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Abstract

Wildfires are a natural phenomenon that regularly occurs in many terrestrial ecosystems. Due to global warming,
the rate and the span of wildfires have remarkably increased during the last years, causing important economic
losses and human casualties. Several initiatives have been undertaken in the last years in order to apply opera-
tions research tools to help firefighting teams schedule and optimize their protection activities when dealing with
wildfires.
In this context, a recent variant of the Team Orienteering Problem, referred to as the Asset Protection Problem,
was proposed in [30]. In this problem, firefighting teams provide a protective service to a set of assets endangered
by wildfires. These activities can be performed by a heterogeneous fleet of vehicles and occur within specific time
intervals estimated on the basis of fire fronts progression. This problem incorporates three additional constraints:
time windows, synchronized visits and compatibility constraints between vehicles and assets.
In this paper, we propose a hybrid approach that combines a Greedy Randomized Adaptive Search Procedure
coupled with an Iterated Local Search (GRASP×ILS) and a post-optimization phase based on a set covering
formulation. Interestingly, GRASP×ILS incorporates an adaptive candidate list-based insertion heuristic and a
Variable Neighborhood Descent search procedure. Detailed computational tests were carried out on benchmark
instances from the literature. The results show that our method outperforms the other methods in the literature,
since it improves all the best known solutions on medium- and large-size instances, while maintaining shorter
computational times.
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1. Introduction

In the last decade, wildfires have become a frequent phenomenon, causing major damage to private prop-
erty, community assets and human life. Many countries have recently witnessed the devastating impact
of wildfires on nature and human activities: Portugal (2017), Sweden (2018), Australia (2019-2020),
California (2020). Asset protection activities performed by Incident Management Teams (IMT) during
wildfires are therefore of crucial importance in order to minimize the risk of losing vital infrastructures.
However, several challenging tasks and difficulties complicate the working environment of IMT within
which critical and complex decisions must be made. Consequently, the application of operations research
methods, either exact or heuristic, can reinforce the management of wildfires in such hostile situations.

In this context, Van Der Merwe et al. [30] consider the case of an out-of-control wildfire spreading
across a landscape and threatening a number of assets like bridges, electrical substations, schools and
factories. Defensive activities carried out by IMT near assets before fire impact are important to reduce
the risk of losing them. Examples of defensive tasks include the removal of debris and combustible mate-
rials, wetting down buildings and putting out fires. Moreover, IMT activities should not be implemented
too early, or the intervention will be ineffective. For this purpose, fire progression can be estimated using
meteorological data and fire propagation models. Moreover, some assets may require the intervention
of several trucks and equipment with specific capabilities. These trucks should cooperate together in a
timely manner to carry out protection activities.

Van Der Merwe et al. [30] modeled this problem using a variant of the Team Orienteering Problem
(TOP) with additional constraints, namely, time windows, synchronized visits and compatibility con-
straints between vehicles and assets. They considered a fleet of heterogeneous vehicles available to visit
a number of strategic assets located over a geographical area. Each asset is associated with a time win-
dow within which the protection activities should start. An asset is also assigned a service time duration,
which represents the time necessary to perform the protection activities. Finally, each asset has resource
requirements that are expressed by the number and type of required vehicles. Due to these constraints,
protecting all the assets might be impossible. Hence, a value, referred to as profit, is associated with each
asset in order to distinguish between different assets according to their relative importance. In order to
collect a given profit, the associated asset must be visited by the required vehicles in a synchronized
manner, i.e., the visits performed by the vehicles should begin simultaneously within the corresponding
time window. Finally, the objective function of the problem aims at maximizing the amount of profit col-
lected. In the rest of the paper, we refer to this problem as the Synchronized Team Orienteering Problem
with Time Windows (STOPTW).

The TOP is a class of Vehicle Routing Problems (VRP) that was proven to be NP-Hard [13]. Extensive
researches have been conducted during the last decade to study the TOP and its variants. Several solution
approaches have been proposed. As exact approaches, Boussier et al. [11] introduced a column genera-
tion based approach for the TOP, whereas El Hajj et al. [17] proposed a cutting plane approach reinforced
by dominance properties and symmetry cuts. For the same problem, Bianchessi et al. [10] presented a
branch-and-cut method. Regarding other variants of the TOP, Archetti et al. [3] designed a generic col-
umn generation method for two problems: the Capacitated TOP (CTOP) and the Capacitated Profitable
Tour Problem (CPTP), while Yahiaoui et al. [34] proposed a cutting plane method coupled with pre-
processing procedures for the Clustered TOP. Several heuristic approaches have also been proposed for
the TOP and its variants. The first method for the TOP was proposed by Chao et al. [13]. Archetti et al.



[4] proposed a Tabu Search (TS) and two versions of Variable Neighborhood search (VNS). Dang et al.
[15] introduced a novel splitting procedure for giant tours embedded inside a PSO algorithm. Archetti
et al. [3] proposed two versions of TS and VNS for the CTOP, while Ben-Said et al. [9] proposed a
GRASP×ELS approach to the same problem. We refer the reader to [20] for a detailed survey on the
TOP.

Several variants of the TOP have been introduced in order to solve different issues related to dis-
aster management in general. Baffo et al. [6] proposed a variant of the TOP called the Multi-Origins
Capacitated Team Orienteering Problem. This variant has been used to model rescue operations during
emergency situations of persons suffering problems of mobility. Balcik [7] studied a problem called the
Selective Assessment Routing Problem (SARP) to address the rapid needs assessment decisions after
disasters. In this variant, sites are grouped into subsets called communities, where the sites belonging to
the same community share a common characteristic. A single site can have several characteristics, and,
can therefore be part of more than one community. The objective in this problem is to maximize the
minimum coverage of each community. The coverage of a given community is computed as the ratio of
the number of visited sites divided by the total number of sites of that community. A variant of SARP
with uncertain travel times has been proposed in [8]. The authors proposed a resolution approach based
on a robust optimization formulation with a co-axial box uncertainty set.

A major characteristic of the STOPTW is the temporal synchronization constraints. These constraints
are common between several variants of VRP proposed for different real life applications. Bredström and
Rönnqvist [12] studied a variant of VRP with synchronized visits in the context of home-care services.
The same problem was addressed by Parragh et al. [27] and used to solve real problems related to techni-
cians routing and scheduling problems. Crainic et al. [14] presented a VRP variant for city logistics that
includes, in addition to two-echelon network architecture and multi-trip routes, exact synchronization
constraints between vehicles of first and second echelons at the level of satellites. We refer to Drexl [16]
for a detailed survey on synchronization in vehicle routing problems.

Regarding the resolution approaches for the STOPTW, Van Der Merwe et al. [30] introduced a mixed
integer programming model for the problem, which was demonstrated on a realistic wildfire scenario in
Tasmania. The authors in [29] proposed an adaptive large neighborhood search heuristic (ALNS) for the
problem along with a new set of benchmark instances. A spatial decomposition math-heuristic (SDM)
resolution approach was recently proposed by Nuraiman et al. [26] for the same problem. This method
succeeded in substantially improving the best solution for all medium-size and large-size instances com-
pared with [29]. In the same vein, the authors in [31] developed a dynamic approach to reroute vehicles
during firefighting once disruptions occur. The method aims at maximizing the total value of protected
assets while minimizing the number of changes on rescue plans developed earlier.

In this paper, we propose the Hybrid Heuristic method composed of a Greedy Randomized Adaptive
Search Procedure (GRASP) coupled with an Iterated Local Search (ILS) and a set covering formula-
tion. GRASP×ILS incorporates an adaptive candidate list-based insertion and a Variable Neighborhood
Descent (VND) search procedure used to improve the solutions produced by the ILS. The set covering
problem formulation is a post-optimization phase used to extract the best solution from a pool of feasi-
ble routes previously populated by GRASP×ILS. Our method has several similarities with the iterative
three-component heuristic (I3CH) proposed in [22] for the TOPTW. However, the main difference be-
tween the two approaches is that in our case, the set covering problem is solved once at the end of the
algorithm, whereas in I3CH, the set cover is executed at the end of each iteration. This difference is mo-



tivated by the fact that our set covering formulation includes additional side constraints that considerably
increase the computational time burden if it is launched at each iteration of the GRASP×ILS.

The remainder of this paper is organized as follows. The mathematical formulation of the STOPTW
is presented in Section 2. The Hybrid Heuristic structure is detailed in Section 3. Computational tests
carried out on the methods proposed in this paper are described in Section 4. Finally, a conclusion and
some perspectives are given in Section 5.

2. Problem description and mathematical formulation

The STOPTW is modeled using a directed graph G = (V,A) where V = {0, 1, . . . , n+ 1} is the set of
vertices and A = {(i, j) : i, j ∈ V, i 6= j} is the set of arcs. V − = {1, . . . , n} represents the set of assets
whereas vertices 0 and n+1 represent the departure and the arrival depots, respectively. For convenience,
we define two other index sets, V d = {0, 1, . . . , n} and V a = {1, . . . , n, n+1}. A heterogeneous fleet of
vehicles is available to protect the assets. |Q| types of vehicles are considered with Pq available vehicles
for each type q ∈ Q. A scalar tijq is used to represent the travel time necessary for a vehicle of type
q ∈ Q to traverse arc (i, j) ∈ A. We assume that tiiq =∞, i ∈ V −, q ∈ Q and t0,n+1,q = 0, q ∈ Q.

Each asset i ∈ V − is associated with the following data:

• time window [oi, ci], where oi represents the earliest service start time and ci the latest service start
time.
• resource requirements vector ri =< ri1, ri2, . . . , ri|Q| >, where riq is the number of vehicles per type
q ∈ Q required by asset i.
• service duration ai, which is the time needed to protect asset i.
• profit pi that represents the value of asset i.

The decision variables used in the mathematical formulation are:

• yi: binary decision variable, which takes the value of 1 if asset i ∈ V − is protected; 0 otherwise.
• si: real decision variable in [oi, ci] associated with each asset i ∈ V −, at which the service must start

in order to protect asset i.
• zijq: binary decision variable, equal to 1 if the arc (i, j) ∈ A is traversed by at least one vehicle of

type q ∈ Q; 0 otherwise.
• xijq: integer decision variable, which indicates the number of vehicles of type q ∈ Q traversing the

arc (i, j) ∈ A.

The mathematical formulation of the STOPTW is as follows :

max

n∑
i=1

piyi (1)

∑
i∈V a

x0iq =
∑
j∈V d

xj,n+1,q = Pq ∀q ∈ Q (2)



∑
j∈V d

xjiq =
∑
h∈V a

xihq ∀q ∈ Q,∀i ∈ V − (3)

∑
j∈V d

xjiq = riqyi ∀q ∈ Q,∀i ∈ V − (4)

xijq ≤ Pqzijq ∀q ∈ Q,∀(i, j) ∈ A (5)

zijq ≤ xijq ∀q ∈ Q,∀(i, j) ∈ A (6)

si + tijq + ai − sj ≤M(1− zijq) ∀q ∈ Q,∀(i, j) ∈ A (7)

oi ≤ si ≤ ci ∀i ∈ V − (8)

xijq ∈ {0, 1, 2, . . . , Pq} ∀q ∈ Q,∀(i, j) ∈ A (9)

yi ∈ {0, 1} ∀i ∈ V − (10)

zijq ∈ {0, 1} ∀q ∈ Q,∀(i, j) ∈ A (11)

The objective function (1) is to maximize the total collected profit. Constraints (2) ensure that all the
Pq available vehicles start from the departure depot and end at the arrival depot. Constraints (3) impose
that the number of incoming and outgoing vehicles are the same at each asset and for each vehicle type.
Constraints (4) ensure that if a customer is served, then all of its requirements in terms of number of ve-
hicles are met. Constraints (5) limit the capacity of each arc of type q to at most Pq vehicles. Constraints
(6) are coupling constraints between z and x variables. Constraints (7) guarantee the connectivity of each
tour whereas constraints (8) are the time window constraints. Constraints (9),(10) and (11) are domain
definitions.

Since the STOPTW covers the classical TOPTW as a special case, it is known to be an NP-hard
problem. This formulation only succeeds in solving small-size instances of the problem. Using the com-



mercial solver Cplex, instances with at most 34 assets have been successfully solved in [29]. Due to this
observation, we propose the Hybrid Heuristic to tackle medium- and large-size instances below.

3. Solution approach

The Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start local search metaheuristic
introduced by Feo and Resende in [18]. In each iteration, a new solution is generated using a greedy
randomized heuristic. A local search procedure is then applied in order to improve the current solution.
The best solution is recorded and updated each time a new best solution is found.

The Iterated Local Search (ILS) is a heuristic scheme introduced by Lourenço et al. in [24]. The basic
idea behind this method is to construct a new solution in each iteration using an embedded greedy heuris-
tic, but instead of starting each time from scratch or from a random solution, the embedded heuristic uses
the solution of the previous iteration as the starting solution after undergoing a perturbation phase. The
series of local optima produced by this process can be seen as a single chain of solutions followed by the
ILS.

In GRASP×ILS, the local search phase in GRASP is replaced by the ILS in order to diversify the
search and cover a larger search space. GRASP×ILS was successfully applied to many vehicle routing
problems such as, the Workforce Scheduling and Routing Problems [33], the Traveling Repairman Prob-
lem with Profits [5], the Periodic VRP with Time Windows [25], and the VRP with Synchronization and
Precedence Constraints [21]. In this section, we present our GRASP×ILS global framework to solve
the STOPTW. We note that in addition to the ILS, a Variable Neighborhood Descent (VND) search
procedure is also embedded inside GRASP and always performed after the ILS. In our case, the ILS
incorporates an adaptive candidate list-based insertion (see Section 3.2), whereas the VND combines
several local search operators in addition to the candidate list-based insertion and aims at improving
both, the travel times of routes and the total collected profit (see Section 3.3).

3.1. General flow

The GRASP×ILS metaheuristic is outlined in Algorithm 1. The outer loop describes the structure of the
GRASP in which IterMaxG initial solutions are generated from scratch using an adaptive candidate
list-based insertion. Each initial solution S is then improved using an iterative local search ILS (lines
8-21). The ILS incorporates a perturbation phase (line 12) after which a repair phase is performed us-
ing the adaptive candidate list-based insertion. Sbest is updated every time a new best solution is found
(line 15). The process is completed after IterMax iterations without improvement. The solution pro-
duced by the ILS is improved by the VND and then stored in a pool of solutions Spool (lines 22-23). A
post-optimization phase consists in constructing a pool of routes P from Spool (line 24) and then solv-
ing a side-constrained set covering problem (line 25) in order to extract the best solution. A detailed
description is given in Section 3.4.

A suitable perturbation technique is necessary for the ILS in order to improve the quality of its solu-
tions. To do that, the algorithm randomly selects a number of assets (comprised between 1 and dmax) in
each iteration of the ILS and removes them from the current solution. The perturbation parameter dmax



is initialized at 3 and incremented after each iteration without improvement (line 20). Once a new best
solution is found, the perturbation parameter is reset to 3 (line 17). The number of assets to remove is
important for the overall performance of the heuristic. When it has small values, it allows the ILS to
explore the close neighborhood of the passed solution. On the other hand, when it has a large value, it
allows the ILS to escape from local optima.

Algorithm 1: HYBRID HEURISTIC ALGORITHM

1 Sbest ← ∅
2 for (i = 1; i ≤ IterMaxG; i+ +) do
3 (α, β, γ)← (0.5, 0.5, 0.5)
4 S ← ∅
5 (S, α, β, γ)← AdaptiveInsertion(S, α, β, γ) (see Section 3.2)
6 SILS ← S
7 Spool ← Spool ∪ {S}
8 Iter ← 0
9 dmax ← 3

10 while Iter < IterMax do
11 d← U(1, dmax)
12 Remove d assets from S
13 Update S
14 (S, α, β, γ)← AdaptiveInsertion(S, α, β, γ) (see Section 3.2)
15 if (Profit(S) > Profit(SILS)) then
16 SILS ← S
17 dmax ← 3
18 Iter ← 0

19 else
20 dmax ← dmax + 1
21 Iter ← Iter + 1

22 SV ND ← V ariableNeighborhoodDescent(SILS) (see Section 3.3)
23 Spool ← Spool ∪ {SV ND}
24 if (Profit(SV ND) > Profit(Sbest)) then
25 Sbest ← SV ND

26 P ← InitPool(Spool) (see Section 3.4)
27 Sc ← setCover(P) (see Section 3.4)
28 if (Profit(Sc) > Profit(Sbest)) then
29 Sbest ← Sc

30 return Sbest



3.2. Adaptive candidate list-based insertion

The main component of ILS is the insertion algorithm. This algorithm starts from an initial solution,
which can be empty, and then adds unrouted assets one-by-one. The insertion process stops when all the
assets are inserted or no more insertions are possible. Before starting the insertion process, the unrouted
assets are first sorted according to non-decreasing values of what we call the insertion criterion. This
criterion takes the following factors into consideration:

• The profit. Since the objective function is to maximize the collected profit, this criterion favors the
assets with higher values of profit to be inserted.
• The width of time windows. Intuitively, assets with large time windows are probably more flexible to

insert. Thus, assets with tight time windows have the priority to be inserted first in the solution.
• The number of required resources. It might be more difficult to find enough feasible positions for

assets with a large number of resource requirements. It is therefore more interesting to insert them
during the early stages.

It is noteworthy to mention that it is more interesting to evaluate these factors at the same scale size.
We therefore propose to normalize each factor by its maximum possible value so that all the factors in
the criterion have their values within the interval [0, 1]. To do this, let tmax be the width of the largest
time window, pmax be the highest profit among all the assets, and rmax be the maximum number of
vehicles required by the assets.

The insertion criterion is therefore calculated for each asset as follows:

Cri(α, β, γ) =
( ci−oitmax

)β

( pi
pmax

)α( |ri|rmax
)γ

(12)

As shown in Equation (12), the three factors are weighted using the parameters α, β and γ. These pa-
rameters are adjusted through the solution process in order to control the relative importance of different
factors, and, hence, allow the insertion heuristic to cover a large part of the search space [9]. Moreover,
several combinations of (α,β,γ) are separately generated at each iteration of ILS in order to boost the
convergence of the heuristic. The process used to generate the weights is described as follows: the initial
values of α, β and γ are set to 0.5. Six functions fl, l ∈ {1, . . . , 6} are then used to determine six new
combinations of (α,β,γ) at each iteration. In the first four functions fl, l ∈ {1, . . . , 4}, the value of α is
set to 1, whereas the values of β and γ in the previous execution are slightly modified within the interval
[0, 1]. They are either increased or decreased by steps of 0.1. This results in four different combinations
of (β,γ). In the fifth function f5, β and γ are randomly generated using a uniform distribution in the
interval [0, 1[, while α is set to 1. Parameter α is always set to 1 in order to favors the insertion of as-
sets with higher profits, since the aim of solving the STOPTW is to maximize the total collected profit.
However, we consider a last function where all the parameters are randomly generated within [0, 1[. At
the end of each iteration of the ILS, the combination that led to the solution with the best collected profit
is used as a basis for the next iteration.

In order to accelerate the insertion process and avoid non-feasible moves, we present the following
two mechanisms to deal with issues related to synchronization constraints and time windows.



Figure 1: Cross-synchronization situation

3.2.1. Preventing cross-sychronization
A key characteristic in the STOPTW is that the routes are interdependent and, consequently, any update
needs to be propagated through all the routes of the solution after each insertion or partial destruction.
However, the propagation may loop infinitely if cross-synchronization is not prohibited. Without loss
of generality, given two arbitrary assets i and j that require two vehicles of exactly the same types,
a situation of cross-synchronization occurs when a first vehicle visits asset j before i, while a second
vehicle visits asset i before j. An example of a cross-synchronization situation is illustrated by Figure 1.
To avoid such situations, we proceed in a way similar to that of Afifi et al. [1].

Let us consider an auxiliary graph that we refer to as the precedence graph H = (V −, X), associated
with a feasible solution S, where V − has the same set of nodes as G and X is the arc set. X is first
initialized with a set of precedence relations based on the arcs that link between any successive visits in
S, i.e. if asset j is visited immediately after asset i ∈ V − in a given route Rk ∈ R, a precedence relation
(an arc) from asset i to asset j is added to X . The precedence relations are then propagated beyond
immediate successors using the transitive closure [2].

The construction of the precedence graph from scratch is performed by launching a depth-first search
from each node in V −, yielding a time complexity of O(n(n + E)), where E is an upper bound on the
number of arcs in H , with a worst case value of less than n(n−1)

2 . As a result, for each asset i ∈ V −, we
obtain a set Γ+(i) that defines the set of successors in H .

Hence, in order to check the feasibility of the insertion of a visit of a given asset x between two visits
of assets i and j in an arbitrary route Rk ∈ R, it is sufficient to verify that i /∈ Γ+(x) and x /∈ Γ+(j). It
should be mentioned that this test is only performed before the insertion of visits of assets that require
multiple vehicles.

Once the transitive closure of H is completed along with the successors lists Γ+(i), i ∈ V −, a matrix
representation Ψ is constructed in O(n2) to allow a constant time access to precedence relations. A
precedence relation from asset i to asset j is simply represented in Ψ by setting Ψ[i][j] = 1. As a result,
using Ψ, the feasibility test is performed in a constant time.

The construction of the transitive closure of H and its matrix representation Ψ from scratch is per-
formed after each partial destruction. However, only an update of Ψ is needed after the insertion of a
new visit. The update is performed as follows. Let us consider the insertion of a visit of asset x ∈ V −
in a given route after a visit of asset i and before a visit of asset j. The update of Ψ is as follows. The
values of Ψ[i][x] and Ψ[x][j] are immediately set to 1 since i precedes x and x precedes j. Any asset
h ∈ V −, that is preceded by j, must now be preceded by x. Thus, if Ψ[j][h] = 1, we set the value of
Ψ[x][h] to 1. Similarly, any asset l ∈ V −, that precedes i, must now precede x. Thus, if Ψ[l][i] = 1, then



Ψ[l][x] is also set to 1. Now, for any asset l ∈ V − that precedes x, and any asset h ∈ V − that is preceded
by j, l must now precede h. As a result, if Ψ[l][x] = 1 and Ψ[j][h] = 1, the value of Ψ[l][h] is set to 1.
Similarly, for any asset l ∈ V − that precedes i, and any for asset h ∈ V − that is preceded by x, l must
now precede h. As a result, if Ψ[l][i] = 1 and Ψ[x][h] = 1, the value of Ψ[l][h] is set to 1.

As a result, the update of the adjacency matrix Ψ after each insertion is performed in O(n2) time
complexity.

3.2.2. Time-window feasibility check
Time window feasibility check is a frequent operation performed several times before each insertion.
An efficient way to verify the feasibility in a constant time is provided in Vansteenwegen et al. [32]
for the TOPTW. In Afifi et al. [1], the authors propose a generalization of that approach to include
variants of VRPTW with synchronization. The authors propose to record some useful information in
data structures and update them after each insertion or partial destruction. An assumption is made that
no cross-synchronization situations exist in the current solution S.

Before proceeding further, let us first define a feasible solution S as a set of routes R =
(R1, R2, ..., R|R|) performed by distinct vehicles. Each route Rk ∈ R is an ordered list of visits starting
from the departure depot and ending at the arrival depot. We denote the pth asset visited in route Rk by
Rk(p). We also denote the set of routes that visit the asset i ∈ V − by Ri ⊆ R.

Following are useful notations:

• Stri is the service starting time of i ∈ V . Str0 is set to 0.
• Maxshifti is the maximal delay allowed for the service of i ∈ V . Maxshiftn+1 is set to +∞.
• Maxshiftki is the maximal delay allowed for the service of i in route Rk ∈ R and regardless of

the synchronization with the other visits of i in other routes. Note that Maxshiftkn+1 is set to +∞,
k : Rk ∈ R.
• Arrki is the arrival time at asset i in route Rk ∈ R.
• Waitki is the waiting time at asset i in route Rk ∈ R. Waitkn+1 is set to 0, k : Rk ∈ R.

Due to synchronization constraints, the starting time service should be delayed so that all the assigned
vehicles are present at the asset location. It follows that:

Stri = max{oi, max
k:Rk∈Ri

{Arrki }} i ∈ V − (13)

In accordance, the waiting time at asset i ∈ V − in route Rk ∈ Ri is:

Waitki = Stri −Arrki , k : Rk ∈ Ri (14)

In order to calculate the Maxshifti at asset i ∈ V −, we first compute different Maxshiftki for each
route Rk ∈ Ri :

MaxshiftkRk(p)=i
= min{ci − Stri,WaitkRk(p+1) +MaxshiftRk(p+1)} k : Rk ∈ Ri (15)



Hence, the value of Maxshifti is calculated as follows:

Maxshifti = min
k:Rk∈Ri

{Maxshiftki } (16)

On the other hand, if a visit of an asset x is inserted in route Rk ∈ R between visits at positions p and
p+ 1, the generated shift (Shiftk,p+1

x ) is calculated as:

Shiftk,p+1
x = tRk(p)x +Waitkx + ax + tx,Rk(p+1) − tRk(p),Rk(p+1) (17)

Hence, the insertion of a visit of an asset x between positions p and p+ 1 is feasible in terms of time
windows if:

StrRk(p) + aRk(p) + tRk(p)x ≤ cx and Shiftk,p+1
x ≤WaitkRk(p+1) +MaxshiftRk(p+1). (18)

We note that computing service starting times and maximum delays of a solution S is equivalent
to computing the longest path in an acyclic graph. Basically, this procedure consists of two phases:
a forward and a backward pass. The forward pass is performed to compute the earliest starting times
Stri at each node, whereas the backward pass is used to calculate the maximum delays MaxShifti.
Hence, the complexity of updating this information is O(n+E), while the time-window feasibility test
is performed in a constant time.

3.2.3. Candidate list-based insertion algorithm
The candidate list-based insertion is described in Algorithm 2. It starts by sorting the unrouted assets in
non-decreasing order of the criterion presented by the Equation 12 (line 1). In each iteration of the inser-
tion process (line 3), the first available asset in the candidate list is selected, and for each required type of
vehicles, a list of potential insertion positions are computed and stored in ∆ (line 9). The algorithm then
randomly selects one position and checks its feasibility. First, it checks for the cross-synchronization
feasibility (line 15). We note that this test is not performed when trying to insert the first visit of an asset
in the current solution since the problem of cross-synchronization only occurs with the presence of two
or more visits. The second test is the time-windows feasibility check (line 16). If the position does not
satisfy one of the feasibility tests, it is removed from ∆ (line 22). This process is repeated until a feasible
position is found, or the set of potential positions ∆ is empty. If a feasible position is found, the insertion
of the visit is performed (line 17) and the solution undergoes an update (line 18) in order to add the new
precedence relations in the precedence graph as well as the computation of new service start times and
maximum delays associated with each asset in the solution. This process is reiterated as many times as
the number of required visits.

If the requirements of a given asset are not fully satisfied at the end, all the visits of that asset are
completely removed from the solution (lines 27-29) and the solution S undergoes an update in order to
remove the irrelevant precedence relations and to recompute service start times and maximum delays as
well. The whole process of insertion of assets is reiterated until all the candidates in σ are tested.



Algorithm 2: LIST-BASED INSERTION

Input: Solution S, parameters (α,β,γ)
1 σ ← Sort unrouted assets to non-decreasing values of Cri(α, β, γ) (See formula (12))
2 insert← True
3 while insert and σ 6= ∅ do
4 insert← False
5 for i = 1 to |σ| do
6 kmax ← |rσi

|
7 k ← 0
8 for q = 1 to |Q| do
9 ∆← list of all positions in routes of type q ∈ Q of S

10 cpt← 1
11 while cpt ≤ rσiq do
12 foundPos← False
13 while foundPos = False and ∆ 6= ∅ do
14 Select a random position (q, r, p) ∈ ∆ // r : a route of S of type

q ∈ Q, p : position in r
15 if k = 0 or (q, r, p) is cross-synchro-feasible for σi then
16 if (q, r, p) is time-window-feasible for σi then
17 Insert σi in position (q, r, p)
18 Update S
19 foundPos← True
20 cpt← cpt+ 1
21 k ← k + 1

22 ∆← ∆\{(q, r, p)}
23 if foundPos = False then
24 break // no feasible position in ∆

25 if cpt ≤ rσiq then
26 break // requirements of type q are not fully satisfied

27 if (k < kmax) then
28 Remove all visits of σi from S
29 Update S

30 else insert← True

31 return S

3.3. Variable Neighborhood Descent

The adaptive candidate list-based insertion operator and its sorting criterion allow our method to cover
a large part of the search space. However, the sorting criterion overlook a key performance parameter,



which is the travel cost induced by visit insertions. This choice is justified by computational time burden
when constructing the candidate list, since the insertion cost depends on the insertion position, which is
a priori unknown. On the contrary, the profit, the width of time windows and the resource requirements
are all known beforehand. The Variable Neighborhood Descent (VND) described hereafter is precisely
proposed in order to cope with this drawback. It is noteworthy to mention that we do not consider waiting
times when evaluating local search moves. We do only consider arc costs derived from the distance
matrix.

Several local search operators were implemented and incorporated into the VND search procedure.
Two sets of neighborhoods are considered. The first set includes operators that aim at reducing the travel
costs, which are:

1. 2-opt* — interchanges the tails between two routes
2. relocate — relocates one visit to another route

If the two first operators succeed in reducing the travel costs of the solution, this may create room to
insert profitable assets into the solution, and consequently, improving the total profit. The second set of
operators are :

1. replacement — exchanges routed assets with unrouted assets, only if it improves the total profit
2. candidate list-based insertion — described earlier

Seeking efficiency, the previously described operators (relocate and replacement) are implemented
with a reduced-size neighborhood. Due to the synchronization constraints, checking the feasibility of
some moves in the original version of these operators requires first removing and then inserting subsets
of assets. This yields aO(n2) time complexity in order to check the feasibility of each move. In our case,
we only consider the moves for which the feasibility can be checked in a constant time. Regarding the
replacement operator, the reduced neighborhood is described as follows. Let us consider the replacement
of asset u by an unrouted asset v. Such a move is considered only if pv > pu and ruq ≥ rvq ∀q ∈ Q.
For the relocate operator, we only consider assets with one required visit and relocation to a different
route other than the current one. It is also noteworthy to mention that for the neighborhoods 2-opt* and
candidate list-based insertion, a feasibility check is already performed in O(1) for all the moves.

Algorithm 3 describes the VND in detail. The set N l = {N l
1, N

l
2} contains replacement (N l

1) and re-
locate (N l

2) operators, whereas the set Np = {Np
1 , N

p
2 } contains 2-opt* (Np

1 ) and candidate list-based
insertion (Np

2 ) operators. The first level of VND (lines 6-13) tries to improve the travel costs, and the
second level (lines 14-22) focuses on improving the profit. Neighborhoods are sequentially applied one-
by-one at each level. Each level of VND is iteratively executed until no neighborhood succeeds in im-
proving the solution. In addition, if the second level neighborhoods succeed in improving the profit, the
whole VND starts a new iteration, otherwise, the algorithm is terminated.

3.4. The set covering problem

As described earlier, only local optima found throughout the search process are temporarily saved, and
then rejected as soon as a new best solution is found. Those rejected solutions, despite being sub-optimal,
may incorporate some good individual routes. Moreover, individual routes may happen to be promising



Algorithm 3: VARIABLE NEIGHBORHOOD DESCENT

Input: Solution S
1 k1max ← |N l|
2 k2max ← |Np|
3 impr ← True
4 while impr = True do
5 impr ← False
6 imprTravelT ime← True
7 while imprTravelT ime = True do
8 imprTravelT ime← False

9 for k1 = 1 to k1max do
10 S′ ← N l

k1(S)
11 if TravelT ime(S′) < TravelT ime(S) then
12 S ← S′

13 imprTravelT ime← True

14 imprProfit← True
15 while imprProfit = True do
16 imprProfit← False

17 for k2 = 1 to k2max do
18 S′ ← Np

k2(S)
19 if Profit(S′) > Profit(S) then
20 S ← S′

21 imprProfit← True
22 impr ← True

23 return S

if combined with routes from other solutions and can yield new improved solutions. For that purpose, we
propose a route recombination procedure as a post-optimization phase in order to obtain the best feasible
solution.

During the search process, solutions produced by GRASP×ILS combined with VND are stored in a
set Spool. At the end, single routes are extracted from Spool and saved in a set of pools {T q|q ∈ Q}, where
T q = {T q1 , T

q
2 , . . . , T

q
|Tq|}. The route recombination phase consists in solving a modified set covering

problem (SCP) over {T q|q ∈ Q} in order to extract a combination of routes that defines the best possible
solution. In the following, we propose a mixed integer programming (MIP) formulation to solve the
SCP. Let us first introduce some necessary notations and define the decision variables. In addition to the
variables y and s introduced in Section 2, we use a binary decision variable θqk, q ∈ Q, 1 ≤ k ≤ |T q|
to indicate whether a route T qk is selected or not in the solution found by the solver.

We denote the asset immediately visited after the node i ∈ V d in route T qk by γ+qk(i) = {j}, j ∈ V −.
In the case where node i is the last visited node, or it is not visited at all in T qk , γ+qk(i) is set to empty set.



We also define the set of matrices {Aq|q ∈ Q} as follows:

Aq = (aqik) with a
q
ik =

{
1 if asset i ∈ T qk
0 otherwise

The mathematical formulation, [SCP1], is as follows:

[SCP1] max
∑
i∈V −

piyi (19)

∑
k:T q

k∈T q

aqikθ
q
k ≥ riqyi ∀q ∈ Q,∀i ∈ V

− (20)

∑
k:T q

k∈T q

θqk ≤ Pq ∀q ∈ Q (21)

si + tijq + ai − sj ≤M(1− θqk)
∀q ∈ Q,∀k : T qk ∈ T

q,∀i ∈ T qk , j ∈ γ
+
qk(i) (22)

t0iq − si ≤M(1− θqk) ∀q ∈ Q,∀k : T qk ∈ T
q, i ∈ γ+qk(0) (23)

oi ≤ si ≤ ci ∀i ∈ V − (24)

yi ∈ {0, 1} ∀i ∈ V − (25)

θqk ∈ {0, 1} ∀q ∈ Q,∀ k, 1 ≤ k ≤ |T q| (26)

[SCP1] aims at maximizing the total collected profit (19) subject to the set of constraints (20-24).
Constraints (20) ensure the satisfaction of resource requirements for assets, whereas constraints (21)
impose an upper limit on the number of vehicles.

Time constraints are initially verified by all the routes present in the pool. However, the combination
of different routes can cause a violation of time constraints, such as time windows, travel times and
synchronization. To avoid such issues, we introduce constraints (22) and (23) in which only one service
starting time decision variable si is used per asset i. In this way, we impose the condition that the same



asset i must be visited in the selected routes at the same time. Moreover, a minimum travel time is im-
posed between any two consecutive visits in selected routes. Constraints (22) and (23) are systematically
deactivated if the route is not selected. Finally, constraints (25-26) are domain definitions.

It is noteworthy to mention that in this formulation, due to the inequality used in constraints (20), it
is possible to visit assets a number of times more than required, or even visit assets that do not belong
to the solution found by [SCP1]. The choice of a set covering-based formulation instead of a set parti-
tioning based on is motivated by the fact that the latter would be too restrictive and may miss some good
solutions. Indeed, the solution found must undergo a reparation phase in order to get rid of the visits of
non-selected assets as well as extra visits from the selected routes.

Another important drawback raised by this formulation is that travel time constraints should be sys-
tematically respected between any successive visits in the selected routes, including the visits related to
assets that are not selected in the final solution. This inconvenience tightens travel time constraints and
potentially prevents the solver from extracting promising solutions from the pools of routes.

To deal with this drawback posed by [SCP1], we propose the following formulation [SCP2] that
makes it possible to skip the visits of non selected assets. Let us first denote by Γ+

qk(i) the set of assets
visited in route T qk after visiting i ∈ V d. The new formulation is as follows.

[SCP2] (19), (20), (21), (24), (25), (26)

si + tijq + ai − sj ≤M(3− yi − yj − θqk)
∀q ∈ Q,∀k : T qk ∈ T

q, ∀i ∈ V −, j ∈ Γ+
qk(i) (27)

t0iq − si ≤M(2− yi − θqk) ∀q ∈ Q,∀k : T qk ∈ T
q,∀i ∈ Γ+

qk(0) (28)

According to [SCP2], a minimum travel time is imposed between any two consecutive visits of
selected assets in the selected routes. Constraints (27) and (28) are systematically deactivated if at least
one of the assets i or j or the route Tqk are not selected in the solution found by [SCP2]. Nevertheless,
the solution found by [SCP2] requires a cleaning phase in order to get rid of unnecessary visits in the
case where a given asset is visited often than required.

The pool size is a critical performance parameter. Adding all the feasible routes to the pool may incur
a long computational time. In our case, we impose an upper limit on the size of the pool, which is a
parameter of the algorithm to be tuned. Furthermore, in order to diversify the pool and avoid duplicated
routes, we use a hash-based function. Two routes are considered as duplicates if they are from two
different solutions and have the same sequence of visits. It is noteworthy to mention that it is possible
that a given solution may incorporate routes with exactly the same sequence of visits. This happens when
the visited assets all have similar requirements in terms of type and number of vehicles. In this case, these
routes are all inserted into the pool. In this way, we ensure that the set covering formulation does not miss
the best solution obtained by GRASP×ILS so far. We also propose to accelerate our method by solving
the LP relaxation of the integer programming model. If the relaxation is no better than the best solution



already found, the resolution of the integer programming model is skipped and computational efforts are
saved. This situation is frequent since the size of the pool is limited and the quality of the best solution
is closely dependent on the quality of the routes, which are exclusively generated by GRASP×ILS and
VND.

4. Computational tests

In this section, we investigate the performance of the Hybrid Heuristic method. It was implemented using
C++ and the STD library, whereas the set covering formulation was solved using the IBM ILOG suite
(Cplex 12.6 solver) through Concert Technology. The experimental tests were conducted on a Linux
server running Centos 5.4, equipped with an Intel Xeon E5420 with 2.66 GHz and 128 GB RAM.

4.1. Benchmark instances

Benchmark instances used in [29] to evaluate STOPTW methods were generated based on 60 instances
initially proposed for the VRPTW in [19]. These instances are divided into three classes according to the
distribution of the assets over an area of 140×140. The assets in the instances are located randomly (R),
in clusters (C) or a combination of both (RC). Each class pattern is divided into two sub-classes (R100-
R200, C100-C200 and RC100-RC200). Finally, ten instances are derived from each combination of
location and horizon patterns. Time windows of the original instances were modified in order to simulate
a propagation of fire fronts across the area, whereas the requirements in terms of vehicles were randomly
generated and added as a vector of three components, where each one corresponds to the number of
vehicles of a given type (three types of vehicles). Instances in the benchmark are all composed of 200
assets in addition to the depot, and each instance was used to derive a second instance by truncating
the first 100 vertices. When solving these instances, two different sets of vehicles are used for each
size: SET1 = (6, 5, 4) and SET2 = (7, 6, 5) for 100-node instances; and SET1 = (9, 8, 7) and
SET2 = (12, 11, 10) for 200-node instances. As a result, the benchmark is composed of 240 instances,
with 120 instances for each size (100 and 200).

4.2. Parameter settings

A key feature of our proposed method is the small number of parameters that need to be tuned. More-
over, we adopt a general approach that consists in choosing method parameters based on the parameters
of the problem. In order to fine tune different parameters, we used an automatic algorithm configura-
tion package, iRace software, introduced by Lopez-Ibanez et al. [23]. We selected an arbitrary set of
24 benchmark instances and gave iRace a tuning budget of 2000 experiments. Four parameters are con-
sidered for tuning: the number of iterations of GRASP IterMaxG, the number of iterations without
improvement of the ILS IterMax, the CPU time allocated for the set covering formulation, and finally,
the size of the pool S.

Starting with the ILS, the maximum number of iterations is already fixed to n + λq, where q is the



average number of vehicles per type calculated as q =
∑

q∈Q Pq

|Q| , and λ is a weight parameter determining
the influence of q on the value of IterMax. Regarding GRASP, which is a set of independent iterations
of the ILS, the stopping criterion is set to the average number of vehicles per type IterMaxG = q/µ,
where µ is determined after tuning. Regarding the set covering problem formulation, two parameters
were considered: the size of the pool (S) and the time limit (SCPtime). The time limit SCPtime is equal
to nζ, where ζ is a constant set to be tuned. With the help of the irace package, we suggest the parameter
settings depicted in Table 1.

Table 1: Parameter settings for the Hybrid Heuristic

Parameter λ µ |S| ζ

Value 0.25 0.5 200 0.035

4.3. Sensitivity analysis

In this section, we present the sensitivity analysis of the different components proposed in this paper.
The aim is to investigate the relevance of incorporating the VND and the set covering formulation within
GRASP×ILS. Different configurations were considered and run a single time on all the benchmark in-
stances. To clearly highlight the outcome of each component in this paper, we used the same starting seed
per instance for all the configurations. The results of each configuration are aggregated and organized
by classes (C, R and RC) of the benchmark instances, where

∑
Obj and

∑
T (s), denote the sum of the

total collected profit and the sum of computational times, respectively.

4.3.1. Comparison between the set covering formulations
Table 2 shows a comparison between the set covering formulations presented in Section 3.4. For this
purpose, three configurations are considered: GRASP×ILS, GRASP×ILS + SCP1 and GRASP×ILS +
SCP2. Table 2 clearly demonstrates the performance achieved by the second SCP formulation, either
in terms of objective value or computational time. Regarding the objective value, SCP2 outperforms
SCP1. This is justified by the fact that SCP1 systematically imposes all the visits in the selected route
of the optimal solution, which substantially reduces the solution space, and hence, potentially missing
solutions with better objective value. Interestingly, SCP2 also achieved better computational times than
SCP1, with a total time of 8983.55 s compared to 11655.82 s.

4.3.2. Analysis of components
As a result of the calculations made in the previous section, the second formulation [SCP2] was cho-
sen to be part of the Hybrid Heuristic. We now investigate the impact of different configurations of our
scheme. According to Table 3, four configurations are considered: GRASP×ILS, GRASP×ILS + SCP2,
GRASP×ILS + VND and finally, GRASP×ILS + VND + SCP2. The first configuration is used as a ref-
erence for the other ones. The results clearly show the contribution of the VND and the post-optimization



Table 2: Comparison between the two set covering formulations

Class GRASP×ILS+SCP1 GRASP×ILS+SCP2∑
Obj

∑
T (s)

∑
Obj

∑
T (s)

C 153291 3345.51 153310 2679.18

R 159261 4013.73 159301 3121.47

RC 161714 4296.58 161739 3182.9∑
474266 11655.82 474350 8983.55

phase, denoted by SCP2 in Table 3. We begin with the post-optimization phase in the second column,
which improves the aggregated profit by roughly 1089 units compared to GRASP×ILS, equivalent to
an improvement of 0.23%. This improvement comes at the expense of a substantial increase in com-
putational time, reaching 8983.55 s compared 2374.96 s for GRASP×ILS. Interestingly, we notice in
the fourth column that the VND leads to a substantial improvement of the results, with a gap of 2.06%
compared to GRASP×ILS, along with a reasonable increase in computational time, of about 4500 s,
roughly half of the computational time of GRASP×ILS + SCP2. The reason for this is that the SCP2
includes time-related side constraints that destroy the original set covering structure. As a result, MIP
solvers struggle to solve the problem, even on a small number of routes. Finally, the combination of
the three components, depicted in the last column, leads to the best results in terms of objective val-
ues, reaching an improvement of 2.12% compared to GRASP×ILS. Regarding computational time, the
three-component configuration is better than GRASP×ILS+SCP2. This is mainly due to the fact that the
substantial improvement yielded by the VND allows less room for the post-optimization phase to im-
prove the objective value, which often obtains an LP relaxation equal to the best solution already found
by GRASP×ILS+VND.

Table 3: Sensitivity analysis of the three components

Class GRASP×ILS GRASP×ILS+SCP2 GRASP×ILS+VND GRASP×ILS+VND+SCP2∑
Obj

∑
T (s)

∑
Obj

∑
T (s)

∑
Obj

∑
T (s)

∑
Obj

∑
T (s)

C 152914 790.72 153310 2679.18 155462 1289.73 155622 2566.01

R 158959 769.33 159301 3121.47 162383 1544.4 162460 2816.63

RC 161388 814.91 161739 3182.9 165171 1673.53 165210 2266.34

SUM 473261 2374.96 474350 8983.55 483016 4507.66 483292 7648.98



4.4. Performance comparison

In this section, we conduct experimental tests to evaluate the performance of the proposed method. We
compare the Hybrid Heuristic against to two methods from the literature, namely, an ALNS method
proposed in Roozbeh et al. [29] and a mathheuristic approach known as the SDM approach, proposed
in Nuraiman [26]. To evaluate our method, we proceed in a way similar to the one in [29]. We run our
algorithm ten times on each instance and we record the average computational time, the best objective
value as well as the average objective value of the ten runs. Since it is the same protocol, the comparison
between these two methods is straightforward. On the other hand, the SDM approach as described in
[26] is a deterministic method and is therefore executed only once for each instance. Consequently, in
order to guarantee a fair comparison between the Hybrid Heuristic and SDM approach, we compare the
objective value obtained by the first run of our method to the objective value of the SDM approach. It is
noteworthy to mention that the algorithm of ALNS presented in [29] has been improved and new results
for instances with 100 nodes has been published in [28].

Tables 4-7 show a comparison between the three methods. The results are grouped according to the
sub-classes present in the benchmark instances. In Tables 4-7, we denote the results of the first run of
our method by Hyb-Heur1, whereas the results of the ten runs are denoted by Hyb-Heur10. We provide
the following performance measurements for the different methods:

• P (%): the percentage of profit related to the protected assets achieved by SDM and Hyb-Heur1.
• Pbest(%) : the best percentage of profit related to the protected assets achieved by ALNS or Hyb-

Heur10.
• T (s): computational times achieved by SDM and Hyb-Heur1.
• T (s): average computational times achieved by ALNS or Hyb-Heur10.
• Dev(%): the deviation of the average results from the best results achieved by ALNS or Hyb-Heur10.

It is calculated as follows:

Dev =
Pbest − P
Pbest

(29)

where P is the average percentage of profit related to the protected assets achieved by ALNS or
Hyb-Heur10.
• Gap(%): the last two columns of each table depict the improvement gap achieved by the Hybrid

Heuristic compared to the other two approaches. The formula used to calculate the gap between the
Hybrid Heuristic and ALNS is :

GAP =
PHyb−Heur10best − PALNSbest

PALNSbest

. (30)

The gap between the Hybrid Heuristic and SDM is :

GAP =
PHyb−Heur1 − PSDM

PSDM
. (31)



A positive value of the GAP means that the Hybrid Heuristic outperforms the other method.

Table 4: Comparison on 100-node instances - SET 1 with (6, 5, 4) vehicles

Class ALNS SDM Hyb-Heur10 Hyb-heur1 GAP (%)

T (s) Pbest(%) Dev(%) T (s) P (%) T (s) Pbest(%) Dev(%) T (s) P (%) ALNS SDM

C100 135.83 63.18 1.33 95.45 65.09 9.21 70.20 1.02 8.42 69.19 11.11 6.29

C200 130.64 61.92 1.39 44.48 61.17 7.55 67.38 1.56 7.01 66.55 10.96 8.79

R100 125.48 64.49 1.71 44.30 63.68 7.74 70.49 1.47 7.50 69.86 9.30 9.69

R200 129.17 66.75 1.42 16.35 65.88 8.31 73.29 1.34 8.15 72.27 9.80 9.69

RC100 146.12 69.98 1.63 63.51 69.57 9.36 77.68 1.49 9.65 76.29 11 9.66

RC200 130.35 70.45 1.56 79.26 70.88 8.83 78.02 1.35 9.29 76.81 10.75 8.37

Mean 132.93 66.13 1.50 57.22 66.05 8.50 72.84 1.37 8.34 71.83 10.15 8.75

Table 5: Comparison on 100-node instances - SET 2 with (7, 6, 5) vehicles

Class ALNS SDM Hyb-Heur10 Hyb-heur1 GAP (%)

T (s) Pbest(%) Dev(%) T (s) P (%) T (s) Pbest(%) Dev(%) T (s) P (%) ALNS SDM

C100 154.83 69.70 1.78 74.98 71.34 10.77 78.13 1.06 11.65 77.46 12.09 8.58

C200 136.67 67.73 1.48 43.03 68.23 9.23 74.54 1.36 8.79 73.54 10.05 7.79

R100 131.66 71.31 1.47 26.70 71.85 8.82 79.10 1.46 9.01 77.63 10.92 8.05

R200 134.30 72.74 1.48 21.09 73.61 8.97 81.45 1.41 8.57 80.64 11.97 9.55

RC100 152.94 75.85 1.20 49.90 77.27 10.34 84.89 1.15 10.41 83.81 11.92 8.46

RC200 139.50 75.79 1.11 48.13 79.02 10.11 85.79 1.35 9.30 84.80 13.19 7.31

Mean 141.65 72.19 1.42 43.97 73.55 9.71 80.65 1.30 9.62 79.65 11.72 8.29

Tables 4 and 5 report the results of 100-node instances. These results show a clear dominance of the
Hybrid Heuristic over the other methods both in terms of objective value and computational time. For
instance, the Hybrid Heuristic achieves an improvement gap of 10.15% compared to ALNS for (6, 5, 4)
vehicles, and a gap of 11.72% for (7, 8, 9) vehicles. Compared to the SDM approach, the Hybrid Heuris-
tic achieves an improvement gap of 8.75% and 8.29% for the same sets of instances. Moreover, the
Hybrid Heuristic demonstrates better robustness than ALNS in terms of solution quality when executed



several times, with a deviation from the best solution of no more than 1.37% for SET1 and 1.3% for
SET2, compared to 1.50% and 1.42% for ALNS. The Hybrid Heuristic also achieves the best computa-
tional time, since it divides the computational times of ALNS by a factor of more than 15, although they
are tested on similar machines. The Hybrid Heuristic also improves computational time compared to the
SDM by a factor of almost 5.6, going from 101.19 s to 8.98 s. Based on Tables 4 and 5, we can observe
that increasing the number of vehicles from SET1 to SET2 does not have a substantial impact on com-
putational time or the deviation from the best solution of ALNS and the Hybrid Heuristic, and leads to
a slight reduction in computational time of the SDM, decreasing from 57.22 s to 43.97 s. Regarding the
objective value, all three methods show a substantial improvement compared to the first set of vehicles,
with an increase of 6.06% by ALNS, 7.5% by SDM and 7.8% by the Hybrid Heuristic.

Table 6: Comparison on 200-node instances - SET 1 with (9, 8, 7) vehicles

Class ALNS SDM Hyb-Heur10 hyb-heur1 GAP (%)

T (s) Pbest(%) Dev(%) T (s) P (%) T (s) Pbest(%) Dev(%) T (s) P (%) ALNS SDM

C100 589.60 57.68 2.68 548.47 63.71 60.80 67.54 1.52 59.50 66.26 17.09 4

C200 542.64 52.60 2.93 187.14 58.89 51.73 63.16 1.29 52.16 62.47 20.07 6.08

R100 539.19 59.60 2.30 129.45 63.56 57.31 70.36 1.25 57.80 69.22 18.05 8.90

R200 542.78 59.27 2.56 154.69 62.75 58.36 70.16 1.09 57.94 69.32 18.39 10.47

RC100 561.80 62.18 2.06 373.47 67.10 66.54 73.84 0.96 61.30 72.90 18.76 8.65

RC200 570.06 62.66 1.93 349.85 67.86 60.49 74.55 1.40 69.46 73.81 18.98 8.77

Mean 557.68 59 2.41 290.51 63.98 59.21 69.94 1.25 59.69 69 18.56 7.81

Tables 6 and 7 report the results for 200-node instances while considering two sets of vehicles, (9, 8, 7)
and (12, 11, 10). In general, these results confirm the good performance of the Hybrid Heuristic demon-
strated on medium-size instances by outperforming the two other methods in terms of objective value
and computational time. For instance, the Hybrid Heuristic achieves an improvement gap of 18.56%
and 19.62% over ALNS on (9, 8, 7)-vehicle and (12, 11, 10)-vehicle instances, respectively. Regard-
ing SDM, our method improves the results by 7.81% and 7.79% for the same sets of instances. The
Hybrid Heuristic also improves the deviation percentage on 200-node instances compared to 100-node
instances since it reduces it to 1.25% for (9, 8, 7)-vehicle instances and to less than 1% on the second set
((12, 11, 10)-vehicle instances). For the same set of instances, ALNS still has a deviation percentage of
around 2%.

The good performance of our method goes along with an increase in computational time, with an
average of 59.21 s for (9, 8, 7) vehicles and 83.76 s for (12, 11, 10) vehicles reported in the Hyb-Heur10
column, i.e., an overall total of 71.49 s compared to 9.10 s for 100-node instances. This is mainly caused
by the combinatorial explosion and the algorithm parameters since they are based on the parameters of
the problem. We notice also a substantial increase in computational time of ALNS, by reaching an av-



Table 7: Comparison on 200-node instances - SET 2 with (12, 11, 10) vehicles

Class ALNS SDM Hyb-Heur10 hyb-heur1 GAP (%)

T (s) Pbest(%) Dev(%) T (s) P (%) T (s) Pbest(%) Dev(%) T (s) P (%) ALNS SDM

C100 619.33 66.57 2.19 86.40 73.51 88.21 79.01 0.92 79.79 78.47 18.68 6.74

C200 566.36 61.46 1.81 79.50 68.78 74.93 74.77 1.04 74.19 74.14 21.67 7.79

R100 585.49 70.29 1.78 59.92 77.27 81.58 83.75 0.88 82.81 83.06 19.15 7.49

R200 589.75 70.17 2.04 77.79 76.23 80.85 83.60 0.99 85.16 82.90 19.13 8.76

RC100 607.04 72.46 1.72 258.62 80.30 92.83 87.05 0.94 93.90 86.48 20.13 7.70

RC200 633.17 73.58 1.95 175.35 80.24 84.14 87.50 0.99 89.25 86.84 18.93 8.22

Mean 600.19 69.09 1.92 122.93 76.05 83.76 82.61 0.96 84.18 81.98 19.62 7.79

erage of 557.68 s and 600.19 s for SET1 and SET2, respectively, i.e., a factor of more than 4 compared
to 100-node instances, and almost 8.5 times more than the computational times reported by our method
for 200-node instances. Regarding SDM, the computational times achieved by the method are between
those of ALNS and the Hybrid Heuristic, reaching an average of 206.22 s on 200-node instances. Inter-
estingly, computational times of SDM remarkably decrease from 290.51 s for (9, 7, 6)-vehicle instances
to 122.91 s for (12, 11, 10)-vehicle instances.

5. Conclusion and perspectives

In this paper, we focused on a new variant of the Team Orienteering Problem, referred to the Synchro-
nized Team Orienteering Problem with Time Windows. This problem was originally proposed in order
to model and solve asset protection problems during out-of-control wildfires. To solve this problem, we
proposed the Hybrid Heuristic method that combines a GRASP×ILS meta-heuristic and a set cover-
ing formulation as a post-optimization phase. Interestingly, the GRASP×ILS incorporates an adaptive
candidate list-based insertion and a Variable Descent Neighborhood search heuristic. Intermediate local
optima solutions found by the GRASP×ILS are temporarily stored in a pool. In the post-optimization
phase, a pool of routes is constructed from the pool of solutions and a set covering formulation is solved
in order to improve the best solution obtained so far. Detailed computational tests prove, on the one
hand, the relevance of different components of the Hybrid Heuristic, and on the other, the efficiency of
our approach when compared to the literature. This study paves the way for several research directions.
The first one is the consideration of additional criteria in the objective function, such as load balanc-
ing. This criterion is relevant when we intend to equally distribute activities on protection teams and
prevent them from being overwhelmed. Another promising research direction is the development of a
branch-and-price method based on the set covering formulation proposed in this paper.
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