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Roundabout Crossing with Interval Occupancy
and Virtual Instances of Road Users

Stefano Masi, Philippe Xu and Philippe Bonnifait

Abstract—Although autonomous vehicle technology has
evolved significantly in recent years, the navigation of self-driving
vehicles in complex scenarios is still an open issue. One of the
major challenges in these conditions is safe navigation on roads
open to public traffic. The main issue is the interaction of the
autonomous vehicle with regular traffic, as the behaviors and
intentions of human-driven vehicles are hard to predict and
understand. In this paper we propose a strategy to allow an
autonomous vehicle to safely cross a multi-lane roundabout.
Our approach uses a High-Definition (HD) map to predict at
lane level the future situation, harnessing the concept of virtual
instances of road users, which is a key concept in anticipating the
situation in a roundabout that can be represented by a navigation
graph with loops. This paper presents a methodology that uses
intervals representing road occupancy by vehicles, with the
road being widened to reflect uncertainties in localization. Our
method safely avoids collisions and guarantees that no priority
constraints are violated during the insertion maneuver. Moreover,
the method does not provide an overly cautious insertion policy,
i.e., an autonomous vehicle does not wait for a long time before
the insertion. The performance of our strategy was evaluated
using the SUMO simulation framework. To better evaluate the
complexity of the simulation scenario, a highly interactive vehicle
flow was generated using real dynamic traffic data from the
INTERACTION dataset. We report real tests carried out with
an experimental self-driving vehicle on a test circuit. Our results
show that this approach is easy to integrate into an embedded
system and that it allows roundabouts to be crossed with a high
level of safety.

Index Terms—Intelligent vehicles, autonomous driving

I. INTRODUCTION

Nowadays, Autonomous Driving (AD) vehicle technology
is a very active field of research. In the near future AD
vehicles are expected to co-exist with manually driven (MD)
vehicles and other road users including bicycles and motor-
cycles. In this heterogeneous scenario, safe navigation has to
be guaranteed in complex dynamic environments such as in
intersections, lane merging and roundabouts, where the risk of
accident is one of the highest on public roads.

One way to improve this co-existence is to make use of V2V
communications to share the intentions of the AD vehicle with
other traffic participants. Other vehicles are thus able to build
driving plans that explicitly consider the future behavior of the
AD vehicle. However, this method assumes that all the road
users are equipped with V2X devices, which is unrealistic in
a short-term horizon.

The literature includes a number of works addressing inter-
section crossing with only AD vehicles (see [7], [22], [27],
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Fig. 1: A roundabout with its HD map representation. The decision
zones are green, the transition zones are yellow, and the ring zone is
red. The roundabout exits are blue. For a given link, the nodes and
shape points are shown.

[32]) and with priority constraints [8]. Some approaches solve
the intersection crossing problem with optimization [27] or
with model predictive control [23], [36]. Another approach
involves computing and avoiding situations that would neces-
sarily lead to a collision even with emergency braking [33].
Finally, the Autonomous Intersection Management Protocol
(AIM) [6], [30] and virtual platoon methods [9], [26] have
shown interesting properties.

In a mixed traffic environment with AD and MD vehicles
(in this paper an MD vehicle can be a car or any road user
in the drivable space), avoidance sets can be computed with
reachability theory [11], [21], [39]. The authors in [28], [29]
implemented a collaborative motion planning algorithm that
cooperates with MD vehicles. Other works such as [42] are
based on worst-case MD vehicle behavior (as an example,
accelerating when approaching an intersection is considered to
be the least desirable). In [14], the behavior of an MD vehicle
is modeled with a mathematical representation of human
driving. Some tentacles-based motion planning techniques can
also be found in the literature [37]. Such methods are often
based on occupancy grids to estimate the free space in the
environment [2], sometimes in combination with HD maps
[15].

In order to better understand vehicle behaviors in complex
scenarios, we looked at the principal datasets in the literature
containing traffic flow information for autonomous driving
navigation tasks (collision avoidance, path planning, etc.).



These include Common Road [1], ACFR [43] or INTERAC-
TION [41]. For this study we chose to focus our attention on
INTERACTION, because it provides highly dynamic traffic
flow data in a number of road scenarios, including where there
are several roundabouts.

The roundabout crossing problem has received little at-
tention in the literature. In [3] the authors proposed an al-
gorithm for solving the roundabout crossing problem using
game theory, while Desaraju et al. [10] considered partial
order techniques to develop a strategy for collision avoid-
ance between two vehicles on a roundabout. Other works,
namely [34] and [35], have focused more narrowly on the
control of self-driving vehicles. An alternative approach that
involves an extra infrastructure layer to implement a time slot
scheduling protocol can be found in [17]. Although the authors
proposed interesting valid theoretical solutions, they obtained
their experimental results only from test-bed scenarios with
either simulated vehicles or simplified roundabout models.
Moreover, their experiments involved a limited traffic flow
(only one adversarial vehicle), which is far from being a full-
scale experiment. If we look carefully at roundabouts, we see
some similarities with classical road merging and intersections.
In particular, during the insertion maneuver, a roundabout is
quite similar to a road merging where vehicles on the main
road have higher priority. There are, however, fundamental
differences. First, in a roundabout the available space is limited
w.r.t. highway merging, and consequently there is less time
to plan a driving maneuver. Second, traffic behavior in the
roundabout ring is heterogeneous and hard to predict. This
aspect is more noticeable where the roundabout has more
than one lane. In particular, if no lane markings are present,
it is not easy to distinguish between inner and outer lanes.
As a consequence, MD vehicles tend to have an irregular
behavior, making the navigation maneuver in the roundabout
challenging. Some examples of this behavior can be found
in the roundabout recordings in the INTERACTION dataset
[41]. This is different from an intersection (T-intersection or
lane merging), where in general MD vehicles choose their
lane before crossing the intersection or the merging. Third, on
a roundabout it can be difficult to predict which exit a vehicle
will take. To deal with this problem it is appropriate to consider
all possibilities by manipulating several virtual instances of the
vehicles.

In [24] we showed that using virtual vehicles along the
lanes of an HD map is a good way of predicting the dynamic
situation in a roundabout so as to control the longitudinal
behavior of an AD vehicle. In [25] we improved and ex-
tended this method to a more complex case, i.e., a two-lane
roundabout. The aim of the present paper is to provide an
extended formalization and an experimental evaluation to show
the feasibility of our approach in a real traffic scenario, and to
address some issues that arise when virtual vehicle techniques
are applied to roundabouts. The contributions of this work are
as follows:
• A safe, priority-preserving and not overly cautious de-

cision method for an AD vehicle crossing a two-lane

Fig. 2: The curvilinear abscissa w.r.t. a given link and the relative
distance computation to the intersection point, as explained in section
II. The blue arrow pointing towards the intersection point indicates
the sign of the distance.

roundabout among an MD vehicle flow;
• Extending the curvilinear coordinates virtual platooning

to an interval-based curvilinear formalism to include both
vehicle sizes and uncertainties in vehicle positions in the
navigation algorithm;

• Using the virtual vehicle concept to handle multi-lane
roundabout navigation and the prediction of vehicles’
unknown intentions, and applying virtual vehicle methods
to roundabout cycles;

• Generating an interactive, naturalistic and adversarial
vehicle flow using real data from the INTERACTION
dataset, to be used as a realistic benchmark for navigation
algorithms in a SUMO-based simulation environment;

• A practical evaluation of our algorithm in terms of
the safety and fluidity of the insertion, with realistic
simulations and real experiments.

The paper is organized as follows. In the next section we
introduce curvilinear formalism along with HD maps. Then, in
section III we explain in detail the concept of virtual instances
and how it can be applied to roundabout use. In section IV we
present our roundabout crossing algorithm. Simulation results
with a vehicle flow using real traffic data are presented in
section V, followed by real experimental results in section VI.

II. INTERVAL-BASED CURVILINEAR COORDINATES
ALONG HD MAPS

When multiple vehicles share the driving space, it is
important to properly represent their spatial positions with
respect to each other. Euclidean coordinates are often not
ideal for representing spatial relationships between road users.
Curvilinear coordinates, on the other hand, are able to ef-
fectively encapsulate lane-level interactions between vehicles,
for example in terms of conflicting trajectories w.r.t. the AD
vehicle navigation corridor [31], [42].

The principle of curvilinear coordinates is to map a Eu-
clidean pose (position and heading angle) onto a curvilinear
pose with respect to a geometrical curve. These curves can
be stored in a map in a variety of formats including clothoids,
splines, or polylines, and typically represent vehicles’ nominal
paths. In many driving contexts, the center line of a lane is a
sufficient approximation of the path that the vehicles follow.
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Fig. 3: (3a) Classical virtual platooning (dashed) and its extension to intervals (solid). V is the ego-vehicle and V ,
1 is a virtual instance of V1.

(3b) Situation with 6 other vehicles (all the possible relative locations) Occupancy is projected onto the road map. (3c) Interval overlapping
corresponding to Fig. (3b).

In the particular cases of overtaking and lane change, the AD
vehicle can decide to replace its reference path by a path
computed by a planner. Nowadays there are a number of open
source navigation maps (e.g., OpenStreetMap). However, for
AD navigation tasks, an HD map, with a higher level of detail
and better accuracy, is needed.

The present work adopts a polylines formalism to represent
the roads. In particular, we define the road elements in a map
as follows:

• Node: a set N of geo-referenced 2D points used to mark
the start and the end points of part of a lane, in particular
where two lanes split, merge or cross.

• Link: the portion of the lane between two nodes (the
starting and ending nodes) that define the flow direction
in the lane. The geometry of this part is represented as a
polyline, which is a sequence of line segments. A link Lk
composed of mk line segments is described by mk + 1
points

Lk =
(
p
(0)
k , p

(1)
k , . . . , p

(mk−1)
k , p

(mk)
k

)
, (1)

in which the first and last points are nodes, i.e.,
p
(0)
k , p

(mk)
k ∈ N . It is important to note that no crossing

can occur within a link, but only at the starting or ending
nodes.

• Shape points: the 2D points used to model the geometrical
shape of the lane (i.e., the shape of the link) are called
shape points. A node is also considered to be a shape
point.

• Line segment: a line segment

l
(i)
k =

(
p
(i)
k , p

(i+1)
k

)
, (2)

attached to a link Lk is composed of two consecutive
shape points, and its length is defined as

`
(i)
k =

∥∥∥p(i+1)
k − p(i)k

∥∥∥ . (3)

A link Lk can be represented equivalently as an ordered
sequence of mk segments Lk =

(
l
(0)
k , l

(1)
k , . . . , l

(mk−1)
k

)
.

The length of a link Lk is denoted

Lk =

mk−1∑
i=0

`
(i)
k . (4)

To better illustrate this concept, Figure 1 shows the represen-
tation in terms of nodes and shape points for a given link.
Another commonly used map representation is the lanelet
representation [4], which uses the left and right bounds of the
lane. In this case, a conversion into a center line representation
is required beforehand, as in [18].

The first step when using a curvilinear representation is to
identify the lane in which vehicles are traveling. For an AD
vehicle, it is simply given by the path planning module in
the form of a list P=(L1, L2, ...) of links for the vehicle
to follow (Figure 4). In contrast, the driving lanes for MD
vehicles need to be estimated by a map-matching procedure. It
is well known that map-matching ambiguities may arise when
a road splits or when the vehicle changes lanes. Our preferred
map-matching process is the method described in [24], where
multiple candidate lanes can be simultaneously occupied by
creating virtual instances of the MD vehicle, one for each lane
that may potentially be occupied. This technique is detailed in
section III-A.

The curvilinear abscissa sLk
of a vehicle located on the link

Lk and map-matched to its i-th segment l(i)k is computed w.r.t.
the starting node p(0)k of Lk as follows:

sLk
=

i−1∑
j=0

`
(j)
k + λ`

(i)
k , (5)

where λ ∈ [0, 1] is a parameter to model the position along the
map-matched segment l(i)k . Below, sLk

will be denoted simply
as s when there is no ambiguity. A practical computation of
the curvilinear coordinates can be found in [16].

This representation is particularly useful in virtual pla-
tooning for safely crossing an intersection with a vehicle
driving on another road [26]. Given the path of the vehicle
P = (Lk, Lk+1, . . .), the curvilinear abscissa from the path



to any node, for example the ending node of the link Ln, is
computed as

sn =

n∑
j=k

Lj − sLk
. (6)

Equation (5) computes the curvilinear abscissa of a vehicle
measured w.r.t. the start node of the current link Lk, while in
equation (6) the value sn is measured from the ending node n
of link Ln back to sLk

. Note that sn is negative and increases
as sLk

approaches the node n. Let us consider two vehicles
Vi and Vj with paths Pi and Pj , respectively. If the two paths
intersect, the notion of curvilinear abscissa can be used to
compute the relative virtual gap between the two vehicles.
Suppose that Pi and Pj intersect at a given node n, and let
si|n and sj|n be the curvilinear abscissa of Vi and Vj w.r.t.
this node n as defined in equation (6). We define the virtual
curvilinear signed inter-distance between Vi and Vj as follows:

di,j|n = −dj,i|n = sj|n − si|n. (7)

Figure 2 illustrates this concept. Note that di,j|n is a signed
inter-distance, where di,j|n > 0 means that Vi is closer to n
than Vj , i.e., Vi is virtually ahead of Vj . Moreover, Figure
2 illustrates the computation of the curvilinear abscissa and
distances.

However, in the real world a single curvilinear point is not
sufficient to represent the physical occupancy by a vehicle.
Instead of using curvilinear coordinates, we propose replacing
them with curvilinear intervals to better represent occupancy
by objects. Let us first generalize the virtual curvilinear inter-
distance of equation (7) to the case of the interval curvilin-
ear abscissa. For an interval [si, si] we define

[
si|n, si|n

]
,

corresponding to the lower and upper curvilinear abscissa
of the vehicle w.r.t. a given node n using equation (6). As
stated previously, these values are negative and increase as the
vehicle approaches the node n. We define the interval-based
virtual curvilinear signed inter-distance d∗i,j|n between Vi and
Vj , whose paths intersect at a node n, as the signed distance
between the front of Vj and the back of Vi:

d∗i,j|n = sj|n − si|n. (8)

Therefore, d∗i,j|n < 0 means that w.r.t. node n, Vi is virtually
ahead of Vj , i.e., the vehicles are in the first configuration
shown in Figure 3c. It is important to note that d∗i,j|n > 0
does not mean that Vj is ahead of Vi. Indeed, any of the other
configurations in Figure 3c would lead to this case. Unlike
where a single curvilinear abscissa is used, we have d∗i,j|n 6=
−d∗j,i|n, i.e., this equation is not symmetric. To better illustrate
the concept, Figures 3a, 3b and 3c show the case of a simple T
intersection. For simplicity, d∗i,j|n will from here on be denoted
as d∗i,j where there is no ambiguity.

III. CYBER-PHYSICAL ROUNDABOUT MODEL

A. Unknown intentions of MD Vehicles and Graph Cycles

In order to encompass all the possible behaviors of an
MD vehicle, we consider that a single MD vehicle can be

Fig. 4: The truck trajectories are estimated considering several virtual
instances of the same vehicle in accordance with [24], assigning a
possible trajectory for each instance. In this case, the truck can be
both ahead and behind the AD vehicle, as explained in section III-A.

represented by a number of different virtual instances. This
approach has several advantages. First, it is helpful in cases
where estimating the MD vehicle’s behavior is problematic. If
we consider the truck in Figure 4, it is not clear a priori which
road the truck will exit onto. To cope with this, we propose
representing the truck with two instances V1 and V

′

1 as we
previously did in [24]. Each instance represents a possible
path that the truck may follow. In cases where there is no
ambiguity in truck positioning, the two instances overlap. In
addition, once the position ambiguity is resolved, e.g., when it
is clear that an MD vehicle has chosen one of the two branches
of a bifurcation, the instance on the wrong candidate path is
eliminated, and new instances are added if new ambiguities
appear.

This method can also help to solve some situations of
relative positioning inside the roundabout ring that arise in
cyclic graphs. If we look carefully at Figure 4 and apply the
virtual platooning algorithm as in [24], we see that the paths
of V0 and the instance V1 of the truck have ni as the first
intersecting node (from the point of view of the AD vehicle
V0). This means that V1 is virtually behind V0, even though
this is clearly not really the case, because the truck can be
seen both behind and ahead V0, depending on the point of
view. Moreover, when considering long objects, such as a truck
with a trailer, this ambiguity is more flagrant. This particular
behavior is due to the circular shape of the roundabout ring,
and in some cases it may produce an erroneous representation
of the scenario. In fact, during the insertion maneuver V0 needs
to consider the presence of the truck as a vehicle to follow, and
it also needs to consider it as a possible oncoming vehicle on
the left side of the roundabout. To overcome this issue, if we



Fig. 5: Strategy for handling lane change maneuvers in a two-lane
roundabout. The vehicle trajectory is green and the corresponding
lane occupation is red.

again consider the instance V
′

1 that represents the same vehicle
but with a different path, we can see that it has nj as the first
intersecting node with the path of V0. This means that, in this
case, V0 is behind the instance V

′

1 . This representation is the
inverse of the previous representation in which the instance V1
of the truck was virtually behind V0. It is therefore clear that in
a roundabout there may be several instances of the same object
with a different relative positioning w.r.t. the AD vehicle. In
other words, an MD vehicle can be both virtually ahead of and
behind the AD vehicle. This method enables the AD vehicle
to overcome the problem of the roundabout loop and allows it
to consider all the possible MD vehicle configurations in the
scenario.

B. Lane Change and Nudging Behaviors
In this section we look at modeling the behavior of other

vehicles in a multi-lane roundabout. We consider again the
roundabout shown in Figure 1. One of the most difficult issues
in this scenario is handling vehicles that maneuver from the
inner ring of the roundabout to the outer ring, which is the
ring used by the AD vehicle in our method. In practice,
it is very challenging to predict a lane change maneuver,
especially when vehicles attempt to make a lane change with
nudging [21]. In [25] we proposed three different strategies for
handling the navigation of multiple vehicles inside a two-lane
roundabout.

In order to predict these lane change maneuvers we again
use the concept of virtual vehicles, just as we did to predict
other vehicles’ intentions (see Fig. 4). The main idea is to
generate an extra virtual instance of a given vehicle located
in the inner lane of the roundabout that can occupy the outer
lane according to a chosen occupancy strategy.

The three strategies proposed in [25] generate an extra
virtual instance as follows:

1) Systematically occupying both lanes of the roundabout
ring if at least one lane is occupied.

2) Occupying both lanes where there is significant physical
occupancy by a vehicle, but not otherwise.

3) Occupying the outer lane where the intention of a vehicle
to change lane has been detected, but not otherwise.

In [25] we showed that strategy 3 above behaves as a com-
promise in terms of safety and cautiousness. However, in

order to use this strategy effectively, a precise lane change
intention detector is required. In this work, given that our
system architecture does not possess this kind of lane change
intention predictor, and given that our roundabout test-bed
comprises a one-lane roundabout only, we limit ourselves to
strategy 1 (Fig. 5).

IV. ROUNDABOUT CROSSING METHOD

A. Insertion Strategy

In this work we assume that the state of an MD vehicle Vi
is represented as

Vi = [si, si, vi, Pi] , (9)

where [si, si] are the lower and upper bounds over the
curvilinear occupancy of Vi encompassing both the size and
the uncertainty bounds over its position estimate, vi is its
estimated longitudinal speed, and Pi its predicted path.

The values of si and si are computed as explained in
section II. From the perspective of the AD ego vehicle, the
state of a nearby vehicle is typically provided by a perception
system able to detect, track and map-match. In this work,
in order to be compatible as far as possible with most of
the state-of-the-art road user detection algorithms, no other
assumptions have been made regarding the information about
surrounding vehicles. In particular, the reader may refer to [5],
which describes how the values in equation (9) are provided
to our system.

We constrain the AD vehicle to navigate only in the outer
lane of the roundabout. In other words, we do not allow the
AD vehicle to overtake and change lanes as it crosses the
roundabout. With this simplification, the navigation algorithm
only needs to control the longitudinal motion of the AD
vehicle to perform the task, the lateral control being done by
path following.

Moreover, to cross a roundabout successfully, we need
to take into account not only the safety inter-distance w.r.t.
the vehicle ahead, but also the priority relationships in the
roundabout scenario. In a roundabout, the priority lanes are
situated inside the roundabout ring, while the non-priority
lanes are in the entry branches. From these considerations we
derive three rules to describe the ideal behavior of an AD
vehicle. An AD vehicle:
R1) must maintain a safe inter-distance w.r.t. the vehicle

ahead;
R2) must respect the traffic rules (vehicles inside the round-

about have the right of way);
R3) must, as far as possible, avoid stopping on the carriage-

way.
This means that a vehicle in a non-priority lane is allowed

to enter the roundabout only if the insertion maneuver does not
influence the behavior of another vehicle with a higher priority.
In other words, the entering vehicle is not allowed to force a
priority vehicle to reduce its speed. A priority vehicle follows
its reference speed profile and regulates its inter-distance only
with respect to vehicles that have the same priority level. It is



also desirable for the AD vehicle to execute an insertion that
is as smooth as possible without stopping at the point of entry
to the roundabout, which requires it to anticipate the behavior
of the other vehicles.

B. Classification of Roundabout Lanes and Priorities

In accordance with the problem statement and the three rules
listed in section IV, we propose to decompose a roundabout
into three zones as illustrated in Figure 1. Each zone describes
sub-steps of the insertion maneuver and a different priority
rank, as follows:

a) The Decision Zone (in green in Fig. 1) is before the
merging into the roundabout ring. In this zone, the AD vehicle
does not have priority w.r.t. vehicles in the roundabout. It has
to evaluate the possibility of a safe insertion in the roundabout
without violating priority constraints.

b) The Transition Zone (in yellow in Fig. 1) is the final part
of the entry lane where it merges with the roundabout ring.
In this part, the AD vehicle performs a transition to enter into
the roundabout. When the AD vehicle is in that zone, a safety
inter-distance w.r.t. a potential oncoming MD vehicle on the
roundabout ring must be maintained in order to allow a safe
insertion.

c) The Ring Zone (in red in Fig. 1) corresponds to the
roundabout ring. In this zone, the insertion maneuver is
completed and the AD vehicle follows the nearest MD vehicle
in the roundabout or drives at its nominal speed if it is alone.

d) The Exit Zone (in dark gray in Fig. 1) is the zone
where the AD vehicle leaves the roundabout and continues
its navigation following its path.

As a consequence, the crossing of the whole transition zone
must be taken into account in the decision-making procedure.
Once a vehicle enters that zone, it can no longer change its
decision. If it needs to stop, this means that the decision
to enter the roundabout was erroneous, and the approaching
vehicle is obliged to decelerate in order to avoid a collision.
Finally, once the AD vehicle has crossed the transition zone
it has the same priority as all the vehicles in the roundabout
ring.

C. Intervals-based Virtual Platooning

One well-known technique for intersection crossing is to
establish a crossing order between oncoming vehicles [26].
However, when using intervals to represent the curvilinear
occupancy by vehicles, there may be cases where there is
no total order between vehicles, if we apply virtual vehicle
methods such as in [26] and [24]. This is due to a possible
overlapping of intervals. Let us consider the case illustrated
in Figure 3a, where the trajectory of the AD vehicle (in blue)
crosses that of an MD vehicle (in green) at a point n. Let us
define [s, s] as the curvilinear occupancy by the AD vehicle
w.r.t. the origin n, and similarly [si, si] for a MD vehicle Vi.
Figure 3b illustrates the six possible relative positions between
the AD vehicle and the MD vehicles with their corresponding
virtual projections (Fig. 3c).

Note that if there is no priority constraint between the
vehicles, using intervals does not lead to a unique order
among them. It is therefore necessary to choose an insertion
policy [24]. This issue is beyond the scope of this paper,
since we consider that vehicles inside the roundabout have the
highest priority. In Figure 3c it will be remarked that in all the
cases (2), (3),..., (6), the AD vehicle cannot be guaranteed to
be in front of the oncoming MD vehicle. These cases should
not occur when the AD vehicle goes through the transition
zone, since they represent infringements of rule R2. If the AD
vehicle cannot guarantee that such cases will not occur, the
AD vehicle decreases its speed to let the oncoming vehicle
go ahead. This maneuver can lead either to a safe stop at the
give-way line, or to an adaptation of the AD vehicle’s speed,
depending on the relative overlapping of intervals over time.
In other words, the AD vehicle tries to adapt its behavior as
far as is possible to let the other car go first, and if it cannot
do so, it performs a safe stop. Note that the only case where
the AD vehicle may expect to be in front of the MD vehicle
is the case (1).

Let us consider the scenario depicted in Figure 4, where the
AD vehicle V0 is in the decision zone of the roundabout, and
an oncoming priority MD vehicle V1 is in the ring zone. This
scenario clearly corresponds to case (1), with d∗0,1 > 0.

Let us define t0 as the time when the front part of the AD
vehicle enters the transition zone. At a given time t < t0 (i.e.,
when the AD vehicle is still in the decision zone), it can be
seen that having

d∗0,1(t0) > dsafe, (10)

is not sufficient to ensure an insertion maneuver that is safe
and that respects rights of way in accordance with rule R2. If
the speed v1 of vehicle V1 is greater than the speed v0 of V0,
the inter-distance between the two vehicles will diminish over
time. This shows that vehicle kinematics must be taken into
account at the decision-making level.

Considering again rule R2, the AD vehicle needs to guaran-
tee that equation (10) will be satisfied throughout the insertion
maneuver, i.e., from the moment that the upper bound s enters
the transition zone until the lower bound s leaves it. Let ∆t be
the time needed by the AD vehicle to traverse the transition
zone completely, i.e., the back of the AD vehicle has exited
it. The decision to enter the roundabout is taken if:

∀t ∈ [t0, t0 + ∆t], d∗0,1(t) > dsafe. (11)

In order to guarantee the inequality of equation (11), we
need to know how both s0|n and s1|n evolve over time. In this
work, we assume that both vehicles drive at a constant speed.
This assumption may seem simplistic, but it is representative
of real driver behavior as indicated in the INTERACTION
dataset. Indeed, within the roundabout ring in the INTERAC-
TION dataset, the speed profiles of the MD vehicles have a
standard deviation of less than 1 m/s in average. Under this
assumption, we have ∆t = l/v0, where l is the length of
the transition zone, and the kinematics of each interval can



be expressed as follows (bearing in mind the aforementioned
considerations):

s0|n(t) = s0|n(t0)− v0 · (t− t0), (12)

s1|n(t) = s1|n(t0)− v1 · (t− t0). (13)

Substituting equations (12) and (13) in (11), we obtain

s1|n(t0)− s0|n(t0)︸ ︷︷ ︸
=d∗0,1(t0)

+(v0 − v1) · (t− t0) ≥ dsafe, (14)

The inequality (14) needs to hold ∀t ∈ [t0, t0 + ∆t].
If v0 > v1, it leads to

d∗0,1(t0) ≥ dsafe. (15)

This means that if the AD vehicle is traveling faster than V1,
it can insert if it is sufficiently ahead of V1 at t0.

Otherwise, if v0 < v1, we have

d∗0,1(t0) ≥ dsafe +

(
v1
v0
− 1

)
l. (16)

It can be seen that the relative speed v1/v0 needs to be taken
into account in the decision, and that if equation (16) holds
at t0, it also holds over the whole interval [t0, t0 + ∆t].
This is particularly useful in the case where the AD vehicle
accelerates from a low speed (v0 = 0 when stopping at a give-
way marking) in order to enter the roundabout, because all the
speed changes by the AD vehicle are already encompassed in
the decision. In other words, the decision taken at t0 cannot
change if the speed of the AD vehicle increases.

Inequality (16) allows the AD vehicle to decide if it has
enough space to maintain a safety inter-distance w.r.t. a possi-
ble oncoming vehicle, knowing its velocity and its occupancy
at time t0. In the case where equation (16) is not satisfied, the
ego vehicle slows down to perform a safe stop at the end of
the decision zone (that coincides with the give-way marking).

Nevertheless, once the speed of the AD vehicle is close to
zero, it is difficult for the AD vehicle to find a sufficiently
large gap in order to perform the insertion. This is due to
the singularity present in equation (16) when v0 = 0. In
fact, the function h(v0) =

(
v1
v0
− 1
)

is seen to have a peak
towards +∞ for v0 → 0. This degrades the performance of
the algorithm once the AD vehicle has stopped: it will only
insert once no oncoming vehicle is present. To overcome this,
we propose to replace h(v0) with another function for the case
v0 < v1. In particular, we look for a function that meets the
following criteria:

1) As v0 → 0, the value of the function becomes less
dependent on v0.

2) For v0 = 0 the value of the function depends at least on
v1.

The main idea is to have a function allowing a safety gap to
be set that depends only on the other vehicle’s speed v1. This
solution is useful when the dynamic of the system is not well
known and we need to perform a prediction without being too
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Fig. 6: The behavior of the decision function with h and ĥ (18) in
terms of required inter-distance for several values of A and α for a
fixed value of v1, l and dsafe.

pessimist. In this work we have chosen to use a function with
the following form:

ĥ(v0) = A

(
1

2
− 1

1 + e−α(v0−v1)

)
(17)

where the two parameters A and α need to be tuned experi-
mentally to make a good insertion maneuver (see section V-C).
Equation (16) now becomes{

d∗0,1(t0) ≥ dsafe if v0 > v1,

d∗0,1(t0) ≥ dsafe + ĥ(v0)l else.
(18)

or equivalently{
d∗0,1(t0)− dsafe ≥ 0 if v0 > v1,

d∗0,1(t0)− dsafe − ĥ(v0)l ≥ 0 else.
(19)

Figure 6 illustrates the function ĥ for several values of A
and α. It can be seen that the singularity present in h for
v0 = 0 is avoided. For instance, for α = 1 and A = 10, if
the AD vehicle is at v0 = 0, then it decides to enter if the
inter-distance is around 50 m. Applying the above to situations
where there is traffic flow, algorithm 1 gives the insertion
strategy in the general case. It will be remarked that where
the AD vehicle has at least one vehicle behind and one ahead,
the prediction (Eq. 19) is made with regard to the speed of
the preceding vehicle rather than the AD vehicle itself. This
takes into account the possible presence of a preceding vehicle
during the insertion maneuver. On the other hand, where there
is at least one vehicle behind the AD vehicle that does not
satisfy Eq. 19, the AD vehicle performs a safe stop at the give-
way marking, and then, in order to avoid unsafe configurations,
when entering the roundabout it selects the farthest object that
does not satisfy Eq. 19 as the vehicle to follow.

V. CASE STUDY IN SIMULATION

A. Traffic Simulation for Autonomous Vehicles

Simulation of the traffic environment is a technique widely
used in relation to self-driving cars. It is an approach that has
several advantages. Simulations are safer, more efficient, and
cheaper than live testing with real vehicles. With simulations



Algorithm 1 Roundabout insertion for an AD vehicle V0.
Require: V0, t0

1: [V1, V2, . . . , Vc]← Perception() . Other road users
2: ∆t← l/v0
3: leader ← ∅, dleader ← −∞
4: VRISK ← [] . List of vehicles that represent a risk
5: for j = 1 : c do
6: n← FindFirstCommonNode(P0, Pj)
7: if n = ∅ then
8: Continue . Vj does not cross the path of V0
9: else

10: d∗0,j|n(t0)← sj|n(t0)− s0|n(t0)
11: if d∗0,j|n(t0) < 0 then . Vehicle Vj in front of V0
12: if d∗0,j|n(t0) > dleader then
13: dleader ← d∗0,j|n(t0)
14: leader ← Vj
15: else
16: Continue
17: end if
18: else . Vehicle Vj behind or intersecting V0
19: if d∗0,j(t0) ≥ dsafe +

(
vj
v0
− 1
)
l then

20: Continue . Contraint satisfied
21: else
22: VRISK ← VRISK ∪ [Vj , d

∗
0,j(t0)]

23: end if
24: end if
25: end if
26: end for
27: if leader = ∅ then
28: vd ← vn . Go with nominal speed
29: else
30: vd ← leader.speed . Speed of vehicle ahead
31: end if
32: if VRISK 6= [] then . Change leader vehicle
33: leader ← maxd∗

0,j|n
[VRISK ]

34: vd ← leader.speed
35: end if
36: SetSpeed(vd) . Perform longitudinal control

it is also possible to generate a variety of different driving
scenarios that would be hard to create using real road agents,
thus reducing the risk of damage to material and injury to
people.

Of course, in order for simulators to be meaningful when
testing AD applications, a realistic simulation level w.r.t. the
real world is essential.

It is almost impossible to find a simulator that satisfies every
single requirement for autonomous driving. However, there are
a wide range of simulators that target individual aspects (traffic
flow, sensor simulation, etc.).

In this paper we focus on traffic flow simulators. Simulators
concerned with traffic flow can be separated into two main
types, namely macroscopic and microscopic traffic simulators.
Macroscopic simulators are mainly used to study large-scale
flow problems, relating to road capacities and bottlenecks over

Fig. 7: Comparison between the ∆TTICmin distribution generated
from the same sequence of the USA Roundabout FT scenario of
the INTERACTION dataset (blue) and the one obtained from the
traffic flow simulated by the resulting traffic flow simulation in
SUMO (green). One can notice that an highly dynamic behavior
(∆TTICmin 6 1 s) is present in both scenarios.

a large complex road network. In these simulators the dynam-
ics of individual traffic agents are quite simple, and sometimes
there is an absence of information relating to single traffic
agents. The level of detail is kept low to allow the simulator to
perform simulations involving hundreds of vehicles and with
a reasonable computation time. Macroscopic simulators are
therefore not suitable for AD navigation. Interactions between
the vehicles and driving maneuvers (e.g., lane changes) are
overly simplified.

Microscopic simulators, on the other hand, focus on the
characteristics of single road agents rather than global vehicle
flow. The description level of every simulated road agent
must be high and detailed. Longitudinal and lateral motion
of vehicles can be obtained via a number of built-in driving
models customizable with a large set of driving parameters.
For some simulators, e.g., SUMO, it is also possible to
parameterize some complex maneuvers such as lane changes.

For this work we decided to use the well-known SUMO
simulator [20], widely used for microscopic traffic simulation
in the area of collision avoidance [12], [19]. We refer interested
readers to [12].

Although simulation performance is becoming increasingly
precise, it is important to be aware that a gap still exists
between simulated maneuvers and those performed in the
real world. However, state-of-the-art simulation technology
is helping to narrow that gap, with regular new releases for
existing simulators.

B. Vehicle Flow Generation

This section proposes a method to reproduce a realistic
vehicle flow in a simulated environment. We use data from
the real traffic dataset INTERACTION. As stated previously,
we chose this dataset because it provides data for highly
interactive road users, including situations where road users



have adversarial motion behaviors. Traffic flow data recordings
at a microscopic level in a dense traffic flow situation are
provided for every roundabout in the dataset.

In order to compare the performance of a generated flow
w.r.t. the original flow, a metric is required. This metric
must be able to capture the degree of interaction between
road users, especially in complex driving situations (close
navigation in parallel lanes, overtaking, intersection insertions
without markings, etc.).

The authors in [41] propose using the ∆TTICmin (min-
imum time-to-conflict-point) difference metric for an inter-
active pair of vehicles [38]. Following [41], we define an
interactive pair of vehicles as a pair of vehicles that have at
least one common point in their respective reference paths.

For a given interactive pair of vehicles, the corresponding
∆TTICmin can be computed as

∆TTICmin = min
t∈[Tstart,Tend]

(TTICt1 − TTICt2), (20)

where TTICti = 4dti/υti , and i = 1, 2, is the traveling time
to the conflict point of each vehicle in the interactive pair.
Note that 4dti is the distance from the vehicle position to
the conflict point in a Frenet frame, which is equivalent to the
absolute value of the curvilinear abscissa w.r.t. to a conflicting
node, as defined in equation (6). Where ∆TTICmin 6 3 s,
there is deemed to be an interaction between the vehicles.
Moreover, an interaction between two vehicles is termed
intense if ∆TTICmin 6 1 s. In this study we focused on the
data from the “USA Roundabout FT” scenario, because this
is the most interactive two-lane roundabout, with the highest
number of vehicles and recorded sequences.

We will now look at how SUMO can be used to generate
a flow of vehicles based on the INTERACTION traffic data
with the same degree of interaction in terms of ∆TTICmin.
This has several advantages. It allows us to quantify the
performance of our algorithm w.r.t. the interaction degree of
the traffic scenario. It can give us a vehicle flow with the same
degree of interaction as on a different roundabout test-bed (for
example that shown in Figure 1). And a simulated vehicle flow
in SUMO can react dynamically to the ego vehicle decisions
(e.g., braking when the insertion maneuver is too aggressive),
while this is not the case for a recorded flow dataset.

Using the curvilinear formalism introduced in section IV-C,
we implemented an algorithm to compute common intersec-
tion points between vehicle trajectories. In our case, trajecto-
ries are encoded as a list of links that a vehicle follows on the
road map, and consequently the intersection point is one node
of the map. Unfortunately, neither vehicle trajectories nor a
lane-level high-definition map are present in the INTERAC-
TION dataset, and they they therefore need to be computed
offline.

To this end we compute an HD map representation of
the “USA Roundabout FT” starting from its lanelet2 [31]
representation provided with the dataset interface. The main
idea behind this step is to convert the lanelet2 representation
of street borders to a centerline representation using our

curvilinear formalism. A Voronoi distances algorithm is used
to compute the set of center lines, that is to say equidistant
points from lane borders. However, this procedure is not
completely automatic and can be error-prone where roads
intersect and merge. Some manual corrections were therefore
done offline at the end of this step.

Although the “USA Roundabout FT” has more than one
lane, we represent it with only one lane in our HD map. This
is to better capture the interaction between vehicles inside
the roundabout ring, assigning vehicles navigating on multiple
lanes to the same portion of the map, even where vehicle
trajectories do not overlap. This is a reasonable strategy given
that navigation in parallel lanes implies a possible implicit
interaction that should be taken into account (we cannot know
in advance the intentions of the vehicles).

To compute a reference trajectory for the vehicles w.r.t. the
HD map, we implemented a map-matching procedure via the
INTERACTION dataset animation tool. From the raw data on
trajectories this procedure directly computes the corresponding
curvilinear position on the HD map and lists all the map links
that a vehicle traverses.

Once the intersection points between every interactive pair
have been found, we use the HD map to compute the curvi-
linear distances 4dti via the algorithm presented in section
IV-C.

As for the input data to SUMO, we compute for every
track of the “USA Roundabout FT” the arrival times, arrival
speeds, inter-distances w.r.t. the vehicle ahead and behind. The
empirical distribution of these observed data was estimated
[25] and used to randomly create vehicle objects with the
same properties as their real-world counterparts. Finally, the
speed of each vehicle was bounded by the speed limit provided
by the road shape and the route attribute of each vehicle
object was chosen randomly, with more weight given to routes
intersecting the AD vehicle’s route.

The output of the system is a traffic flow with the
∆TTICmin distribution similar to that computed using the
real traffic data. Figure 7 illustrates the output of the simulation
for a recorded traffic sequence from INTERACTION. Highly
dynamic behavior (∆TTICmin 6 1 s) is present in both
scenarios.

The high degree of interaction between interactive pairs
comes mainly from the double lane of the roundabout ring.
Where two or more vehicles are traveling very close to each
other in parallel lanes in the roundabout ring, there is a high
volume of interaction between them.

C. Simulation Results

To validate our approach we used two simulators. The
SUMO simulator [20] was used for microscopic traffic flow
generation, while a ROS-based simulation framework was
used to implement the navigation algorithm and the AD
vehicle dynamics. The coupling and synchronization of the
two simulators was done using the TraCi SUMO library and
its Python API. A detailed explanation of the time synchro-



Fig. 8: The coupled simulator. The AD vehicle is in gray, while all the
MD vehicles are in yellow. Note that the roundabout in SUMO was
created using the HD map representation of the roundabout shown
in Fig. 1.
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Fig. 9: Inter-distance distributions w.r.t. the vehicle ahead (blue) and
behind (green) during an insertion maneuver. The red line represents
the 5 m safety gap.

nization and coupling of the two simulators can be found in
[13].

We imported our HD map representation of the test-bed
roundabout into the SUMO simulation environment using the
Netedit and Netconvert tools included in the SUMO suite [18].
Figure 8 shows an overview of the roundabout scenario in both
simulators.

For each simulation, a random high-density vehicle flow
that meets the ∆TTICmin criterion was generated over a fixed
time horizon T = 200 s. Each simulation was between 200 and
400 seconds, giving more than 1 hour of simulation in total.
The number of vehicles for each flow randomly varied between
50 and 175, giving more than 5, 000 vehicles altogether.

The limits were chosen to capture a wide range of scenarios,
ranging from a sparse traffic flow to a denser vehicle stream.
To simulate localization uncertainty for the AD vehicle and
perception uncertainty for MD vehicles, a ±1 m bound is
added to the curvilinear interval [si, si] and [s, s], which
represents the projection of the vehicle footprint on its lane.

To experimentally validate our approach, we used the tech-
nique described above in relation to various scenarios in order
to generate high density traffic flows. The simulations were
done using the HD map representation of the roundabout

Fig. 10: The experimental “Seville” circuit and the experimental
Renault Zoés for the real outdoor tests. In our configuration, the
white car (fully autonomous) is the AD vehicle, while the others are
the road users (manually driven).

Fig. 11: The experimental “Seville” circuit with the corresponding
HD map and the experimental configuration. The AD vehicle is
blue and the MD vehicles are green. Notice that the situation case
described in section III-A may occur.

shown in Figure 1.

To better quantify the performance of our algorithm, we
computed the distributions of the inter-distances w.r.t. the
vehicle ahead and behind during the crossing of the transition
zone. Figure 9 shows the inter-distance distributions for both
the ahead and behind gaps. It can be seen that the behind
safety gap always meets the safety criterion, whereas there
is a small violation of the safety bound w.r.t. vehicles ahead.
This violation is due to deficiencies in the controller and can
be ignored.

We are also interested in quantifying the insertion rate w.r.t.
the size of vehicle flow. Table I illustrates the average insertion
rate and waiting time as a function of the number of vehicles
in the flow. The total length of the decision and transition
zones is 33.4 m and the nominal speed in this zone is 30
km/h, which gives us a nominal waiting time of 4.2 seconds.

The number of insertions is seen to decrease w.r.t. the
number of vehicles in the flow. Conversely, the waiting time
increases.



TABLE I: The average insertion time, the percentage of average waiting time relative to the nominal case and the average number of
insertions as a function of vehicle flow for the single-lane roundabout case.

Flow size 50 75 100 125
Crossing Time (s) 5.60 (+1.3) 7.32 (+1.7) 10.05 (+2.39) 15.26 (+3.63)
Number of Insertions 24 21 18 16

VI. REAL EXPERIMENTS

In order to validate our strategy in a real scenario, we
implemented the whole system architecture on an autonomous
Renault Zoé using ROS middleware. More details about the
system architecture of our experimental cars are provided
in [40]. We first tested roundabout insertion in a hybrid
environment (i.e., with simulated vehicles traveling on the test
track) then with real road agents detected using a LiDAR-
based perception system. In the autonomous experimental
car, the system controls the throttle, the brake pedal and the
steering wheel. In our case, the longitudinal motion of the
vehicle (i.e., acceleration and brake) is computed according
to the traffic situation. In particular, based on the algorithm
described in section IV-C, the vehicle can either perform an
insertion maneuver into the roundabout or reduce its speed to
let other cars go ahead, possibly stopping at the give-way sign.
Regarding lateral motion, a simple lane keeping is performed
and for the detection part we use a state-of-the-art LiDAR
object detection algorithm [5] able to provide information
about the detected objects in the form Vi = [si, si, vi, Pi].
Note that Pi and the curvilinear conversion were computed
using the methods described above.

Let us consider a scenario where two cars are driving close
to each other inside a roundabout doing infinite loops and the
AD vehicle needs to enter the roundabout (Figure 11). Figure
12a illustrates the (virtual) inter-distances of the AD vehicle
w.r.t. the other road agents (behind and ahead) in the three
zones. As we can see, the sign of the inter-distance depends
on the relative positioning between the MD vehicles and the
AD vehicle

Notice that due to the concept of vehicle instances (section
III) a vehicle inside the roundabout can be both ahead of and
behind the AD vehicle, which is consistent with the circular
shape of the roundabout. The colors of the background denote
the zone of the roundabout where the AD vehicle is located.
While crossing the transition and ring zones the safety gap is
always maintained.

If we observe the points in the decision zone carefully,
we see that the other road agents virtually overtake the AD
vehicle. Figure 12b shows that as a result of the negative values
of the constraint of equation (18), the decision changes from
go to stop. As a consequence, the AD vehicle lets the other
vehicles go ahead and enters the roundabout behind them.

To better illustrate the situation at the decision and con-
trol level, Figure 12c shows the system behavior during the
whole maneuver. In particular, we can see that the set-point
torque changes following the decision output in Figure12b.
Consequently, the vehicle speed and the torque applied to the
engine change accordingly.

When the red function decreases to zero in Figure 12b, the
controller performs a safe stop maneuver. Conversely, once
the decision-making part decides to let the vehicle enter the
roundabout, the controller accelerates accordingly. Note that
where the vehicle is completely stationary (i.e., v = 0) it is
still in the decision zone. This means that no safety violation
occurrs during the maneuver.

VII. CONCLUSION

This work has presented a method based on virtual vehicles
for performing a safe roundabout crossing. We first described
how the virtual instances of vehicles can be used to handle
the particular shape of roundabouts. We then proposed an
approach based on this technique and occupancy intervals
for computing the best gap to choose during a roundabout
insertion maneuver. This approach was tested under a sim-
ulated traffic flow generated from real data. The degree of
interaction of the generated flow was used to create a scenario
close to real-world driving. We showed that the proposed
insertion maneuver ensures safety. We also proposed some
performance indexes to evaluate its efficiency in terms of
traffic fluidification.

Our method was tested on an experimental test circuit with
real road users and a real AD vehicle, in order to evaluate
the performance of the proposed algorithm in a real-world
scenario with a perception system that provides information
about the surrounding road agents.

As a future prospect our objective is to extend the tests
with a real vehicle to more complex scenarios (e.g., two-lane
roundabouts with more MD vehicles) and to include in their
architecture a lane change intention detector. In order to obtain
a better performance when the traffic flow is dense, it would
also be interesting to study how a negotiation layer involving
intentions and actions of other parties during the interaction
could be implemented. This layer would potentially play an
important role when AD vehicles are involved in a decision
process where rules are not clear.
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