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Abstract

Wildfires are a natural phenomenon that regularly occurs in many terrestrial
ecosystems. Due to global warming, the rate and the span of wildfires have
remarkably increased during the last years, causing important economic losses
and human casualties. Several initiatives have been undertaken in the last years
in order to apply operations research tools to help firefighting teams schedule
and optimize their protection activities when dealing with wildfires.

In this context, a recent variant of the Team Orienteering Problem, referred
to as the Asset Protection Problem, was proposed in [28]. In this problem,
firefighting teams provide a protective service to a set of assets endangered
by wildfires. These activities can be performed by a heterogeneous fleet of
vehicles and occur within specific time intervals estimated on the basis of fire
fronts progression. This problem incorporates three additional constraints: time
windows, synchronized visits and compatibility constraints between vehicles and
assets.

In this paper, we propose a hybrid approach that combines a Greedy Ran-
domized Adaptive Search Procedure coupled with an Iterated Local Search
(GRASP×ILS) and a post-optimization phase based on a set covering formula-
tion. Interestingly, GRASP×ILS incorporates an adaptive candidate list-based
insertion heuristic and a Variable Neighborhood Descent search procedure. De-
tailed computational tests were carried out on benchmark instances from the
literature. The results show that our method outperforms the other methods
in the literature, since it achieves an overall improvement of the best known
solution by 8.52% and 7.8% on medium- and large-size instances respectively,
while maintaining shorter computational times.
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1. Introduction

In the last decade, wildfires have become a frequent phenomenon, causing
major damage to private property, community assets and human life. Many
countries have recently witnessed the devastating impact of wildfires on nature
and human activities: Portugal (2017), Sweden (2018), Australia (2019-2020),
California (2020). Asset protection activities performed by Incident Manage-
ment Teams (IMT) during wildfires are therefore of crucial importance in order
to minimize the risk of losing vital infrastructures. However, several challeng-
ing tasks and difficulties complicate the working environment of IMT within
which critical and complex decisions must be made. Consequently, the applica-
tion of operations research methods, either exact or heuristic, can reinforce the
management of wildfires in such hostile situations.

In this context, Van Der Merwe et al. [28] consider the case of an out-
of-control wildfire spreading across a landscape and threatening a number of
assets like bridges, electrical substations, schools and factories. Defensive activ-
ities carried out by IMT near assets before fire impact are important to reduce
the risk of losing them. Examples of defensive tasks include the removal of de-
bris and combustible materials, wetting down buildings and putting out fires.
Moreover, IMT activities should not be implemented too early, or the interven-
tion will be ineffective. For this purpose, fire progression can be estimated using
meteorological data and fire propagation models. Moreover, some assets may
require the intervention of several trucks and equipment with specific capabil-
ities. These trucks should cooperate together in a timely manner to carry out
protection activities.

Van Der Merwe et al. [28] modeled this problem using a variant of the Team
Orienteering Problem (TOP) with additional constraints, namely, time windows,
synchronized visits and compatibility constraints between vehicles and assets.
They considered a fleet of heterogeneous vehicles available to visit a number of
strategic assets located over a geographical area. Each asset is associated with a
time window within which the protection activities should start. An asset is also
assigned a service time duration, which represents the time necessary to perform
the protection activities. Finally, each asset has resource requirements that are
expressed by the number and type of required vehicles. Due to these constraints,
protecting all the assets might be impossible. Hence, a value, referred to as
profit, is associated with each asset in order to distinguish between different
assets according to their relative importance. In order to collect a given profit,
the associated asset must be visited by the required vehicles in a synchronized
manner, i.e., the visits performed by the vehicles should begin simultaneously
within the corresponding time window. Finally, the objective function of the
problem aims at maximizing the amount of profit collected. In the rest of the
paper, we refer to this problem as the Synchronized Team Orienteering Problem
with Time Windows (STOPTW).

The TOP is a class of Vehicle Routing Problems (VRP) that was proven
to be NP-Hard [13]. Extensive researches have been conducted during the last
decade to study the TOP and its variants. Several solution approaches have
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been proposed. As exact approaches, Boussier et al. [11] introduced a column
generation based approach for the TOP, whereas El Hajj et al. [17] proposed a
cutting plane approach reinforced by dominance properties and symmetry cuts.
For the same problem, Bianchessi et al. [10] presented a branch-and-cut method.
Regarding other variants of the TOP, Archetti et al. [3] designed a generic
column generation method for two problems: the Capacitated TOP (CTOP)
and the Capacitated Profitable Tour Problem (CPTP), while Yahiaoui et al.
[32] proposed a cutting plane method coupled with pre-processing procedures
for the Clustered TOP. Several heuristic approaches have also been proposed for
the TOP and its variants. The first method for the TOP was proposed by Chao
et al. [13]. Archetti et al. [4] proposed a Tabu Search (TS) and two versions
of Variable Neighborhood search (VNS). Dang et al. [15] introduced a novel
splitting procedure for giant tours embedded inside a PSO algorithm. Archetti
et al. [3] proposed two versions of TS and VNS for the CTOP, while Ben-Said
et al. [9] proposed a GRASP×ELS approach to the same problem. We refer
the reader to [20] for a detailed survey on the TOP.

Several variants of the TOP have been introduced in order to solve differ-
ent issues related to disaster management in general. Baffo et al. [6] proposed
a variant of the TOP called the Multi-Origins Capacitated Team Orienteering
Problem. This variant has been used to model rescue operations during emer-
gency situations of persons suffering problems of mobility. Balcik [7] studied a
problem called the Selective Assessment Routing Problem (SARP) to address
the rapid needs assessment decisions after disasters. In this variant, sites are
grouped into subsets called communities, where the sites belonging to the same
community share a common characteristic. A single site can have several charac-
teristics, and, can therefore be part of more than one community. The objective
in this problem is to maximize the minimum coverage of each community. The
coverage of a given community is computed as the ratio of the number of visited
sites divided by the total number of sites of that community. A variant of SARP
with uncertain travel times has been proposed in [8]. The authors proposed a
resolution approach based on a robust optimization formulation with a co-axial
box uncertainty set.

A major characteristic of the STOPTW is the temporal synchronization con-
straints. These constraints are common between several variants of VRP pro-
posed for different real life applications. Bredström and Rönnqvist [12] studied
a variant of VRP with synchronized visits in the context of home-care services.
The same problem was addressed by Parragh et al. [26] and used to solve real
problems related to technicians routing and scheduling problems. Crainic et
al. [14] presented a VRP variant for city logistics that includes, in addition to
two-echelon network architecture and multi-trip routes, exact synchronization
constraints between vehicles of first and second echelons at the level of satellites.
We refer to Drexl [16] for a detailed survey on synchronization in vehicle routing
problems.

Regarding the resolution approaches for the STOPTW, Van Der Merwe et
al. [28] introduced a mixed integer programming model for the problem, which
was demonstrated on a realistic wildfire scenario in Tasmania. The authors in
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[27] proposed an adaptive large neighborhood search heuristic (ALNS) for the
problem along with a new set of benchmark instances. A spatial decomposition
math-heuristic (SDM) resolution approach was recently proposed by Nuraiman
et al. [25] for the same problem. This method succeeded in substantially im-
proving the best solution for all medium-size and large-size instances compared
with [27]. In the same vein, the authors in [29] developed a dynamic approach
to reroute vehicles during firefighting once disruptions occur. The method aims
at maximizing the total value of protected assets while minimizing the number
of changes on rescue plans developed earlier.

In this paper, we propose the Hybrid Heuristic method composed of a Greedy
Randomized Adaptive Search Procedure (GRASP) coupled with an Iterated Lo-
cal Search (ILS) and a set covering formulation. GRASP×ILS incorporates an
adaptive candidate list-based insertion and a Variable Neighborhood Descent
(VND) search procedure used to improve the solutions produced by the ILS.
The set covering problem formulation is a post-optimization phase used to ex-
tract the best solution from a pool of feasible routes previously populated by
GRASP×ILS.

The remainder of this paper is organized as follows. The mathematical for-
mulation of the STOPTW is presented in Section 2. The Hybrid Heuristic
structure is detailed in Section 3. Computational tests carried out on the meth-
ods proposed in this paper are described in Section 4. Finally, a conclusion and
some perspectives are given in Section 5.

2. Problem description and mathematical formulation

The STOPTW is modeled using a directed graph G = (V,A) where V =
{0, 1, . . . , n+1} is the set of vertices and A = {(i, j) : i, j ∈ V, i 6= j} is the set of
arcs. V − = {1, . . . , n} represents the set of assets whereas vertices 0 and n+ 1
represent the departure and the arrival depots, respectively. For convenience,
we define two other index sets, V d = {0, 1, . . . , n} and V a = {1, . . . , n, n + 1}.
A heterogeneous fleet of vehicles is available to protect the assets. |Q| types
of vehicles are considered with Pq available vehicles for each type q ∈ Q. A
scalar tijq is used to represent the travel time necessary for a vehicle of type
q ∈ Q to traverse arc (i, j) ∈ A. We assume that tiiq = ∞, i ∈ V −, q ∈ Q and
t0,n+1,q = 0, q ∈ Q.

Each asset i ∈ V − is associated with the following data:

• time window [oi, ci], where oi represents the earliest service start time and
ci the latest service start time.

• resource requirements vector ri =< ri1, ri2, . . . , ri|Q| >, where riq is the
number of vehicles per type q ∈ Q required by asset i.

• service duration ai, which is the time needed to protect asset i.

• profit pi that represents the value of asset i.

The decision variables used in the mathematical formulation are:
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• yi: binary decision variable, which takes the value of 1 if asset i ∈ V − is
protected; 0 otherwise.

• si: real decision variable in [oi, ci] associated with each asset i ∈ V −, at
which the service must start in order to protect asset i.

• zijq: binary decision variable, equal to 1 if the arc (i, j) ∈ A is traversed
by at least one vehicle of type q ∈ Q; 0 otherwise.

• xijq: integer decision variable, which indicates the number of vehicles of
type q ∈ Q traversing the arc (i, j) ∈ A.

The mathematical formulation of the STOPTW is as follows :

max

n∑
i=1

piyi (1)

∑
i∈V a

x0iq =
∑
j∈V d

xj,n+1,q = Pq ∀q ∈ Q (2)

∑
j∈V d

xjiq =
∑
h∈V a

xihq ∀q ∈ Q,∀i ∈ V − (3)

∑
j∈V d

xjiq = riqyi ∀q ∈ Q,∀i ∈ V − (4)

xijq ≤ Pqzijq ∀q ∈ Q,∀(i, j) ∈ A (5)

zijq ≤ xijq ∀q ∈ Q,∀(i, j) ∈ A (6)

si + tijq + ai − sj ≤M(1− zijq) ∀q ∈ Q,∀(i, j) ∈ A (7)

oi ≤ si ≤ ci ∀i ∈ V − (8)

xijq ∈ {0, 1, 2, . . . , Pq} ∀q ∈ Q,∀(i, j) ∈ A (9)

yi ∈ {0, 1} ∀i ∈ V − (10)

zijq ∈ {0, 1} ∀q ∈ Q,∀(i, j) ∈ A (11)

The objective function (1) is to maximize the total collected profit. Con-
straints (2) ensure that all the Pq available vehicles start from the departure
depot and end at the arrival depot. Constraints (3) impose that the number of
incoming and outgoing vehicles are the same at each asset and for each vehicle
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type. Constraints (4) ensure that if a customer is served, then all of its require-
ments in terms of number of vehicles are met. Constraints (5) limit the capacity
of each arc of type q to at most Pq vehicles. Constraints (6) are coupling con-
straints between z and x variables. Constraints (7) guarantee the connectivity of
each tour whereas constraints (8) are the time window constraints. Constraints
(9),(10) and (11) are domain definitions.

Since the STOPTW covers the classical TOPTW as a special case, it is
known to be an NP-hard problem. This formulation only succeeds in solving
small-size instances of the problem. Using the commercial solver Cplex, in-
stances with at most 34 assets have been successfully solved in [27]. Due to this
observation, we propose the Hybrid Heuristic to tackle medium- and large-size
instances below.

3. Solution approach

The Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-
start local search metaheuristic introduced by Feo and Resende in [18]. In each
iteration, a new solution is generated using a greedy randomized heuristic. A
local search procedure is then applied in order to improve the current solution.
The best solution is recorded and updated each time a new best solution is
found.

The Iterated Local Search (ILS) is a heuristic scheme introduced by Lourenço
et al. in [23]. The basic idea behind this method is to construct a new solution
in each iteration using an embedded greedy heuristic, but instead of starting
each time from scratch or from a random solution, the embedded heuristic uses
the solution of the previous iteration as the starting solution after undergoing
a perturbation phase. The series of local optima produced by this process can
be seen as a single chain of solutions followed by the ILS.

In GRASP×ILS, the local search phase in GRASP is replaced by the ILS in
order to diversify the search and cover a larger search space. GRASP×ILS was
successfully applied to many vehicle routing problems such as, the Workforce
Scheduling and Routing Problems [31], the Traveling Repairman Problem with
Profits [5], the Periodic VRP with Time Windows [24], and the VRP with
Synchronization and Precedence Constraints [21]. In this section, we present
our GRASP×ILS global framework to solve the STOPTW. We note that in
addition to the ILS, a Variable Neighborhood Descent (VND) search procedure
is also embedded inside GRASP and always performed after the ILS. In our
case, the ILS incorporates an adaptive candidate list-based insertion (see Section
3.2), whereas the VND combines several local search operators in addition to
the candidate list-based insertion and aims at improving both, the travel times
of routes and the total collected profit (see Section 3.3).

3.1. General flow

The GRASP×ILS metaheuristic is outlined in Algorithm 1. The outer loop
describes the structure of the GRASP in which IterMaxG initial solutions are
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generated from scratch using an adaptive candidate list-based insertion. Each
initial solution S is then improved using an iterative local search ILS (lines 8-21).
The ILS incorporates a perturbation phase (line 12) after which a repair phase
is performed using the adaptive candidate list-based insertion. Sbest is updated
every time a new best solution is found (line 15). The process is completed
after IterMax iterations without improvement. The solution produced by the
ILS is improved by the VND and then stored in a pool of solutions Spool (lines
22-23). A post-optimization phase consists in constructing a pool of routes P
from Spool (line 24) and then solving a side-constrained set covering problem
(line 25) in order to extract the best solution. A detailed description is given in
Section 3.4.

A suitable perturbation technique is necessary for the ILS in order to improve
the quality of its solutions. To do that, the algorithm randomly selects a number
of assets (comprised between 1 and dmax) in each iteration of the ILS and
removes them from the current solution. The perturbation parameter dmax
is initialized at 3 and incremented after each iteration without improvement
(line 20). Once a new best solution is found, the perturbation parameter is
reset to 3 (line 17). The number of assets to remove is important for the overall
performance of the heuristic. When it has small values, it allows the ILS to
explore the close neighborhood of the passed solution. On the other hand,
when it has a large value, it allows the ILS to escape from local optima.

3.2. Adaptive candidate list-based insertion

The main component of ILS is the insertion algorithm. This algorithm starts
from an initial solution, which can be empty, and then adds unrouted assets one-
by-one. The insertion process stops when all the assets are inserted or no more
insertions are possible. Before starting the insertion process, the unrouted assets
are first sorted according to non-decreasing values of what we call the insertion
criterion. This criterion takes the following factors into consideration:

• The profit. Since the objective function is to maximize the collected profit,
this criterion favors the assets with higher values of profit to be inserted.

• The width of time windows. Intuitively, assets with large time windows
are probably more flexible to insert. Thus, assets with tight time windows
have the priority to be inserted first in the solution.

• The number of required resources. It might be more difficult to find enough
feasible positions for assets with a large number of resource requirements.
It is therefore more interesting to insert them during the early stages.

It is noteworthy to mention that it is more interesting to evaluate these
factors at the same scale size. We therefore propose to normalize each factor
by its maximum possible value so that all the factors in the criterion have their
values within the interval [0, 1]. To do this, let tmax be the width of the largest
time window, pmax be the highest profit among all the assets, and rmax be the
maximum number of vehicles required by the assets.
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Algorithm 1: Hybrid Heuristic algorithm

1 Sbest ← ∅
2 for (i = 1; i ≤ IterMaxG; i+ +) do
3 (α, β, γ)← (0.5, 0.5, 0.5)
4 S ← ∅
5 (S, α, β, γ)← AdaptiveInsertion(S, α, β, γ) (see Section 3.2)
6 SILS ← S
7 Spool ← Spool ∪ {S}
8 Iter ← 0
9 dmax ← 3

10 while Iter < IterMax do
11 d← U(1, dmax)
12 Remove d assets from S
13 Update S
14 (S, α, β, γ)← AdaptiveInsertion(S, α, β, γ) (see Section 3.2)
15 if (Profit(S) > Profit(SILS)) then
16 SILS ← S
17 dmax ← 3
18 Iter ← 0

19 else
20 dmax ← dmax + 1
21 Iter ← Iter + 1

22 SV ND ← V ariableNeighborhoodDescent(SILS) (see Section 3.3)
23 Spool ← Spool ∪ {SV ND}
24 if (Profit(SV ND) > Profit(Sbest)) then
25 Sbest ← SV ND

26 P ← InitPool(Spool) (see Section 3.4)
27 Sc ← setCover(P) (see Section 3.4)
28 if (Profit(Sc) > Profit(Sbest)) then
29 Sbest ← Sc

30 return Sbest

The insertion criterion is therefore calculated for each asset as follows:

Cri(α, β, γ) =
( ci−oitmax

)β

( pi
pmax

)α( |ri|rmax
)γ

(12)

As shown in Equation (12), the three factors are weighted using the param-
eters α, β and γ. These parameters are adjusted through the solution process
in order to control the relative importance of different factors, and, hence, allow
the insertion heuristic to cover a large part of the search space [9]. Moreover,
several combinations of (α,β,γ) are separately generated at each iteration of ILS
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Figure 1: Cross-synchronization situation

in order to boost the convergence of the heuristic. The process used to generate
the weights is described as follows: the initial values of α, β and γ are set to
0.5. Six functions fl, l ∈ {1, . . . , 6} are then used to determine six new combi-
nations of (α,β,γ) at each iteration. In the first four functions fl, l ∈ {1, . . . , 4},
the value of α is set to 1, whereas the values of β and γ in the previous execu-
tion are slightly modified within the interval [0, 1]. They are either increased or
decreased by steps of 0.1. This results in four different combinations of (β,γ).
In the fifth function f5, β and γ are randomly generated using a uniform dis-
tribution in the interval [0, 1[, while α is set to 1. Parameter α is always set
to 1 in order to favors the insertion of assets with higher profits, since the aim
of solving the STOPTW is to maximize the total collected profit. However, we
consider a last function where all the parameters are randomly generated within
[0, 1[. At the end of each iteration of the ILS, the combination that led to the
solution with the best collected profit is used as a basis for the next iteration.

In order to accelerate the insertion process and avoid non-feasible moves, we
present the following two mechanisms to deal with issues related to synchro-
nization constraints and time windows.

3.2.1. Preventing cross-sychronization

A key characteristic in the STOPTW is that the routes are interdependent
and, consequently, any update needs to be propagated through all the routes
of the solution after each insertion or partial destruction. However, the prop-
agation may loop infinitely if cross-synchronization is not prohibited. Without
loss of generality, given two arbitrary assets i and j that require two vehicles of
exactly the same types, a situation of cross-synchronization occurs when a first
vehicle visits asset j before i, while a second vehicle visits asset i before j. An
example of a cross-synchronization situation is illustrated by Figure 1. To avoid
such situations, we proceed in a way similar to that of Afifi et al. [1].

Let us consider an auxiliary graph that we refer to as the precedence graph
H = (V −, X), associated with a feasible solution S, where V − has the same
set of nodes as G and X is the arc set. X is first initialized with a set of
precedence relations based on the arcs that link between any successive visits
in S, i.e. if asset j is visited immediately after asset i ∈ V − in a given route
Rk ∈ R, a precedence relation (an arc) from asset i to asset j is added to
X. The precedence relations are then propagated beyond immediate successors
using the transitive closure [2].
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The construction of the precedence graph from scratch is performed by
launching a depth-first search from each node in V −, yielding a time complexity
of O(n(n+ E)), where E is an upper bound on the number of arcs in H, with

a worst case value of less than n(n−1)
2 . As a result, for each asset i ∈ V −, we

obtain a set Γ+(i) that defines the set of successors in H.
Hence, in order to check the feasibility of the insertion of a visit of a given

asset x between two visits of assets i and j in an arbitrary route Rk ∈ R, it is
sufficient to verify that i /∈ Γ+(x) and x /∈ Γ+(j). It should be mentioned that
this test is only performed before the insertion of visits of assets that require
multiple vehicles.

Once the transitive closure of H is completed along with the successors lists
Γ+(i), i ∈ V −, a matrix representation Ψ is constructed in O(n2) to allow a
constant time access to precedence relations. A precedence relation from asset
i to asset j is simply represented in Ψ by setting Ψ[i][j] = 1. As a result, using
Ψ, the feasibility test is performed in a constant time.

The construction of the transitive closure of H and its matrix representation
Ψ from scratch is performed after each partial destruction. However, only an
update of Ψ is needed after the insertion of a new visit. The update is performed
as follows. Let us consider the insertion of a visit of asset x ∈ V − in a given
route after a visit of asset i and before a visit of asset j. The update of Ψ is
as follows. The values of Ψ[i][x] and Ψ[x][j] are immediately set to 1 since i
precedes x and x precedes j. Any asset h ∈ V −, that is preceded by j, must
now be preceded by x. Thus, if Ψ[j][h] = 1, we set the value of Ψ[x][h] to 1.
Similarly, any asset l ∈ V −, that precedes i, must now precede x. Thus, if
Ψ[l][i] = 1, then Ψ[l][x] is also set to 1. Now, for any asset l ∈ V − that precedes
x, and any asset h ∈ V − that is preceded by j, l must now precede h. As a
result, if Ψ[l][x] = 1 and Ψ[j][h] = 1, the value of Ψ[l][h] is set to 1. Similarly,
for any asset l ∈ V − that precedes i, and any for asset h ∈ V − that is preceded
by x, l must now precede h. As a result, if Ψ[l][i] = 1 and Ψ[x][h] = 1, the value
of Ψ[l][h] is set to 1.

As a result, the update of the adjacency matrix Ψ after each insertion is
performed in O(n2) time complexity.

3.2.2. Time-window feasibility check

Time window feasibility check is a frequent operation performed several
times before each insertion. An efficient way to verify the feasibility in a con-
stant time is provided in Vansteenwegen et al. [30] for the TOPTW. In Afifi et
al. [1], the authors propose a generalization of that approach to include variants
of VRPTW with synchronization. The authors propose to record some useful
information in data structures and update them after each insertion or partial
destruction. An assumption is made that no cross-synchronization situations
exist in the current solution S.

Before proceeding further, let us first define a feasible solution S as a set of
routes R = (R1, R2, ..., R|R|) performed by distinct vehicles. Each route Rk ∈ R
is an ordered list of visits starting from the departure depot and ending at the
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arrival depot. We denote the pth asset visited in route Rk by Rk(p). We also
denote the set of routes that visit the asset i ∈ V − by Ri ⊆ R.

Following are useful notations:

• Stri is the service starting time of i ∈ V . Str0 is set to 0.

• Maxshifti is the maximal delay allowed for the service of i ∈ V . Maxshiftn+1

is set to +∞.

• Maxshiftki is the maximal delay allowed for the service of i in route
Rk ∈ R and regardless of the synchronization with the other visits of i in
other routes. Note that Maxshiftkn+1 is set to +∞, k : Rk ∈ R.

• Arrki is the arrival time at asset i in route Rk ∈ R.

• Waitki is the waiting time at asset i in route Rk ∈ R. Waitkn+1 is set to
0, k : Rk ∈ R.

Due to synchronization constraints, the starting time service should be de-
layed so that all the assigned vehicles are present at the asset location. It follows
that:

Stri = max{oi, max
k:Rk∈Ri

{Arrki }} i ∈ V − (13)

In accordance, the waiting time at asset i ∈ V − in route Rk ∈ Ri is:

Waitki = Stri −Arrki , k : Rk ∈ Ri (14)

In order to calculate the Maxshifti at asset i ∈ V −, we first compute
different Maxshiftki for each route Rk ∈ Ri :

MaxshiftkRk(p)=i
= min{ci−Stri,WaitkRk(p+1)+MaxshiftRk(p+1)} k : Rk ∈ Ri

(15)
Hence, the value of Maxshifti is calculated as follows:

Maxshifti = min
k:Rk∈Ri

{Maxshiftki } (16)

On the other hand, if a visit of an asset x is inserted in route Rk ∈ R between
visits at positions p and p+ 1, the generated shift (Shiftk,px ) is calculated as:

Shiftk,px = tRk(p)x +Waitkx + ax + tx,Rk(p+1) − tRk(p),Rk(p+1) (17)

Hence, the insertion of a visit of an asset x between positions p and p+ 1 is
feasible in terms of time windows if:

StrRk(p)+aRk(p)+tRk(p)x ≤ cx and Shiftk,p+1
x ≤WaitkRk(p+1)+MaxshiftRk(p+1).

(18)
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We note that computing service starting times and maximum delays of a
solution S is equivalent to computing the longest path in an acyclic graph.
Basically, this procedure consists of two phases: a forward and a backward pass.
The forward pass is performed to compute the earliest starting times Stri at
each node, whereas the backward pass is used to calculate the maximum delays
MaxShifti. Hence, the complexity of updating this information is O(n + E),
while the time-window feasibility test is performed in a constant time.

3.2.3. Candidate list-based insertion algorithm

The candidate list-based insertion is described in Algorithm 2. It starts by
sorting the unrouted assets in non-decreasing order of the criterion presented
by the Equation 12 (line 1). In each iteration of the insertion process (line 3),
the first available asset in the candidate list is selected, and for each required
type of vehicles, a list of potential insertion positions are computed and stored
in ∆ (line 9). The algorithm then randomly selects one position and checks
its feasibility. First, it checks for the cross-synchronization feasibility (line 15).
We note that this test is not performed when trying to insert the first visit of
an asset in the current solution since the problem of cross-synchronization only
occurs with the presence of two or more visits. The second test is the time-
windows feasibility check (line 16). If the position does not satisfy one of the
feasibility tests, it is removed from ∆ (line 22). This process is repeated until
a feasible position is found, or the set of potential positions ∆ is empty. If a
feasible position is found, the insertion of the visit is performed (line 17) and
the solution undergoes an update (line 18) in order to add the new precedence
relations in the precedence graph as well as the computation of new service
start times and maximum delays associated with each asset in the solution.
This process is reiterated as many times as the number of required visits.

If the requirements of a given asset are not fully satisfied at the end, all the
visits of that asset are completely removed from the solution (lines 27-29) and
the solution S undergoes an update in order to remove the irrelevant precedence
relations and to recompute service start times and maximum delays as well. The
whole process of insertion of assets is reiterated until all the candidates in σ are
tested.

3.3. Variable Neighborhood Descent

The adaptive candidate list-based insertion operator and its sorting criterion
allow our method to cover a large part of the search space. However, the sorting
criterion overlook a key performance parameter, which is the travel time induced
by insertions. This choice is justified by computational time burden when con-
structing of the candidate list, since the insertion cost depends on the insertion
position, which is a priori unknown. On the contrary, the profit, the width
of time windows and the resource requirements are all known beforehand. The
Variable Neighborhood Descent (VND) described hereafter is precisely proposed
in order to cope with this drawback.
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Algorithm 2: List-based insertion

Input: Solution S, parameters (α,β,γ)
1 σ ← Sort unrouted assets to non-decreasing values of Cri(α, β, γ) (See

formula (12))
2 insert← True
3 while insert and σ 6= ∅ do
4 insert← False
5 for i = 1 to |σ| do
6 kmax ← |rσi

|
7 k ← 0
8 for q = 1 to |Q| do
9 ∆← list of all positions in routes of type q ∈ Q of S

10 cpt← 1
11 while cpt ≤ rσiq do
12 foundPos← False
13 while foundPos = False and ∆ 6= ∅ do
14 Select a random position (q, r, p) ∈ ∆ // r : a route

of S of type q ∈ Q, p : position in r
15 if k = 0 or (q, r, p) is cross-synchro-feasible for σi

then
16 if (q, r, p) is time-window-feasible for σi then
17 Insert σi in position (q, r, p)
18 Update S
19 foundPos← True
20 cpt← cpt+ 1
21 k ← k + 1

22 ∆← ∆\{(q, r, p)}
23 if foundPos = False then
24 break // no feasible position in ∆

25 if cpt ≤ rσiq then
26 break // requirements of type q are not fully

satisfied

27 if (k < kmax) then
28 Remove all visits of σi from S
29 Update S

30 else insert← True

31 return S

Several local search operators were implemented and incorporated into the
VND search procedure. Two sets of neighborhoods are considered. The first set
includes operators that aim at reducing the travel times, which are:
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1. 2-opt* — interchanges the tails between two routes

2. relocate — relocates one visit to another route

If the two first operators succeed in reducing the travel times of the so-
lution, this may create room to insert profitable assets into the solution, and
consequently, improving the total profit. The second set of operators are :

1. replacement — exchanges routed assets with unrouted assets, only if it
improves the total profit

2. candidate list-based insertion — described earlier

Seeking efficiency, the previously described operators (relocate and replace-
ment) are implemented with a reduced-size neighborhood. Due to the syn-
chronization constraints, checking the feasibility of some moves in the original
version of these operators requires first removing and then inserting subsets of
assets. This yields a O(n2) time complexity in order to check the feasibility of
each move. In our case, we only consider the moves for which the feasibility
can be checked in a constant time. Regarding the replacement operator, the
reduced neighborhood is described as follows. Let us consider the replacement
of asset u by an unrouted asset v. Such a move is considered only if pv > pu and
ruq ≥ rvq ∀q ∈ Q. For the relocate operator, we only consider assets with one
required visit and relocation to a different route other than the current one. It
is also noteworthy to mention that for the neighborhoods 2-opt* and candidate
list-based insertion, a feasibility check is already performed in O(1) for all the
moves.

Algorithm 3 describes the VND in detail. The set N l = {N l
1, N

l
2} contains

replacement (N l
1) and relocate (N l

2) operators, whereas the set Np = {Np
1 , N

p
2 }

contains 2-opt* (Np
1 ) and candidate list-based insertion (Np

2 ) operators. The
first level of VND (lines 6-13) tries to improve the travel times, and the second
level (lines 14-22) focuses on improving the profit. Neighborhoods are sequen-
tially applied one-by-one at each level. Each level of VND is iteratively executed
until no neighborhood succeeds in improving the solution. In addition, if the
second level neighborhoods succeed in improving the profit, the whole VND
starts a new iteration, otherwise, the algorithm is terminated.

3.4. The set covering problem

As described earlier, only local optima found throughout the search pro-
cess are temporarily saved, and then rejected as soon as a new best solution
is found. Those rejected solutions, despite being sub-optimal, may incorporate
some good individual routes. Moreover, individual routes may happen to be
promising if combined with routes from other solutions and can yield new im-
proved solutions. For that purpose, we propose a route recombination procedure
as a post-optimization phase in order to obtain the best feasible solution.

During the search process, solutions produced by GRASP×ILS combined
with VND are stored in a set Spool. At the end, single routes are extracted from
Spool and saved in a set of pools {T q|q ∈ Q}, where T q = {T q1 , T

q
2 , . . . , T

q
|Tq|}.
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Algorithm 3: Variable Neighborhood Descent

Input: Solution S
1 k1max ← |N l|
2 k2max ← |Np|
3 impr ← True
4 while impr = True do
5 impr ← False
6 imprTravelT ime← True
7 while imprTravelT ime = True do
8 imprTravelT ime← False
9 for k1 = 1 to k1max do

10 S′ ← N l
k1(S)

11 if TravelT ime(S′) < TravelT ime(S) then
12 S ← S′

13 imprTravelT ime← True

14 imprProfit← True
15 while imprProfit = True do
16 imprProfit← False
17 for k2 = 1 to k2max do
18 S′ ← Np

k2(S)
19 if Profit(S′) > Profit(S) then
20 S ← S′

21 imprProfit← True
22 impr ← True

23 return S

The route recombination phase consists in solving a modified set covering prob-
lem (SCP) over {T q|q ∈ Q} in order to extract a combination of routes that
defines the best possible solution. In the following, we propose a mixed inte-
ger programming (MIP) formulation to solve the SCP. Let us first introduce
some necessary notations and define the decision variables. In addition to the
variables y and s introduced in Section 2, we use a binary decision variable
θqk, q ∈ Q, 1 ≤ k ≤ |T q| to indicate whether a route T qk is selected or not in the
solution found by the solver.

We denote the asset immediately visited after the node i ∈ V d in route T qk
by γ+qk(i) = {j}, j ∈ V −. In the case where node i is the last visited node, or it

is not visited at all in T qk , γ+qk(i) is set to empty set.
We also define the set of matrices {Aq|q ∈ Q} as follows:

Aq = (aqik) with aqik =

{
1 if asset i ∈ T qk
0 otherwise

The mathematical formulation, [SCP1], is as follows:
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[SCP1] max
∑
i∈V −

piyi (19)

∑
k:T q

k∈T q

aqikθ
q
k ≥ riqyi ∀q ∈ Q,∀i ∈ V

− (20)

∑
k:T q

k∈T q

θqk ≤ Pq ∀q ∈ Q (21)

si + tijq + ai − sj ≤M(1− θqk)

∀q ∈ Q,∀k : T qk ∈ T
q,∀i ∈ T qk , j ∈ γ

+
qk(i) (22)

t0iq − si ≤M(1− θqk) ∀q ∈ Q,∀k : T qk ∈ T
q, i ∈ γ+qk(0) (23)

oi ≤ si ≤ ci ∀i ∈ V − (24)

yi ∈ {0, 1} ∀i ∈ V − (25)

θqk ∈ {0, 1} ∀q ∈ Q,∀ k, 1 ≤ k ≤ |T q| (26)

[SCP1] aims at maximizing the total collected profit (19) subject to the
set of constraints (20-24). Constraints (20) ensure the satisfaction of resource
requirements for assets, whereas constraints (21) impose an upper limit on the
number of vehicles.

Time constraints are initially verified by all the routes present in the pool.
However, the combination of different routes can cause a violation of time con-
straints, such as time windows, travel times and synchronization. To avoid such
issues, we introduce constraints (22) and (23) in which only one service starting
time decision variable si is used per asset i. In this way, we impose the condition
that the same asset i must be visited in the selected routes at the same time.
Moreover, a minimum travel time is imposed between any two consecutive visits
in selected routes. Constraints (22) and (23) are systematically deactivated if
the route is not selected. Finally, constraints (25-26) are domain definitions.

It is noteworthy to mention that in this formulation, due to the inequality
used in constraints (20), it is possible to visit assets a number of times more
than required, or even visit assets that do not belong to the solution found
by [SCP1]. The choice of a set covering-based formulation instead of a set
partitioning based on is motivated by the fact that the latter would be too
restrictive and may miss some good solutions. Indeed, the solution found must
undergo a reparation phase in order to get rid of the visits of non-selected assets
as well as extra visits from the selected routes.
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Another important drawback raised by this formulation is that travel time
constraints should be systematically respected between any successive visits in
the selected routes, including the visits related to assets that are not selected
in the final solution. This inconvenience tightens travel time constraints and
potentially prevents the solver from extracting promising solutions from the
pools of routes.

To deal with this drawback posed by [SCP1], we propose the following
formulation [SCP2] that makes it possible to skip the visits of non selected
assets. Let us first denote by Γ+

qk(i) the set of assets visited in route T qk after

visiting i ∈ V d. The new formulation is as follows.

[SCP2] (19), (20), (21), (24), (25), (26)

si + tijq + ai − sj ≤M(3− yi − yj − θqk)

∀q ∈ Q,∀k : T qk ∈ T
q,∀i ∈ V −, j ∈ Γ+

qk(i) (27)

t0iq − si ≤M(2− yi − θqk) ∀q ∈ Q,∀k : T qk ∈ T
q,∀i ∈ Γ+

qk(0) (28)

According to [SCP2], a minimum travel time is imposed between any two
consecutive visits of selected assets in the selected routes. Constraints (27) and
(28) are systematically deactivated if at least one of the assets i or j or the route
Tqk are not selected in the solution found by [SCP2]. Nevertheless, the solution
found by [SCP2] requires a cleaning phase in order to get rid of unnecessary
visits in the case where a given asset is visited often than required.

The pool size is a critical performance parameter. Adding all the feasible
routes to the pool may incur a long computational time. In our case, we impose
an upper limit on the size of the pool, which is a parameter of the algorithm
to be tuned. Furthermore, in order to diversify the pool and avoid duplicated
routes, we use a hash-based function. Two routes are considered as duplicates if
they are from two different solutions and have the same sequence of visits. It is
noteworthy to mention that it is possible that a given solution may incorporate
routes with exactly the same sequence of visits. This happens when the visited
assets all have similar requirements in terms of type and number of vehicles.
In this case, these routes are all inserted into the pool. In this way, we ensure
that the set covering formulation does not miss the best solution obtained by
GRASP×ILS so far. We also propose to accelerate our method by solving the
LP relaxation of the integer programming model. If the relaxation is no better
than the best solution already found, the resolution of the integer programming
model is skipped and computational efforts are saved. This situation is frequent
since the size of the pool is limited and the quality of the best solution is
closely dependent on the quality of the routes, which are exclusively generated
by GRASP×ILS and VND.

17



4. Computational tests

In this section, we investigate the performance of the Hybrid Heuristic
method. It was implemented using C++ and the STD library, whereas the
set covering formulation was solved using the IBM ILOG suite (Cplex 12.6
solver) through Concert Technology. The experimental tests were conducted on
a Linux server running Centos 5.4, equipped with an Intel Xeon E5420 with
2.66 GHz and 128 GB RAM.

4.1. Benchmark instances

Benchmark instances used in [27] to evaluate STOPTW methods were gen-
erated based on 60 instances initially proposed for the VRPTW in [19]. These
instances are divided into three classes according to the distribution of the as-
sets over an area of 140×140. The assets in the instances are located randomly
(R), in clusters (C) or a combination of both (RC). Each class pattern is divided
into two sub-classes (R100-R200, C100-C200 and RC100-RC200). Finally, ten
instances are derived from each combination of location and horizon patterns.
Time windows of the original instances were modified in order to simulate a
propagation of fire fronts across the area, whereas the requirements in terms of
vehicles were randomly generated and added as a vector of three components,
where each one corresponds to the number of vehicles of a given type (three
types of vehicles). Instances in the benchmark are all composed of 200 assets in
addition to the depot, and each instance was used to derive a second instance
by truncating the first 100 vertices. When solving these instances, two different
sets of vehicles are used for each size: SET1 = (6, 5, 4) and SET2 = (7, 6, 5) for
100-node instances; and SET1 = (9, 8, 7) and SET2 = (12, 11, 10) for 200-node
instances. As a result, the benchmark is composed of 240 instances, with 120
instances for each size (100 and 200).

4.2. Parameter settings

A key feature of our proposed method is the small number of parameters
that need to be tuned. Moreover, we adopt a general approach that consists in
choosing method parameters based on the parameters of the problem. In order
to fine tune different parameters, we used an automatic algorithm configuration
package, iRace software, introduced by Lopez-Ibanez et al. [22]. We selected
an arbitrary set of 24 benchmark instances and gave iRace a tuning budget of
2000 experiments. Four parameters are considered for tuning: the number of
iterations of GRASP IterMaxG, the number of iterations without improvement
of the ILS IterMax, the CPU time allocated for the set covering formulation,
and finally, the size of the pool S.

Starting with the ILS, the maximum number of iterations is already fixed
to n + λq, where q is the average number of vehicles per type calculated as

q =
∑

q∈Q Pq

|Q| , and λ is a weight parameter determining the influence of q on the

value of IterMax. Regarding GRASP, which is a set of independent iterations
of the ILS, the stopping criterion is set to the average number of vehicles per

18



type IterMaxG = q/µ, where µ is determined after tuning. Regarding the set
covering problem formulation, two parameters were considered: the size of the
pool (S) and the time limit (SCPtime). The time limit SCPtime is equal to nζ,
where ζ is a constant set to be tuned. With the help of the irace package, we
suggest the parameter settings depicted in Table 1.

Table 1: Parameter settings for the Hybrid Heuristic

Parameter λ µ |S| ζ

Value 0.25 0.5 200 0.035

4.3. Sensitivity analysis

In this section, we present the sensitivity analysis of the different components
proposed in this paper. The aim is to investigate the relevance of incorporat-
ing the VND and the set covering formulation within GRASP×ILS. Different
configurations were considered and run a single time on all the benchmark in-
stances. To clearly highlight the outcome of each component in this paper, we
used the same starting seed per instance for all the configurations. The results
of each configuration are aggregated and organized by classes (C, R and RC)
of the benchmark instances, where

∑
Obj and

∑
T (s), denote the sum of the

total collected profit and the sum of computational times, respectively.

4.3.1. Comparison between the set covering formulations

Table 2 shows a comparison between the set covering formulations pre-
sented in Section 3.4. For this purpose, three configurations are considered:
GRASP×ILS, GRASP×ILS + SCP1 and GRASP×ILS + SCP2. Table 2 clearly
demonstrates the performance achieved by the second SCP formulation, either
in terms of objective value or computational time. Regarding the objective
value, SCP2 outperforms SCP1. This is justified by the fact that SCP1 sys-
tematically imposes all the visits in the selected route of the optimal solution,
which substantially reduces the solution space, and hence, potentially missing
solutions with better objective value. Interestingly, SCP2 also achieved better
computational times than SCP1, with a total time of 8983.55 s compared to
11655.82 s.

4.3.2. Analysis of components

As a result of the calculations made in the previous section, the second
formulation [SCP2] was chosen to be part of the Hybrid Heuristic. We now
investigate the impact of different configurations of our scheme. According
to Table 3, four configurations are considered: GRASP×ILS, GRASP×ILS +
SCP2, GRASP×ILS + VND and finally, GRASP×ILS + VND + SCP2. The
first configuration is used as a reference for the other ones. The results clearly
show the contribution of the VND and the post-optimization phase, denoted
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Table 2: Comparison between the two set covering formulations

Class
GRASP×ILS+SCP1 GRASP×ILS+SCP2∑
Obj

∑
T (s)

∑
Obj

∑
T (s)

C 153291 3345.51 153310 2679.18

R 159261 4013.73 159301 3121.47

RC 161714 4296.58 161739 3182.9∑
474266 11655.82 474350 8983.55

by SCP2 in Table 3. We begin with the post-optimization phase in the second
column, which improves the aggregated profit by roughly 1089 units compared
to GRASP×ILS, equivalent to an improvement of 0.23%. This improvement
comes at the expense of a substantial increase in computational time, reaching
8983.55 s compared 2374.96 s for GRASP×ILS. Interestingly, we notice in the
fourth column that the VND leads to a substantial improvement of the results,
with a gap of 2.06% compared to GRASP×ILS, along with a reasonable increase
in computational time, of about 4500 s, roughly half of the computational time
of GRASP×ILS + SCP2. The reason for this is that the SCP2 includes time-
related side constraints that destroy the original set covering structure. As
a result, MIP solvers struggle to solve the problem, even on a small number
of routes. Finally, the combination of the three components, depicted in the
last column, leads to the best results in terms of objective values, reaching
an improvement of 2.12% compared to GRASP×ILS. Regarding computational
time, the three-component configuration is better than GRASP×ILS+SCP2.
This is mainly due to the fact that the substantial improvement yielded by the
VND allows less room for the post-optimization phase to improve the objective
value, which often obtains an LP relaxation equal to the best solution already
found by GRASP×ILS+VND.

Table 3: Sensitivity analysis of the three components

Class
GRASP×ILS GRASP×ILS+SCP2 GRASP×ILS+VND GRASP×ILS+VND+SCP2∑
Obj

∑
T (s)

∑
Obj

∑
T (s)

∑
Obj

∑
T (s)

∑
Obj

∑
T (s)

C 152914 790.72 153310 2679.18 155462 1289.73 155622 2566.01

R 158959 769.33 159301 3121.47 162383 1544.4 162460 2816.63

RC 161388 814.91 161739 3182.9 165171 1673.53 165210 2266.34

SUM 473261 2374.96 474350 8983.55 483016 4507.66 483292 7648.98
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4.4. Performance comparison

In this section, we conduct experimental tests to evaluate the performance
of the proposed method. We compare the Hybrid Heuristic against to two
methods from the literature, namely, an ALNS method proposed in Roozbeh et
al. [27] and a mathheuristic approach known as the SDM approach, proposed
in Nuraiman [25]. To evaluate our method, we proceed in a way similar to
the one in [27]. We run our algorithm ten times on each instance and we
record the average computational time, the best objective value as well as the
average objective value of the ten runs. Since it is the same protocol, the
comparison between these two methods is straightforward. On the other hand,
the SDM approach as described in [25] is a deterministic method and is therefore
executed only once for each instance. Consequently, in order to guarantee a fair
comparison between the Hybrid Heuristic and SDM approach, we compare the
objective value obtained by the first run of our method to the objective value
of the SDM approach.

Tables 4-7 show a comparison between the three methods. The results are
grouped according to the sub-classes present in the benchmark instances. In
Tables 4-7, we denote the results of the first run of our method by Hyb-Heur1,
whereas the results of the ten runs are denoted by Hyb-Heur10. We provide the
following performance measurements for the different methods:

• P (%): the percentage of profit related to the protected assets achieved by
SDM and Hyb-Heur1.

• Pbest(%) : the best percentage of profit related to the protected assets
achieved by ALNS or Hyb-Heur10.

• T (s): computational times achieved by SDM and Hyb-Heur1.

• T (s): average computational times achieved by ALNS or Hyb-Heur10.

• Dev(%): the deviation of the average results from the best results achieved
by ALNS or Hyb-Heur10. It is calculated as follows:

Dev =
Pbest − P
Pbest

(29)

where P is the average percentage of profit related to the protected assets
achieved by ALNS or Hyb-Heur10.

• Gap(%): the last two columns of each table depict the improvement gap
achieved by the Hybrid Heuristic compared to the other two approaches.
The formula used to calculate the gap between the Hybrid Heuristic and
ALNS is :

GAP =
PHyb−Heur10best − PALNSbest

PALNSbest

. (30)

The gap between the Hybrid Heuristic and SDM is :

21



GAP =
PHyb−Heur1 − PSDM

PSDM
. (31)

A positive value of the GAP means that the Hybrid Heuristic outperforms
the other method.

Table 4: Comparison on 100-node instances - SET 1 with (6, 5, 4) vehicles

Class
ALNS SDM Hyb-Heur10 Hyb-heur1 GAP (%)

T (s) Pbest(%) Dev(%) T (s) P (%) T (s) Pbest(%) Dev(%) T (s) P (%) ALNS SDM

C100 138.47 61.84 2.77 95.45 65.09 9.21 70.20 1.02 8.42 69.19 13.52 6.29

C200 133.48 60.72 2.84 44.48 61.17 7.55 67.38 1.56 7.01 66.55 10.96 8.79

R100 134.47 62.50 2.14 44.30 63.68 7.74 70.49 1.47 7.50 69.86 12.79 9.69

R200 135.75 65.30 2.61 16.35 65.88 8.31 73.29 1.34 8.15 72.27 12.24 9.69

RC100 144.20 68.59 2.72 63.51 69.57 9.36 77.68 1.49 9.65 76.29 13.26 9.66

RC200 142.97 69.13 2.91 79.26 70.88 8.83 78.02 1.35 9.29 76.81 12.87 8.37

Mean 138.22 64.68 2.66 57.22 66.05 8.50 72.84 1.37 8.34 71.83 12.60 8.75

Table 5: Comparison on 100-node instances - SET 2 with (7, 6, 5) vehicles

Class
ALNS SDM Hyb-Heur10 Hyb-heur1 GAP (%)

T (s) Pbest(%) Dev(%) T (s) P (%) T (s) Pbest(%) Dev(%) T (s) P (%) ALNS SDM

C100 150.39 68.35 2.53 74.98 71.34 10.77 78.13 1.06 11.65 77.46 14.31 8.58

C200 143.92 66.58 2.65 43.03 68.23 9.23 74.54 1.36 8.79 73.54 11.95 7.79

R100 138.97 69.86 2.07 26.70 71.85 8.82 79.10 1.46 9.01 77.63 13.23 8.05

R200 144.65 71.38 2.31 21.09 73.61 8.97 81.45 1.41 8.57 80.64 14.12 9.55

RC100 149.33 74.70 2.64 49.90 77.27 10.34 84.89 1.15 10.41 83.81 13.64 8.46

RC200 146.90 74.71 2.17 48.13 79.02 10.11 85.79 1.35 9.30 84.80 14.84 7.31

Mean 145.69 70.93 2.39 43.97 73.55 9.71 80.65 1.30 9.62 79.65 13.68 8.29

Tables 4 and 5 report the results of 100-node instances. These results show
a clear dominance of the Hybrid Heuristic over the other methods both in terms
of objective value and computational time. For instance, the Hybrid Heuristic
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achieves an improvement gap of 12.6% compared to ALNS for (6, 5, 4) vehicles,
and a gap of 13.68% for (7, 8, 9) vehicles. Compared to the SDM approach,
the Hybrid Heuristic achieves an improvement gap of 8.75% and 8.29% for
the same sets of instances. Moreover, the Hybrid Heuristic demonstrates better
robustness than ALNS in terms of solution quality when executed several times,
with a deviation from the best solution of no more than 1.37% for SET1 and
1.3% for SET2, compared to 2.66% and 2.39% for ALNS. The Hybrid Heuristic
also achieves the best computational time, since it divides the computational
times of ALNS by a factor of more than 15, although they are tested on similar
machines. The Hybrid Heuristic also improves computational time compared
to the SDM by a factor of almost 5.6, going from 101.19 s to 8.98 s. Based
on Tables 4 and 5, we can observe that increasing the number of vehicles from
SET1 to SET2 does not have a substantial impact on computational time or
the deviation from the best solution of ALNS and the Hybrid Heuristic, and
leads to a slight reduction in computational time of the SDM, decreasing from
57.22 s to 43.97 s. Regarding the objective value, all three methods show a
substantial improvement compared to the first set of vehicles, with an increase
of 6.25% by ALNS, 7.5% by SDM and 7.8% by the Hybrid Heuristic.

Table 6: Comparison on 200-node instances - SET 1 with (9, 8, 7) vehicles

Class
ALNS SDM Hyb-Heur10 hyb-heur1 GAP (%)

T (s) Pbest(%) Dev(%) T (s) P (%) T (s) Pbest(%) Dev(%) T (s) P (%) ALNS SDM

C100 589.60 57.68 2.68 548.47 63.71 60.80 67.54 1.52 59.50 66.26 17.09 4

C200 542.64 52.60 2.93 187.14 58.89 51.73 63.16 1.29 52.16 62.47 20.07 6.08

R100 539.19 59.60 2.30 129.45 63.56 57.31 70.36 1.25 57.80 69.22 18.05 8.90

R200 542.78 59.27 2.56 154.69 62.75 58.36 70.16 1.09 57.94 69.32 18.39 10.47

RC100 561.80 62.18 2.06 373.47 67.10 66.54 73.84 0.96 61.30 72.90 18.76 8.65

RC200 570.06 62.66 1.93 349.85 67.86 60.49 74.55 1.40 69.46 73.81 18.98 8.77

Mean 557.68 59 2.41 290.51 63.98 59.21 69.94 1.25 59.69 69 18.56 7.81

Tables 6 and 7 report the results for 200-node instances while considering
two sets of vehicles, (9, 8, 7) and (12, 11, 10). In general, these results confirm
the good performance of the Hybrid Heuristic demonstrated on medium-size in-
stances by outperforming the two other methods in terms of objective value and
computational time. For instance, the Hybrid Heuristic achieves an improve-
ment gap of 18.56% and 19.62% over ALNS on (9, 8, 7)-vehicle and (12, 11, 10)-
vehicle instances, respectively. Regarding SDM, our method improves the re-
sults by 7.81% and 7.79% for the same sets of instances. The Hybrid Heuristic
also improves the deviation percentage on 200-node instances compared to 100-
node instances since it reduces it to 1.25% for (9, 8, 7)-vehicle instances and to
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Table 7: Comparison on 200-node instances - SET 2 with (12, 11, 10) vehicles

Class
ALNS SDM Hyb-Heur10 hyb-heur1 GAP (%)

T (s) Pbest(%) Dev(%) T (s) P (%) T (s) Pbest(%) Dev(%) T (s) P (%) ALNS SDM

C100 619.33 66.57 2.19 86.40 73.51 88.21 79.01 0.92 79.79 78.47 18.68 6.74

C200 566.36 61.46 1.81 79.50 68.78 74.93 74.77 1.04 74.19 74.14 21.67 7.79

R100 585.49 70.29 1.78 59.92 77.27 81.58 83.75 0.88 82.81 83.06 19.15 7.49

R200 589.75 70.17 2.04 77.79 76.23 80.85 83.60 0.99 85.16 82.90 19.13 8.76

RC100 607.04 72.46 1.72 258.62 80.30 92.83 87.05 0.94 93.90 86.48 20.13 7.70

RC200 633.17 73.58 1.95 175.35 80.24 84.14 87.50 0.99 89.25 86.84 18.93 8.22

Mean 600.19 69.09 1.92 122.93 76.05 83.76 82.61 0.96 84.18 81.98 19.62 7.79

less than 1% on the second set ((12, 11, 10)-vehicle instances). For the same set
of instances, ALNS still has a deviation percentage of around 2%.

The good performance of our method goes along with an increase in com-
putational time, with an average of 59.21 s for (9, 8, 7) vehicles and 83.76 s for
(12, 11, 10) vehicles reported in the Hyb-Heur10 column, i.e., an overall total of
71.49 s compared to 9.10 s for 100-node instances. This is mainly caused by the
combinatorial explosion and the algorithm parameters since they are based on
the parameters of the problem. We notice also a substantial increase in com-
putational time of ALNS, by reaching an average of 557.68 s and 600.19 s for
SET1 and SET2, respectively, i.e., a factor of more than 4 compared to 100-node
instances, and almost 8.5 times more than the computational times reported by
our method for 200-node instances. Regarding SDM, the computational times
achieved by the method are between those of ALNS and the Hybrid Heuristic,
reaching an average of 206.22 s on 200-node instances. Interestingly, compu-
tational times of SDM remarkably decrease from 290.51 s for (9, 7, 6)-vehicle
instances to 122.91 s for (12, 11, 10)-vehicle instances.

5. Conclusion and perspectives

In this paper, we focused on a new variant of the Team Orienteering Prob-
lem, referred to the Synchronized Team Orienteering Problem with Time Win-
dows. This problem was originally proposed in order to model and solve asset
protection problems during out-of-control wildfires. To solve this problem, we
proposed the Hybrid Heuristic method that combines a GRASP×ILS meta-
heuristic and a set covering formulation as a post-optimization phase. Interest-
ingly, the GRASP×ILS incorporates an adaptive candidate list-based insertion
and a Variable Descent Neighborhood search heuristic. Intermediate local op-
tima solutions found by the GRASP×ILS are temporarily stored in a pool. In
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the post-optimization phase, a pool of routes is constructed from the pool of
solutions and a set covering formulation is solved in order to improve the best
solution obtained so far. Detailed computational tests prove, on the one hand,
the relevance of different components of the Hybrid Heuristic, and on the other,
the efficiency of our approach when compared to the literature. This study
paves the way for several research directions. The first one is the consideration
of additional criteria in the objective function, such as load balancing. This cri-
terion is relevant when we intend to equally distribute activities on protection
teams and prevent them from being overwhelmed. Another promising research
direction is the development of a branch-and-price method based on the set
covering formulation proposed in this paper.

Acknowledgements

The authors would like to thank the Hauts-de-France Region and the Euro-
pean Regional Development Fund (ERDF) 2014/2020 for havig funded of this
work. This study was carried out within the framework of GEOSAFE (Geospa-
tial Based Environment For Optimization Systems Addressing Fire Emergen-
cies) and of Labex MS2T, funded through the program, ”Investments for the
Future”, managed by the French National Research Agency (Reference ANR-
11-IDEX-0004-02).

References

[1] Sohaib Afifi, Duc-Cuong Dang, and Aziz Moukrim. Heuristic solutions for
the vehicle routing problem with time windows and synchronized visits.
Optimization Letters, 10(3):511–525, 2016.

[2] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive
reduction of a directed graph. SIAM Journal on Computing, 1(2):131–137,
1972.

[3] Claudia Archetti, Dominique Feillet, Alain Hertz, and Maria Grazia Sper-
anza. The capacitated team orienteering and profitable tour problems.
Journal of the Operational Research Society, 60(6):831–842, 2009.

[4] Claudia Archetti, Alain Hertz, and Maria Grazia Speranza. Metaheuristics
for the team orienteering problem. Journal of Heuristics, 13(1):49–76, 2007.

[5] Mustafa Avci and Mualla Gonca Avci. A grasp with iterated local search
for the traveling repairman problem with profits. Computers & Industrial
Engineering, 113:323–332, 2017.

[6] Ilaria Baffo, Pasquale Carotenuto, and Stefania Rondine. An orienteering-
based approach to manage emergency situation. Transportation research
procedia, 22:297–304, 2017.

25



[7] Burcu Balcik. Site selection and vehicle routing for post-disaster
rapid needs assessment. Transportation research part E: logistics and
transportation review, 101:30–58, 2017.
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[22] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres,
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