ions.
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��x ,y ,z�, s2��−x ,y+1/2 ,−z�, s3��x+1/2 ,y+1/2 ,1 /2
−z�, and s4��1/2−x ,y ,1 /2+z�. The corresponding values
are given in Ref. 11, and we report them in Table I for clarity
because these values are used in our numerical calculations.

By taking into account the magnetic structure, equiv-
alent sites s1, s2, s3, and s4 can be related to the first site
a by the following symmetry operations, respectively:

�Ê , T̂Ĉ2b , m̂c , T̂m̂a�, where Ê is the identity, T̂ is the time-
reversal operator, Ĉ2b is the �-rotation operator around b
axis, and m̂a �m̂c� is the mirror plane orthogonal to the a axis
�c axis�.

Therefore, the anomalous scattering amplitude at the Fe K
edge for the �0k0� reflection, when summed over all equiva-
lent sites, becomes

Fj = �1 + T̂m̂a�„1 + �− �km̂c…f j . �5�

Here f j is given by Eq. �2� and Fj is the global anomalous
scattering amplitude of the four equivalent atoms s1, s2, s3,
and s4: notice that both depend on k at the E1-E2 level, but
not at the E1-E1, as clear from Eq. �4�. The wave-vector
dependence for time-reversal even and odd terms in the E1-
E2 channel is detailed in Appendix A. The index j runs over
the four possible inequivalent sites having a finite probability
of hosting a Fe ion �i.e., Fe1, Fe2, Ga1, and Ga2�. In fact, as
determined by neutron diffraction refinement,11 Fe ions have
a non-negligible probability to be found at sites nominally
taken by Ga ions—i.e., Ga1 and Ga2.

The symmetry operations in Eq. �5� act only on the
polarization–wave-vector tensorial part of f j, as detailed,
e.g., in Ref. 19. In order to get the total anomalous scattering
amplitude at the Fe K edge for the �0k0� reflection, we need
to sum up the Fj over the four unequivalent sites where Fe
ions have probability to reside, weighted by such a probabil-
ity and by the corresponding Bragg phases:

fa = �
j=1

4

pje
2�ikyjFj . �6�

Here yj is the y coordinate of the unequivalent site j �i.e.,
y1=0.5831, y2=0.7998, y3=0.0000, and y4=0.3073�, Fj its

corresponding atomic scattering factor summed over equiva-
lent sites �Eq. �5��, and pj is the probability to have an iron
atom at site j, with the constraint � j=1

4 pj =2 because there are
globally two Fe ions per unit cell. For example, the nominal
probability is p1= p2=1 and p3= p4=0, while the measured
probabilities, as given in Ref. 11, are p1=0.77, p2=0.70, p3
=0.18, and p4=0.35. The marked asymmetry of Ga1 sites
probably comes from the fact that the latter one has an al-
most tetrahedral oxygen environment, contrary to the other
three sites, which have a distorted octahedral environment.
The Thomson scattering amplitude from Ga and Fe atoms,
when summed over the whole cell for k=even, is given by
the complex number

f0k = 4�
j=1

4

�pjfat
Fe + �1 − pj�fat

Ga�e2�ikyj , �7�

where fat
Fe and fat

Ga are iron and gallium Thomson scattering
factors, respectively, the factor of 4 counts the number of
equivalent atoms �they all sum up for k even�, and �1− pj� is
the probability that the jth site will be occupied by a Ga
atom. The k dependence is explicitly shown in the label.
Similarly the Thomson scattering of oxygens reads

f 0k
O = 4�

j=1

6

f at
Oe2�ikỹ j , �8�

where we took into account the fact that there are six ỹ j
inequivalent oxygen positions. In Eqs. �7� and �8�, even
though not explicitly written, we have inserted as well the Ga
and O anomalous scattering contributions at the Fe K edge,
respectively: however, a posteriori, we found that their
weight is negligible compared to fat

Ga and fat
O, as shown in

Table II.

III. RESULTS AND DISCUSSION

The experiment performed in Ref. 8 was structured as
follows: an external magnetic field was applied along the
easy axis c while measuring the �0k0� intensity and then
reversed. The two signals were subsequently subtracted in
such a way as to single out just the interference term involv-
ing the magnetic term of E1-E2 origin. It is important to
stress here that the experiment was performed in the unro-
tated �� channel—i.e., when both incoming and outgoing

TABLE I. Coordinates �x, y, z� of the different Fe, Ga, and O
atoms and probability �p� to get an iron atom in the corresponding
site.

x y z p

Fe1 0.1538 0.5831 0.1886 0.77

Fe2 0.0346 0.7998 0.6795 0.70

Ga1 0.1500 0.0000 0.1781 0.18

Ga2 0.1593 0.3073 0.8106 0.35

O1 0.3228 0.4262 0.9716 0

O2 0.4864 0.4311 0.5142 0

O3 0.9979 0.2022 0.6541 0

O4 0.1593 0.1974 0.1480 0

O5 0.1695 0.6717 0.8437 0

O6 0.1736 0.9383 0.5166 0

TABLE II. Relative contribution of Fe, Ga, and O Thomson and
anomalous factors to the interference at the Fe pre-K edge. u and v
are define in Appendix B.

u+ iv f�+ if�

Fe�040� −14.2+ i143 −6.2+ i1.1

Fe�040� −14.2− i143 −6.4+ i1.2

Ga�040� 111+ i96.9 −8.6+ i0.2

Ga�040� 111− i96.9 −0.9+ i8.52

O�040� −4.3− i125 0.9− i1.3

O�040� −4.3+ i125 −1.0+ i1.3
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polarizations are orthogonal to the scattering plane—in such
a way that no magnetic amplitude is allowed from the
anomalous fa term in the E1-E1 approximation. Moreover,
for k=4n, with n any integer, there is an approximated ex-
tinction rule for nonresonant magnetic scattering, differently
from the case k=4n+2. The expected intensities at �040� in
the two opposite directions of the applied magnetic field �I±�
are

I+�040� − I−�040�

� dI = 	f0k + f0k
O + fa

nm + fa
m	2 − 	f0k + f0k

O + fa
nm − fa

m	2.

�9�

In the case of the �040� reflection we have, instead,

I+�040� − I−�040�

� dĨ = 	f0k + f0k
O + f̃ a

nm + f̃ a
m	2 − 	f0k + f0k

O + f̃ a
nm − f̃ a

m	2.

�10�

In Eqs. �9� and �10� we have introduced the magnetic and
nonmagnetic parts of the anomalous term fa at the Fe K edge
as fa= fa

nm+ fa
m, which are, respectively, even and odd under

time reversal �i.e., reversal of the magnetic direction�. More-
over, we defined

f̃ a
m � �

j=1

4

pje
−2�ikyjF̃j = − �

j=1

4

pje
−2�ikyjFj �11�

due to the fact that when Q� →−Q� , the E1-E2 anomalous

term Fj changes sign, being odd with respect to Q� , as shown

in Appendix A. Notice, however, that f̃ a
m�−fa

m, due to the
Bragg factor e−2�ikyj. We can rewrite Eqs. �9� and �10� as,
respectively,20

dI = 4 Re��f0k + f0k
O + fa

nm�*fa
m� �12�

and

dĨ = 4 Re��f0k + f0k
O + f̃ a

nm�* f̃ a
m� . �13�

At this point, it is worthwhile to linger on the explicit

numerical calculation for dI and dĨ performed through the
FDMNES program in the magnetic multiple-scattering mode
and draw some comments in the light of the experimental
results of Ref. 8, to check that we can first of all grasp the
correct order of magnitude of the signal. The calculated spec-
tra are shown in Fig. 2, together with the �020� reflection,
where the E1-E2 magnetic signal is superimposed onto a
magnetic nonresonant background. The absorption curve is
also drawn, as a reference for the energy. Both �040� and
�040� show a qualitative behavior well in keeping with the
experimental data, with a pronounced bump at the Fe pre-K
edge, whose relative intensity dI / I is some units in 10−4, like
the experimental feature. Notice that we have a better agree-
ment with the experiment when we suppose that the Fe ion at
Ga1 site is not magnetic, again indicating that tetrahedral
sites behave differently from octahedral ones.

Before commenting further on the characteristics of the
signal evaluated numerically, it is possible to show analyti-

cally that dI and dĨ are not necessarily opposite. By express-
ing the real and imaginary parts of the Thomson Bragg terms
as u and v and as ũ and ṽ those of the anomalous Bragg
terms �see Appendix B for definitions and calculations�, we
get the following expression:

dI + dĨ = 2fm� �k�
ũ�k,p��v�k,p� + fnms� �

− ṽ�k,p��u�k,p� + fnmc� ��

+ 2fm� �k��ũ�k,p�fnms� − ṽ�k,p�fnmc� � , �14�

from which it is clear that what makes dI+dĨ�0 is the sum
of two contributions: on the one side, the interference be-
tween fm� �k� and the p-dependent Thomson terms u and v and
on the other, the interference of fm� �k� and fm� �k� with, respec-
tively, the Templeton parts of fnm� and fnm� in the E1-E1 con-
tribution, called here fnmc and fnms, as detailed in Appendix
B. It is the latter term which is responsible, for example, for
the differences between the �040� and �040� reflections
shown as a solid line in Fig. 3. Here we show the signal
coming from a single site Fe1, with p1=1, for both the total
intensity and the one coming from the simple interference of

fa
m with fat

Fe: in the latter case, the relation dI+dĨ=0 is ob-
tained exactly, as expected from the theoretical analysis
above.

The dependence of the signal on the filling probabilities pj
is clear from Fig. 4, where it is shown how the spectra vary
in case of “nominal” filling �p1= p2=1 and p3= p4=0� and of
the real one �p1=0.77, p2=0.70, p3=0.18, and p4=0.35�.

It should be noticed that the calculated nonresonant signal
at the �020� reflection is about twice as big as the experimen-
tal one. In fact, as can be deduced from Fig. 2, the ratio of
this latter with the resonant peak at �040� is about 8, while
the experimental ratio is about 4 �see Ref. 8�. As the relative
intensity dI / I is well reproduced by our calculation, we be-
lieve that the origin of the discrepancy lies in the evaluation
of the nonresonant magnetic scattering with the extrapolation
at low energies of the high-energy expression of Ref. 22.

FIG. 2. �Color online� MEXS signal for the actual filling value.
The absorption curve is drawn as a reference for the energy.
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Finally, the analysis of the symmetry operations in Eq. �5�
shows that only the following magnetic tensor components
can be detected in the E1-E2 channel, when k=even �the
quantization axis coincides with the easy c axis�: T1

�1�−T−1
�1�

�toroidal moment�, T1
�2�+T−1

�2� �magnetic quadrupole�, T1
�3�

−T−1
�3� �toroidal octupole�, and T3

�3�−T−3
�3� �this latter cannot be

detected in �� polarization conditions and therefore is ab-
sent�. The reason is that all tensors involved are both time
reversal and parity odd, and therefore m̂zTq

�p�= �−�q+1Tq
�p� and

T̂m̂xTq
�p�= �−�pT−q

�p�. Given Eq. �5�, the first rule selects, for
k�even, just the terms with q�odd, whereas the second rule
just picks up the four terms written above.

Compared to the interpretation of x-ray directional
dichroism,8,12 the signal is determined by the same multi-
poles as the c-axis dichroism, which was also characterized

by the absence of the T3
�3�−T−3

�3� contribution:23 this could
have been expected on the basis of the fact that the �� po-
larization was chosen parallel to the c axis. Moreover, as in
that case, the lack of quantitative agreement for the �040�
seems to imply that some of the terms involved in the scat-
tering may be ascribed to correlation effects: these terms are
not reproduced correctly by our independent particle ap-
proach, which, however, semiquantitatively describes many
other aspects of the signal that depend only on the structure.

We end up the section by suggesting a method which,
though rather complicated, could in principle allow us to
single out each of the three multipoles experimentally. The
azimuthal dependence of the three terms—toroidal dipole
and octupole and magnetic quadrupole—is identical in the
�� channel, proportional to cos 	, where 	 is the angle in
the ac crystallographic plane and 	=0 when the polarization
is along c. Therefore a single azimuthal scan is not useful to
this aim. However, toroidal multipoles and magnetic quadru-
pole have different dependences when the outgoing polariza-
tion is neither orthogonal nor parallel to the scattering plane.
If, for example, 
 is the angle in the plane orthogonal to the
outgoing wave vector q��, measured from the � polarization,
then

T1
�1� − T−1

�1� � �sin 	 sin �B sin 
 + cos 	 cos 
� �15�

and

T1
�2� + T−1

�2� � �2 sin 	 sin �B sin 
 − cos 	cos 
� . �16�

The azimuthal dependence of the toroidal octupole is co-
incident with that of the toroidal moment. Therefore, toroidal
multipoles and magnetic quadrupole could be, in principle,
disentangled. However, through this procedure, new resonant
magnetic terms could appear of E1-E1 origin, because of the
rotated component of the polarization, which should be taken
into account and subtracted from the signal.

From a theoretical point of view, the calculation through
FDMNES is much simpler and gives an intensity ratio of the
same order of magnitude for the three contributions. The
energy dependence of each term is then shown in Fig. 5 for
the �040� reflection.

IV. CONCLUSION

In conclusion, by means of a numerical calculation
through the FDMNES program we have confirmed the mag-
netic parity-breaking origin of the signal detected by means
of an interference technique in resonant x-ray scattering in
Ref. 8. Such a signal shares several features in common with
the analog one obtained through the nonreciprocal linear di-
chroism in Ref. 21 �and see also Ref. 12�. However, the
correct interpretation turns out to be slightly more involved
due to the several aspects that play a role in a diffraction
experiment, which we hope to have clearly illustrated with
this paper.

Among the features shared with nonreciprocal linear di-
chroism, it may be interesting to underline the energy range
of the signal. As already in the case of V2O3,24 our numerical
calculations confirm that magnetic E1-E2 signals are limited
to the pre-edge region.

FIG. 3. �Color online� MEXS signal on a single set of equiva-
lent iron sites �Fe1a�. The total signal is shown as a solid line, while
the dotted line shows the interference of the E1-E2 magnetic part
with the simple Thomson term: in this case the inversion of the
signal is exact. The origin of the difference between the two signals
is explained in the text.

FIG. 4. �Color online� Comparison of the MEXS signal for two
different fillings: the “nominal” one �dotted lines� and the real one
�solid lines�.
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Finally, we linger on two aspects of the MEXS that could
be analyzed in the near future. The first is the disentangle-
ment of the toroidal contribution from the magnetic-
quadrupole one, as detailed already in the final part of the
previous section. Such a disentanglement can be very impor-
tant as it can tell us about the nature of higher-order mag-
netic distributions in this material, whether toroidal �i.e., cor-
responding to a circulation of magnetic moments around the
resonant ion� or quadrupolar �i.e., corresponding to a con-
figuration of two opposite magnetic moments around the
resonant ion�.

The second aspect is to detect, through MEXS, a primary
order parameter of magnetoelectric origin. In Ref. 8, the tem-
perature dependence of the MEXS signal was found to be
coincident with the magnetization curve, thereby signaling
that the MEXS order parameter is induced by the onset of the
magnetic-dipole one. In this latter case, the induced order
parameter is called secondary, whereas the magnetic dipole
is the leading term in the expansion of Landau’s free energy,
and it is called primary order parameter. The possibility to
have a phase transition driven by a higher-order magnetic
multipole has been recently discovered for NpO2,25 where a
magnetic octupole order parameter with symmetry �2 is
commonly accepted to explain the low-temperature proper-
ties of the system. For what magnetoelectric order param-
eters are concerned, it would be worthwhile to investigate
the possibility of such an effect in Ti2O3, a material that is
known to be magnetoelectric, though nonmagnetic.26 Even
though magnetoelectricity is usually attributed to higher-
order terms in Landau’s free energy, there is no definitive
agreement in the literature on this point. The discovery of a
system with a magnetic, space-inversion breaking primary
order parameter would be a novelty in the field and could be
found, in our opinion, only with the technique employed in
Ref. 8 and described in the present article.

APPENDIX A: WAVE-VECTOR DEPENDENCE
OF E1-E2 SCATTERING

The presence of the imaginary unit in the E1-E2 scatter-
ing amplitude �see Eqs. �2�–�4�� makes it out of phase with

the E1-E1 and E2-E2 terms: for the latter nonmagnetic parts
are real and magnetic parts are imaginary, while the opposite
is true in the E1-E2 channel. In the framework of the clas-
sification given in Ref. 12, it is possible to explicitly derive
the polarization and wave-vector dependence in the E1-E2
approximation. In Table III we list the time-reversal proper-
ties of the allowed tensors, whether even or odd.

This table shows the way time-reversal odd �magnetic�
T̃�p� and time-reversal even �nonmagnetic� T�p� tensors of
rank p are coupled to the polarizations and wave vectors. The
general tensor formalism can be recovered in Ref. 12 and
references therein. Here we just want to show that in the ��
channel, where the second column does not contribute ��i


�o=0�, reversing just the wave vectors �q� i→−q�o and q�o

→−q� i� is equivalent to reversing the magnetization of the

sample, because it is equivalent to the operation T̃�p�→
−T̃�p�.

APPENDIX B: DERIVATION OF EQ. (14)

The following definitions are used:

f0k + f0k
O � u�k,p� + iv�k,p� , �B1�

with

u�k,p� � 4�
j=1

4

�pjfat
Fe + �1 − pj�fat

Ga�cos�2�kyj�

+ 4�
j=1

6

fat
Ocos�2�kỹj� ,

v�k,p� � 4�
j=1

4

�pjfat
Fe + �1 − pj�fat

Ga�sin�2�kyj�

+ 4�
j=1

6

fat
Osin�2�kỹj� ,

fa
m � �fm� �k�ũ�k,p� − fm� �k�ṽ�k,p��

+ i�fm� �k�ṽ�k,p� + fm� �k�ũ�k,p�� , �B2�

with

ũ � 4�
j=1

4

pj cos�2�kyj� ,

FIG. 5. �Color online� Tensor analysis of the MEXS signal,
T1

�1�−T−1
�1�, T1

�2�+T−1
�2�, and T1

�3�−T−1
�3�, all E1-E2 contributions �dq�,

and total signal �E1-E2 plus E2-E2�.

TABLE III. Time-reversal properties of irreducible tensors in
the E1-E2 channel.

��i ·��o ��i
��o 
��i ,��o�

q� i−q�o T�1�
T̃�2� T�1�, T�2�, T�3�

q� i+q�o T̃�1� T�2�
T̃�1�, T̃�2�, T̃�3�
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ṽ � 4�
j=1

4

pj sin�2�kyj� ,

and

fa
nm � fnm0 + fnm2, �B3�

where

fnm0 � �fnm0� ũ�k,p� − fnm0� ṽ�k,p��

+ i�fnm0� ṽ�k,p� + fnm0� ũ�k,p�� ,

fnm2 � 4�
j=1

4

pj
�fnm2� �j� cos�2�kyj� − fnm2� �j� sin�2�kyj��

+ i�fnm2� �j� cos�2�kyj� + fnm2� �j� sin�2�kyj���

�Re fnm2�k� + iImfnm2�k� .

In the latter expressions, we have separated the scalar
anomalous part fnm0, which does not depend on the site j,
from the Templeton part fnm2, which does depend on the site
j and therefore cannot be extracted out of the sum. For the
real and imaginary parts of fnm2 we have indicated the ex-
plicit k dependence for later use. It is the latter term which is
responsible for the difference between solid-line and dashed-
line signals in Fig. 3. Notice that in principle a similar de-
pendence on j holds also for the fm terms �it expresses the
physical fact that toroidal moments may be different on the
four unequivalent Fe ions�, and it has been taken into ac-
count in the actual calculation through FDMNES: however, we
have neglected it in this appendix in order not to make even
more cumbersome an already heavy notation. In all the pre-

vious expressions we have underlined both the Q� depen-
dence �through k� and the dependence on the filling p. In
particular, fnm� and fnm� do not depend on k andfm� and fm� have
an odd dependence on k. Therefore, one can write

dI = �fm� �k�ũ�k,p� − fm� �k�ṽ�k,p��


�u�k,p�

+ fnm0� ũ�k,p� − fnm0� ṽ�k,p� + Re fnm2�k�� + �fm� �k�ṽ�k,p�

+ fm� �k�ũ�k,p��


�v�k,p� + fnm0� ṽ�k,p� + fnm0� ũ�k,p� + Im fnm2�k��

and

dĨ = �− fm� �k�ũ�k,p� − fm� �k�ṽ�k,p��


�u�k,p� + fnm0� ũ�k,p� + fnm0� ṽ�k,p� + Re fnm2�− k��

+ �fm� �k�ṽ�k,p� − fm� �k�ũ�k,p��


�− v�k,p� − fnm0� ṽ�k,p� + fnm0� ũ�k,p� + Im fnm2�− k�� .

Summing them together and defining the terms involving
fnm2� and fnm2� as

fnm2� � 4�
j=1

4

pjfnmc� �j� cos�2�kyj� ,

fnm2� � 4�
j=1

4

pjfnmc� �j� cos�2�kyj� ,

fnm2� � 4�
j=1

4

pjfnms� �j� sin�2�kyj� ,

fnm2� � 4�
j=1

4

pjfnms� �j� sin�2�kyj� ,

we recover Eq. �14�.
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