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Interpolation and averaging of diffusion MRI
multi-compartment models

Renaud Hédouin, Christian Barillot, Member, IEEE , and Olivier
Commowick

Abstract— Multi-compartment models (MCM) are in-
creasingly used to characterize the brain white matter mi-
crostructure from diffusion-weighted imaging (DWI). Their
use in clinical studies is however limited by the inability
to resample an MCM image towards a common reference
frame, or to construct atlases from such brain microstruc-
ture models. We propose to solve this problem by first
identifying that these two tasks amount to the same prob-
lem. We propose to tackle it by viewing it as a simplifica-
tion problem, solved thanks to spectral clustering and the
definition of semi-metrics between several usual compart-
ments encountered in the MCM literature.

This generic framework is evaluated for two models: the
multi-tensor model where individual fibers are modeled
as individual tensors and the diffusion direction imaging
(DDI) model that differentiates intra- and extra-axonal com-
ponents of each fiber. Results on simulated data, simu-
lated transformations and real data show the ability of our
method to well interpolate MCM images of these types. We
finally present as an application an MCM template of normal
controls constructed using our approach.

Index Terms— Multi-compartment models, Interpolation,
Diffusion MRI, Atlases

I. INTRODUCTION

Diffusion weighted imaging (DWI) is a specific type of MRI
acquisition that studies the constrained random diffusion of
water molecules within different tissues. It allows, through
several acquisitions, to model the brain microstructure, i.e.
white or gray matter internal cellular organization, which
is significantly smaller than the voxel resolution. The most
widespread model, especially in clinical routine, is named
diffusion tensor imaging (DTI) [1]. It represents the water
diffusion within each voxel as a tensor, i.e. a zero-mean 3D
Gaussian distribution. The DTI, simple to estimate and used in
clinical studies for many diseases, also holds limitations. The
diffusion in complex areas, such as in the white matter (WM)
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crossing fibers, cannot be represented by a single tensor. To
overcome this issue, multi-compartment models (MCM) [2]
(a class of diffusion models) consider separately groups of
tissues with similar diffusion properties (e.g. mixture of main
directions, diffusion pattern, etc.) and represent each of them
by an individual compartment. For example, an anisotropic
compartment models a fascicle, i.e. a bundle of axons with a
similar general orientation.

MCM provide a greater specificity and sensitivity to mi-
crostructural properties than conventional DTI. Thus, it pro-
vides valuable information for a deeper understanding of the
healthy brain. Moreover, it can be used in a clinical setting for
providing new imaging biomarkers of inflammation, neuronal
or axonal degeneration. Promising studies have shown that
MCMs are efficient to distinguish between tumor types [3],
or detect specific tissue subtypes in multiple sclerosis [4]. A
more general use of MCM in the clinic would greatly help for
diagnosis or adapting treatment, in particular for diseases im-
pacting WM such as neurodegenerative or neuroinflammatory
diseases.

Drawing statistical conclusions from multi-subject DWI
datasets is made difficult by the challenge of projecting DWI
images into a common reference space, since they often do
not share the same gradient directions or number of b-values.
In addition, the statistical comparisons will finally be made on
properties extracted from the MCMs. Doing the registrations
or transformations application directly on the MCMs is a more
direct solution. This requires some critical steps to be defined
such as the application of a transformation to MCM images,
the creation of MCM atlases, i.e. a common reference frame
for comparison of patients and healthy controls, etc. Doing so
requires however to define the interpolation task, i.e. finding
the model in between voxels locations, and the averaging of
several voxels into a single one, e.g. when merging several
registered MCM images into the final atlas. These common
steps for anatomical images are however not trivial for such
complex diffusion models.

To date, only few approaches have addressed these issues
for complex diffusion images including MCM. Among them,
Barmpoutis et al. [5] or Geng et al. [6] introduced regis-
tration methods specifically tuned for orientation distribution
function (ODF) on the sphere. Goh et al. [7] introduced
an interpolation method for ODF in a spherical harmonics
basis as a Riemannian average. This is made possible by the
fact that the spherical harmonics basis used is an orthogonal
basis that allows the definition of a Riemannian manifold and
thus classical operations such as the Frechet mean. However,
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this does not apply to MCMs. The closest approach to our
work was proposed by Taquet et al. [8] who introduced
an interpolation approach seen as a simplification problem.
Indeed, each voxel of the interpolated image is simply a
weighted sum (8 in the case of a trilinear interpolation) of the
neighbourhood voxels of the original image, each one being a
weighted sum of compartments in the case of a MCM. In their
method, a large number of weighted compartments from a set
of voxels is summarized into a smaller set of compartments.
However, they assume that a single compartment follows a
simple exponential model, which is not the case for all MCM.

We therefore introduce a new interpolation and averaging
method for MCM data with the goal of having a scheme as
agnostic as possible to the particular combination of compart-
ments used in an application. To do so, we first introduce
interpolation and averaging as a simplification problem, after
presenting in Section III-A these two problems and how they
are the same problem. Our method relies on the general prob-
lem of the clustering from a set of input compartments into
a predefined number of output compartments. Each cluster is
then simplified into an interpolated compartment whose weight
is computed from initial input weights. The combination of the
interpolated compartments provides the output MCM. Unlike
Taquet et al., this method is very generic as it relies only on
the definition of a similarity measure between compartments
and of a weighted averaging scheme for compartments. It can
therefore be applied to any type of MCM compartments as
long as those two components are defined.

After some background on MCM and the models used in our
experiments in Section II, we first present the MCM simplifi-
cation problem independently of the particular implementation
of the MCM model in Section III. We then describe in Sec-
tion IV the implementations of this global scheme for isotropic
compartments and for two types of anisotropic compartments,
tensors and diffusion directions imaging (DDI) [9]. To this end,
we define one metric for the tensor compartments and four
possible metrics for the more complex DDI compartments. We
demonstrate qualitatively and quantitatively the interest of our
method on simulated and in vivo data. We finally apply this
framework to compute an atlas of DDI models (Section V) that
clearly highlights a better averaging of fiber crossing regions.

II. BACKGROUND ON MULTI-COMPARTMENT MODELS

A. Diffusion multi-compartment model formulation

A diffusion multi-compartment model (MCM) provides
information, through a weighted sum of individual compart-
ments, on the different elements of the brain microstructure
at a given voxel in the brain. Each compartment therefore
represents specific diffusion properties in a specific tissue
(cerebrospinal fluid (CSF), grey matter or axons within a spe-
cific direction). Mathematically, a MCM probability density
function (PDF) P(x) is expressed as a sum of isotropic and
anisotropic compartments:

P(x) =

M∑
i=1

wiso,ipiso,i(x) +

N∑
j=1

wjpj(x) (1)

where piso,i and pj are the PDFs of respectively the i − th
isotropic compartment, and the j−th anisotropic compartment
of the model. wiso,i and wj are the compartment weights of
the model and sum up to 1.

Although this equation could be written in a simpler manner,
we prefer to explicitly separate isotropic and anisotropic
compartments as they represent totally different tissue types.
More precisely, an isotropic compartment represents isotropic
water diffusion inside the brain. This concerns water diffusion
inside glial cells or neuron cell bodies, as well as free water
diffusion within the brain. Various compartment models exist
for these isotropic compartments [10], [11]. An anisotropic
compartment models a fascicle, i.e. a bundle of axons with
a similar general orientation. The behavior of water within
such an environment is complex. A large number of models
has therefore been proposed to describe these compartments.
They sometimes distinguish between intra- and extra-axonal
diffusion (e.g. NODDI [12], DDI [9]), or may be simpler (e.g.
tensors [8]).

Given the large variety of compartment models, both for
isotropic and anisotropic ones, we have chosen here to present
a versatile method that can adapt virtually to any of the
compartment models. This general method is described in
Section III-A. Since we need to evaluate this method on real
MCM datasets though, we have chosen to evaluate it on two
models described in the next sub-sections: the multi-tensors
model (MTM) and the DDI model. Again these are models
inspired from the literature and other options are possible both
for the choice of isotropic compartments and anisotropic ones.

B. Multi-tensors model

The MTM, popularized for registration by Taquet et al. [8],
is a straightforward extension of the well known single tensor
model. In our implementation, we have chosen to use a model
composed of several elements. First we use two isotropic
compartments: one to model free water diffusion, and one
to model restricted isotropic water diffusion that happens
in glial cells, neuron cell bodies [10], [11], and damaged
tissues [13]. Both compartments are modeled with isotropic
zero-mean 3D Gaussian PDFs, but with different diffusivities:
dfree = 3 × 10−3mm2.s−1 for free water [14]–[16], and
dfree = 1× 10−3mm2.s−1 for restricted water diffusion.

In addition to these isotropic compartments, anisotropic
compartments are modeled as individual tensors with dif-
ferent main directions, i.e. zero-mean 3D Gaussian PDFs
parametrized by their covariance matrices. In our experiments,
we used three anisotropic tensors but this number can be
smaller (or larger even though it is commonly admitted that at
most three fibers directions cross in a single voxel [17]) de-
pending on the MTM estimation scheme or if model selection
was applied.

C. Diffusion directions imaging model

The second MCM we are running experiments on is the
diffusion directions imaging (DDI) model. Similarly to the
MTM, we model diffusion in cell bodies and free water by two
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isotropic compartments, each modeled by an isotropic Gaus-
sian PDF with different diffusivities: dfree = 3×10−3 mm2s−1

for free water and drestricted = 1 × 10−3 mm2s−1 for water
diffusion restricted in cell bodies.

In addition to those isotropic water compartments, a num-
ber of anisotropic compartments (three in our experiments
but again this number may be changed depending on the
application) referred as DDI compartments, are added to
model how water molecules diffuse in axonal bundles with
various orientations. Diffusing water molecules in a particular
anisotropic compartment are assumed to undergo a random
displacement that is the independent sum of a von Mises-
Fisher (VMF) random variable on the sphere S2 of radius
r and a Gaussian random variable in R3 [9]. The VMF is
an orientation distribution with the following PDF on the unit
sphere [18]:

f(x|µ, κ) =
κ

4π sinh(κ)
exp(κµTx) (2)

where sinh is the hyperbolic sine, x ∈ S2, µ ∈ S2 is
the principal axis of diffusion, κ ∈ R+ is an orientation
dispersion index around µ (see Fig 1). This definition of a
VMF distribution is extended to a sphere of radius r:

f(x|µ, κ, r) =
κ

4π sinh(κ)r
3
2

exp

(
κµ>x

r

)
(3)

Fig. 1: Points sampled from 3 VMF distributions on the sphere
(blue: κ = 200, green: κ = 20, red: κ = 2). The mean
directions µ are shown with arrows.

Hence, the resulting PDF describing this random displace-
ment is given by the 3D convolution of the VMF distribution
with the Gaussian distribution:

p0(x|µ, κ, d, ν) = f(x|µ, κ, r) ∗
exp

(
− 1

2x
TΣ−1x

)
(2π)

3
2 |Σ| 12

(4)

where r is the radius of the VMF sphere given by r =
√
νd

and Σ the covariance matrix of the Gaussian part defined as:

Σ =
(1− ν)d

κ+ 1
[I3 + κµµT ] (5)

where d is the diffusivity along vectors µ and ν the non
Gaussian part of the compartment. The VMF distribution has a
dominant direction along µ. However an anisotropic compart-
ment represents a bundle of axons that are assumed to be in
a unique orientation with no privileged forward or backward
direction within a voxel. Therefore the water diffusion is
equal in both directions ±µ. To consider orientation instead of
direction, the PDF is then symmetrized giving the final PDF
of the DDI compartment [9]:

p(x|µ, κ, d, ν) =
p(x|µ, κ, d, ν) + p(x| − µ, κ, d, ν)

2
(6)

III. AVERAGING AND INTERPOLATION AS A
SIMPLIFICATION PROBLEM

A. Global interpolation scheme

Interpolation or averaging of MCMs from different images
may seem to be different problems. However they can all be
treated as the computation of a MCM best matching a linear
combination of MCMs. Let us consider two examples, one
of each. If we consider the construction of an atlas, i.e. an
MCM image summarizing a collection of K MCM images
registered in a common space, the construction of the mean
image requires to average at each voxel several MCMs (each
from an image with a given weight, often 1/K but which
may vary in the case of spatio-temporal atlases) into only
one. The second example can be the registration of an MCM
image onto another or the resampling of it by a transformation.
In this case, we need to define an interpolation scheme for
MCMs. Trilinear interpolation is the most classical approach
in the literature for this. However this method, as well as other
interpolation methods, ends up at each given voxel with a set
of several MCMs (K = 8 for trilinear interpolation), each with
a weight, that we need to summarize into a single MCM. The
only difference with the averaging example is that the weights
vary depending on the spatial location in the image. Since
voxels can be treated separately in both tasks, interpolation
and averaging for MCMs are in fact solved if we are able to
define a scheme for the computation of a single MCM from
multiple MCMs each with a weight.

We therefore consider the general problem of obtaining,
from a linear combination of K MCMs (each weighted by
a weight αk, with

∑K
k=1 αk = 1), an MCM that best

summarizes the information contained in the combination. A
simple solution, since MCMs are already a linear combina-
tion of individual compartments, would be to construct an
MCM containing all compartments from the K models, each
weighted according to the αk values and internal weights.

However, this is not satisfactory as this would result in an
intractable model containing a large number of compartments,
each not meaning much about the underlying microstructure of
the brain. In this section, we therefore tackle the interpolation
and averaging underlying problems as a simplification problem
with the following aim: best summarizing the information in
a linear combination of MCMs into a single MCM with few
compartments (ideally the same number as the input MCMs
but that parameter is left to the user).
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We treat this problem by following the scheme illustrated
in Fig. 2. This scheme is divided into two parts (treated in the
following sub-sections and with a proposed implementation
in Section IV-B for the studied models in the experiments):
isotropic compartments simplification and anisotropic com-
partments simplification. The reason for this separation is the
following. While anisotropic compartments share the same
interpretation (a fiber bundle inside the voxel with given mi-
crostructural properties), isotropic compartments each describe
a cell or tissue type (e.g. grey matter, glial cells, CSF...). We
have therefore chosen not to mix their simplification with
anisotropic compartments to keep the interpretability of the
resulting model.

Fig. 2: Global scheme of the simplification of 4 MCMs into
a single output MCM with a two steps process: isotropic
simplification and anisotropic simplification.

B. Isotropic compartments simplification

In addition and for the same reason as above, isotropic
compartments are treated separately as they each model a
specific tissue type and should not be mixed. For each of the
M output isotropic compartments, we want to summarize the
information coming from the K input MCMs into a single
compartment of the same type. This requires 1- to compute
the output weight ŵiso,l of each isotropic compartment in
the final MCM, 2- to simplify a weighted sum of isotropic
compartments into a single one.

The first part of the problem, weight computation, is rela-
tively straightforward. It amounts, for the isotropic compart-
ment of index l, to multiplying the input weights wiso,l of each
input MCM by the relative weights of the K input MCMs:

ŵiso,l =
K∑
k=1

αkwiso,l,k (7)

where wiso,l,k denotes the weight wiso,l in Eq. (1) for the k-th
MCM. With this done, the second part is model specific but
only requires to know a metric space or technique to simplify
M isotropic compartments into a single one. This second part
is described in Section IV-A together with its simplification
for the models considered in our experiments.

C. Anisotropic compartments simplification

Anisotropic compartments are more complex to deal with
since there are several in each input MCM (from zero to
usually three to model realistically crossing fibers in the brain),
and their number may vary due to e.g. model selection in
the MCM estimation process [19], [20]. For these compart-
ments, our framework takes as an input a number N̂ of
output anisotropic compartments in the simplified MCM. This
number, left to the user can e.g. be three by default to ensure
we keep complex fiber crossings such as the ones in the
centrum semiovale [21], [22]. The problem here is therefore
a bit different than for isotropic compartments: we start from
a set of K MCMs, each with N(k) anisotropic compartments
and wish to simplify them into N̂ compartments.

Compartments clustering. This problem is a clustering
problem. Reducing a number of objects or variables into a
smaller group (often denoted as clusters) is a common issue to
many different domains: machine learning, data compression
or image segmentation for example [23]. This is a difficult
and open problem with a large literature dedicated to it [24].
Here, we want to cluster a total of Q compartments (here
Q =

∑
kN(k)) into N̂ compartments.

Among the most popular algorithms proposed, the k-means
consists in minimizing the distance across groups between
points and their cluster centroids [25] [26]. In this algorithm,
each data point is affected to one and only one class. The algo-
rithm thus alternates, from an initial position, between centroid
computation and cluster affectation. The minimization of the
distance in the k-means algorithm is a NP-hard problem [27],
for which a large number of approximations in a polynomial
time have been proposed [28]–[30]. However these methods
are sensitive to a random initialization and the risk to converge
to a local minimum is high [31]. Another clustering category
considers a different way of affecting data points to classes
by assigning a weight to each point which corresponds to a
probability of membership to each cluster. The fuzzy C-means
clustering belongs to this category [32], [33].

”True”
anisotropic MCM

s11 · · · s1n
...

. . .
...

sn1 · · · snn


Similarity matrix

[x1, ..., xn] ∈ Rn×k

Largest eigenvectors
of the Laplacian

Simplification of the
input PDF parameters
according to the semi-
metric chosen for S

Final weights
computation:
ŵl in Eq. (9)

βj,k,l

Weights assigned
using fuzzy C-means

Fig. 3: Illustration of spectral clustering for anisotropic com-
partments simplification.

Here, we use a modified version of normalized spectral clus-
tering algorithm [34], illustrated in Fig. 3. From a similarity
matrix S between inputs, spectral vectors of dimension N̂
are computed and used to initialize a clustering algorithm.
Here, we choose a fuzzy C-means, instead of the regular
k-means algorithm, to keep a continuity when input data
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weights vary. Several choices are possible to define spectral
vectors : we use the largest eigenvectors of the symmetric
normalized Laplacian of S [34]. This method only needs
a similarity matrix between the inputs (here MCM com-
partments), is robust, well-reviewed with a large number of
algorithms proposed [35], [36]. Considering a specific distance
(or semi-metric depending on the compartment type) between
two anisotropic compartments PDFs {d(pi, pj)}i,j=1,...,Q, the
similarity matrix S is computed using the following:

Si,j =

{
exp

(
−d2(pi, pj))

2σ2

)}
i,j=1,...,Q

(8)

where d has at least the same properties than classic distance
without the triangle inequality. This defines a weak metric
in spaces not equipped with a natural distance. σ is a nor-
malization coefficient to avoid computational errors. From
this similarity matrix, the fuzzy C-means algorithm is able
to provide us with membership weights, describing how much
each j-th compartment from the k-th input MCM fits into
a l-th output class. We denote these membership weights by
βj,k,l.

Final weights computation With these weights defined,
and similarly to the previous section, the simplification prob-
lem is solved in two parts: 1- output weights ŵl computation
(for l = 1 to N̂ ) and output models parameters computation
for each output anisotropic compartment PDF p̂l. The weights
are computed as follows:

ŵl =
K∑
k=1

αk

N(k)∑
j=1

wj,kβj,k,l (9)

where wj,k is the weight wj in Eq. (1) for the k-th MCM.
With the additional constraints that ∀k = 1..K,∀j = 1..N(k),,∑
l βj,k,l = 1 (common to all clustering algorithms), that the

initial weights of each input MCM sum up to 1 (
∑
i wiso,i,k+∑

j wj,k = 1), and that
∑
k αk = 1, we can verify that

the output weights (isotropic and anisotropic) sum up to
1. Again, the second part of the problem is the estimation
of the N̂ output anisotropic compartments i.e. the p̂l PDFs
parameters. This part relies on the definition of a semi-metric
between compartments PDFs and the definition of an asso-
ciated weighted mean. A solution to this problem is derived
for the two studied models in the next sections: the tensor
compartment in Section IV-B.1 and the DDI compartment in
Section IV-B.2.

D. Summary of required bricks for simplification

This global simplification process may seem complex to
tackle. In fact, it requires only few pieces to be defined to
be implemented for virtually any model and is then very
versatile. This is thanks to the spectral clustering approach
chosen above which, contrarily to Taquet et al. approach [8],
does not assume the PDF of the anisotropic compartments or
isotropic compartments to belong to the exponential family.
We end this global framework presentation by recalling the
few bricks needed to implement this simplification approach:

• A distance or semi-metric between isotropic compart-
ments of each type (usually simple as most of these
compartments are in fact Gaussian PDFs)

• A distance or semi-metric between two anisotropic com-
partments: d(pi, pj)

• A way to compute resulting PDF parameters from a set
of weighted input PDFs for both isotropic and anisotropic
compartments

IV. COMPARTMENTS SIMPLIFICATION IMPLEMENTATION

A. Isotropic compartments
Isotropic compartments may take on different forms [10].

With the exception of a few (e.g. the Stanisz compart-
ment [11]), most of these compartments follow a zero-mean
isotropic 3D Gaussian distribution:

piso(x) =
1

(2πdiso)
3
2

exp

(
− x
>x

2diso

)
(10)

where diso is the diffusivity. In our method implementation,
we will consider only this kind of Gaussian isotropic compart-
ments.

We therefore want, for each tissue type, to simplify a set of
isotropic zero-mean Gaussian PDFs into a single one. This
falls back in the framework of symmetric positive definite
matrices processing, for which a number of Riemannian or Lie
group approaches have been proposed. We have chosen in this
paper to rely on the log-Euclidean framework [37] for its fast
computation capabilities. The computations are even simpler
for isotropic Gaussian PDFs and amount to a geometric mean
of the input diffusivities:

d̂iso,l = exp

(
1

ŵiso,l

K∑
i=1

αkwiso,l,k log(diso,l,k)

)
(11)

with diso,l,k is the isotropic diffusivity of the l-th isotropic
compartment of the k-th MCM. Additionally, one may note
that in the case of fixed, equal, diffusivities for a given
tissue type as it may happen in practice especially for models
estimated on clinical datasets, the output diffusivity will be
the same as the input diffusivities and only the weight of the
given compartment will need to be computed.

B. Anisotropic compartments
Each MCM has one or several anisotropic compartments

that represent a constrained water diffusion along particular
tissues. Within an axon, the water is indeed trapped and then
diffuses along the axon direction. A bundle of axons oriented
in the same direction creates an anisotropic water diffusion
at the voxel level. This water diffusion is represented as an
anisotropic compartment following different models depend-
ing on the MCM considered. We present here the distances
or semi-metrics, together with the computation of the output
compartment PDFs parameters for the tensor compartment
(that gives rise to the multi-tensor model - MTM) and the
diffusion directions imaging compartment (that gives rise to
the DDI model).
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For each cluster k, we wish to summarize the set of
PDFs pj,k (PDFs of the j-th compartment in the k-th input
MCM) with their associated weights from Eq. (9) into a
single compartment of the same type. To simplify notations
in the following section, we now just consider n anisotropic
compartments with their corresponding weights wi that we
want to simplify into a single one. To perform spectral
clustering, we also need to be able to compute a distance or
semi-metric between two anisotropic compartments. We do so
in the following sub-sections for the two compartment types.

1) Tensor compartments: The MTM is a straightforward
extension of the classic DTI. In addition to isotropic compart-
ments, the anisotropic compartments are modeled as tensors,
i.e, 3D Gaussian distributions with zero-mean, parameterized
by a symmetric positive-definite matrix. Let {Ti}i=1..n be a
set of tensors with their corresponding weights {wi}i=1..n. Es-
timating the output PDF parameters amounts here to compute
a tensor T from this set of tensors and weights. All {Ti}i=1..n

belong to S+3 (R), the space of positive-definite matrices. On
this space, we can use again the log-Euclidean framework [37].
The simplified tensor is recovered as:

T = exp

(
n∑
i=1

wi log(Ti)

)
(12)

From this, we can easily and efficiently simplify any number
of tensors into a unique one. A distance between two tensors
is also directly defined in the log-Euclidean space as:

d(T1, T2) = || log(T1)− log(T2)||F (13)

where ||.||F is the Frobenius norm. The similarity matrix used
for spectral clustering is thus derived from Eq. 8.

2) Diffusion direction imaging compartments: Again, to sim-
plify notations, we consider n DDI compartments with their
corresponding weights wi that we want to simplify into one
compartment. Let µi, κi, νi, di be the parameters of the input
compartments (refer to Section II-C for more details) and
µ, κ, ν, d be the parameters of the final compartment.

This distribution is too complex to allow for a natural
analytic metric. Thus, we propose 4 different methods to
perform the simplification based on the different parts of
the DDI compartment PDF: (1) simplest, a naive method
using the Euclidean metric; (2) tensor, a metric based on the
compartments main orientations; (3) log VMF, a metric based
on the VMF distribution, (4) covariance analytic, a metric
based on the Gaussian part of the DDI compartment.
Simplest. Each µi is a unit direction in S2. However, they
do not represent a direction but an orientation. The simplest
way to solve this problem (as two opposite directions) is to
put all µi in the top hemisphere and compute their Karcher
mean on the sphere to obtain µ. The rest of the parameters
are estimated as a weighted Euclidean mean.

Here, all parameters are estimated independently and we
wish to compute a similarity measure to this semi-metric. A
weighted sum of distances using all parameters is used and
defined as:

dsimple(p1, p2) =| < µ1, µ2 > |+ δ|κ1 − κ2|+
β|d1 − d2|+ γ|ν1 − ν2|

(14)

with δ, β, γ some terms to normalize the influence of the
parameters in dsimple. The similarity matrix S used for
spectral clustering related to this approach is then defined
using the semi-metric defined in Eq. (14) along Eq. (8).

This method should be considered only as the most naive
approach to create a semi-metric and give a reference. In
a general case, it does not constitute a good mathematical
framework to tackle this problem.

Tensor. The simplest approach is only a partial solution,
especially for directions close to the sphere equator, which
might generate discontinuities. We now consider µi as orien-
tations instead of directions. To do so, µi is represented as a
cigar-shaped tensor Ti defined as:

Ti = µiµ
T
i + εI3 (15)

with ε = 10−6 to have non degenerated tensors and I3 the
identity matrix. Then, Ti ∈ S+3 (R) and we can use the log-
Euclidean framework on tensors. T is computed in a similar
way to MTM (see Eq. 12). µ thus becomes the principal
direction of T (i.e the eigenvector with the largest eigenvalue).
The other parameters are obtained by the weighted Euclidean
mean as for the simplest averaging. Also the semi-metric
between compartments is defined as:

dtensor(p1, p2) = || log(T1)− log(T2)||F + δ|κ1 − κ2|+
β|d1 − d2|+ γ|ν1 − ν2| (16)

where δ, β and γ are normalization coefficients.

Covariance analytic. Another approach uses information
from covariance matrices Σi of the DDI compartments. These
Σi matrices belong to S+

3 (R) and can be merged into Σ using
the log-Euclidean framework:

Σ = exp

(
n∑
i=1

wi log(Σi)

)
(17)

We then wish to extract all parameters from Σ. We start
by approximating Σ by a cigar-shaped tensor to match the
DDI compartment structure. To do this, we need to enforce
two equal secondary eigenvalues λ⊥. In the log-Euclidean
framework, this amounts to compute λ⊥ as λ⊥ =

√
λ2λ3

where λ2, λ3 are the two lowest eigenvalues of Σ. We now
have Σ̂ the cigar-shaped tensor of C:

Σ̂ =
(1− ν)d

κ+ 1
[I3 + κµµT ] (18)

A tensor in S+
3 (R) with 3 different eigenvalues has 6 specific

parameters, however our tensor is cigar-shaped and then only
has 4 specific parameters. We want to recover 2 parameters
for the direction µ and 1 for κ, µ and d. For the missing 5-th
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parameter, we process by identification using the relationship
r2 = νd. To exploit this relationship, we define the weighted
mean radius as the one whose sphere surface is the weighted
mean of the input sphere surfaces. This corresponds to a
weighted Euclidean mean of the individual r2i :

r =

(
n∑
i=1

wir
2
i

) 1
2

(19)

This therefore gives us a direct relation between ν and d
leading to only 4 parameters to estimate (µ, κ and ν), d
being computed as d = r2/ν. Then, we can estimate all the
parameters by the resolution of the eigensystem of Σ̂. We
obtain µ as the principal eigenvector of Σ and the following
estimation for ν and κ :

ν =
r2

λ+ r2

κ =
λ

λ− λ⊥

(20)

In the covariance analytic method, all the parameters except
r are estimated from the eigen analysis of Σ̂, the weighted
mean of the covariance matrices. Thus, the natural choice to
define a distance in this case is to compute directly the log-
Euclidean distance:

dcovariance analytic(p1, p2) = || log(Σ1)− log(Σ2)||F (21)

log von Mises Fisher. We now explore the option to use the
VMF to compute µ and κ and recover only ν from Σ̂. We want
to consider a VMF distribution as a point in a Riemannian
manifold following geometric information methods. To define
a metric on PDF spaces, a theoretical framework exists using
partial derivatives of the PDF though Christoffel symbols [38].
We tried to apply such a framework to VMF distributions,
unfortunately, the corresponding partial derivative equations
are not analytically solvable. Therefore, to consider a VMF as
a point of a Riemannian manifold, the two parameters need
to be treated separately.

The space S2 × R+, where the couple of parameters (µ,
κ) evolves, is a Riemannian manifold as a product of two
Riemannian manifolds. Therefore the averaging of the two
parameters µ and κ can be treated independently. To compute
the weighted mean of several points, a geodesic on these
manifolds is defined (refer to [39] for details). Following
this geodesic, the orientation averaging is similar to tensor
averaging. The interpolation of κ is done recursively by
projection as in McGraw et al. [39]. Letting κ = κ1, we repeat
until convergence (i.e until lκ < ε): lκ =

n∑
i=1

wi log
(κi
κ

)
κ = κ exp(lκ)

(22)

This iterative method converges to the Fréchet mean in the
tangent space. Similarly to the covariance analytic method, we
then use the relation r2 = νd. Then knowing all parameters

except ν, we obtain it from Σ̂ as in the covariance analytic
method. As 2 equations are available to estimate one param-
eter, we compute the least square solution to ensure more
stability:

ν =
r2[2r2 + λ+ λ⊥(1 + κ)]

2(r2 + λ)[r2 + λ⊥(1 + κ)]
(23)

The log VMF metric in the Riemannian manifold S2 × R+

belongs to the log-space for both direction and concentration
parameters. Therefore we compute the distance of tensors and
the distance of κ with their corresponding Riemannian metric
which give the following semimetric between compartments:

dlogVMF(p1, p2) = || log(T1)− log(T2)||F+

δ| log(κ1)− log(κ2)|+ β||r1 − r2||22 (24)

where δ, β and γ are normalization coefficients.

V. EXPERIMENTS AND RESULTS

A. Evaluation of DDI compartment simplification on
simulated data

The MCM simplification holds two different parts: the
global scheme which is generic and applicable to any MCM
and the compartments simplification part that is related to
the anisotropic compartment considered. The evaluation of the
global interpolation for two MCM, the MTM and the DDI, is
done in Section V-B. In this section, we present the evaluation
of the compartments simplification on the DDI compartment
according to the different metrics proposed.

To do so, we evaluate the simplification 4 weighted DDI
compartments into a single one on a 11× 11 grid, illustrated
in Fig. 4. The 4 corners of this grid correspond to 4 different
reference DDI compartments. The rest of the grid is composed
with the 4 DDI compartments of the corners weighted by their
distance to the current spatial position (see reference in Fig 4).
The orientation of each DDI compartment in the corners is
randomly chosen on the sphere and the rest of the parameters
are picked within the following uniform distributions: [0, 1]
for ν, [0, 20] for κ, [5.10−4, 5.10−3] mm.s−2 for d. From
this reference grid including 4 compartments in each pixel,
we compute for each method proposed a simplified grid
with only one compartment: simplest, tensor, logVMF and
covariance analytic. To perform a quantitative evaluation, in
each pixel, a DWI having 180 directions on 3 shells (b =
1000, 2000, 3000 s.mm−2) is simulated for the reference and
each evaluated simplified model following Eq. (6) in [9].
Finally, the Euclidean error map is computed between the
reference and each metric.

On the grids presented in Fig. 4, compartment orientations
obtained by the simplest method are clearly not in accordance
with the ground truth leading to large Euclidean errors. The
orientations obtained by the tensor and logVMF methods
seem more accurate, although they are still leading to large
residual errors. In particular for these methods, regions with
orthogonal directions keep large κ values which is not realistic.
Crossing fibers should indeed induce more dispersion, which is

Authorized licensed use limited to: INRIA. Downloaded on January 14,2021 at 15:24:36 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2020.3042765, IEEE
Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020 9

(a) simplest (b) tensor (c) log VMF

(d) covariance analytic (e) reference (f) scalar bar

Fig. 4: Illustration of DDI compartment simplification using
the 4 methods superimposed on their local error maps with the
corresponding scalar bar at the bottom right. The original grid
with 4 superposed compartments at each pixel is the reference
image.

more equivalent to a single compartment with a low κ value
and a low d value. The covariance analytic method reflects
this expected behavior resulting in a smaller error than all
other methods. We further simulated 500 random grids and
computed their simplification. Again, the Euclidean difference
between the simulated DWI from these maps was computed,
averaged and normalized so that the simplest method gets a
reference result of 100. We obtain the following normalized
values for the 4 methods: simplest 100, tensors 31.6, logVMF
28.0, covariance analytic 11.1. These results confirm that the
covariance analytic method obtains the lowest error for the
compartment simplification part.

B. Experiments on real data for MCM interpolation
1) MTM: We now test the entire MCM interpolation pipeline

including anisotropic and isotropic compartments simplifi-
cation. A MTM is estimated from a subject of the HCP
data [40], which is a DWI with 145 × 174 × 145 voxels
with a 1.25 × 1.25 × 1.25 mm3 resolution and 270 gradient
directions over 3 b-values (1000, 2000, and 3000 s.mm−2).
The estimated MTM includes 3 anisotropic compartments
(tensors) and two isotropic compartments (one free water with
a diffusivity dfree = 3×10−3 mm2s−1 and one restricted water
with a diffusivity drestricted = 1× 10−3 mm2s−1).

To test the global interpolation scheme, a rotation of angle
120 degrees is picked around a random axis and then applied
3 consecutive times to the original MTM image. We then
compare the final MTM obtained to the original one. To
visualize the MTM, we compute the MTM PDF values on
several points of a sphere and deform it using these values.
As a consequence, the sphere will be elongated along the
most probable diffusion directions and contracted elsewhere.
To perform a quantitative evaluation, the DWI corresponding
to the original and rotated MCM were simulated using 180

gradient directions with 3 shells (b = 1000, 2000, 3000
s.mm−2). The absolute difference between the two simulated
DWI were then averaged along the 180 gradients.

(a) Original (b) Rotated

(c) Original zoomed (d) Rotated zoomed

Fig. 5: Visualization of an original MTM and its correspond-
ing interpolation after 3 rotations.

The visual representation of the original and interpolated
MTM is presented in Fig. 5. At the brain level, the MTM
seem very similar to the original one although smoother.
In the zoomed area, despite crossing in the original MTM,
the rotated MTM stay close to the original models even
in the crossing region. As expected, the image is smoothed
by the interpolation but all main orientations are recovered.
Visually after 3 consecutive interpolations the result seems
very good compared to the original MTM. Quantitative results
for this experiment are presented in Fig. 6. The DWI absolute
difference is more important within the ventricles, which have
an isotropic diffusion along with a high noise level. Yet, within
the rest of the brain, the absolute difference is mostly under
10% which seems reasonable.

2) DDI: We then tested the entire MCM interpolation
pipeline for the DDI. To perform the validation of the different
DDI compartment interpolation methods on real data, we
tested methods on a set of 46 real DDI estimated from DWI
with 128×128×55 voxels with a 2×2×2 mm3 resolution, 30
gradient directions with one b-value = 1000 s.mm−2. Input
DDI have been estimated with 3 DDI compartments and one
free water compartment [41].

For each input DDI, we compute a rotation of angle 120
degrees and then apply it 3 consecutive times for each 4
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Fig. 6: First column: original MTM; second column: interpo-
lated MTM after 3 rotations of 120 degrees; third column:
absolute difference between the DWI simulated from the
original and rotated MTM.

methods: simplest, tensors, log VMF and covariance analytic.
From the 4 resulting DDI, one for each method, and the
original one we compute the corresponding DWI images.

Fig. 7: Illustration of DDI interpolation with the 4 proposed
semi-metrics. The evaluation is done after 3 consecutive
rotations of 120 degrees. Each method is represented by
two contiguous images, the interpolated DDI and the DWI
Euclidean distances. The original DDI is located at the center.

These DWI are estimated from a set of 270 gradient on 3 shells
(b = 1000, b = 2000, b = 3000 s.mm−2) coming from the
HCP database [40]. We then compute the Euclidean distance
between each rotated DDI and the original one on the DWI
corresponding images. All DDI compartment interpolation
methods and their corresponding DWI Euclidean distances are
illustrated in Fig 7. The DDI of the simplest method seems
very different to the original DDI showing that the orientation
of the interpolated compartments is not well estimated. At
this scale, the DDI of the 3 other methods look similar to
the original DDI. Regarding the DWI Euclidean distances, the
two worst images correspond to the simplest and the log VMF
methods, the best of all being the covariance analytic method.
A deeper visual analysis of the 2 best methods will be made
in the following, but first, we present the quantitative results.

For each DWI difference image the sum of the Euclidean
distances is divided by the size of the mask of the brain, then
the global results are normalized to set the median of the
simplest method to 100. The results are presented in Fig. 8.
Means are respectively: simplest 101.2, tensor: 69.1, logVMF:
118.1, covariance analytic: 58.0. The methods are classified
in the same order for all 46 subjects showing very robust
results (all paired t-tests, p < 1.0×10−18). The corresponding
effect sizes were estimated using the Cohen’s d absolute value
[42]: d(simplest,tensor) = 1.06, d(simplest, logVMF) = 0.70,
d(simplest, covariance analytic) = 1.41, d(tensor, logVMF)
= 1.68, d(tensor, covariance analytic) = 0.37, d(logVMF,
covariance analytic) = 1.99.

The logVMF suffers from the multiple interpolations and
obtains worse results than the simplest method, which stays far
from the two best methods. The covariance analytic performs
significantly better than the tensor showing an improvement,
moderate but very robust, for several successive interpolations.

Fig. 8: Error between the DWI corresponding images of the
original DDI and the one estimated after 3 rotations following
the 4 different methods.

Following the same process than for MTM, we visualize the
original DDI and the one rotated, for one of the 46 subjects
of our dataset, by the two methods that obtained the best
results, tensor and covariance analytic(see Fig. 9). On the first
line, the 3 images have the same aspect though the rotated
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DDI seems smoother than the original one, however more
interesting observations come with a zoom. On the second
line, the covariance analytic method compartments are smaller
than the original ones probably due to an under estimation of
the diffusivity. On the same line, the compartments size of the
tensor method seem slightly bigger than the original DDI. The
third line represents all the compartments at the same size to
focus on the orientation. We can see that orientations of the
compartments obtained with covariance analytic methods are
very similar to the original ones while the compartments from
the tensor method orientations seem different. These observa-
tions show that even if all these methods have imperfections,
the covariance analytic method is able to robustly recover the
orientation after 3 successive rotations.

(a) Original (b) Covariance analytic (c) Tensor

(d) Original Zoomed (e) Covariance Zoomed (f) Tensor Zoomed

(g) Original Enhance (h) Covariance Enhance (i) Tensor Enhance

Fig. 9: Illustration of two DDI compartment interpolation
methods, covariance analytic and tensor, compared to the
original DDI. The interpolation is made applying 3 consecutive
rotation of 120 degrees. The first line represent the original
DDI and the two interpolated by the covariance analytic
method and the tensor method. The second line represents
the same images zoomed on the yellow rectangle. The third
line represents the same zoom with all the compartments
normalized to the same size to focus on the orientation of
the DDI compartments.

C. DDI Atlas Construction
One of the goals of MCM registration is the production

of an average atlas of the white matter microstructure. We
computed an atlas from 46 DDI following Guimond et al.
atlas construction method [43]. This atlas construction was
performed using non linear DTI registration as proposed by
Suarez et al. [44]. Then, the obtained transformations were

applied to the DDIs. We interpolated the DDIs using our
clustering method with the covariance analytic approach. In
addition, when applying a transformation to oriented models, it
is necessary to apply the local linear part of the transformation
to the interpolated models. We used a technique similar to
finite-strain reorientation for tensors [45] by applying the local
rotation to the µi directions of each anisotropic compartment
of the interpolated DDI. We present the visual result of the
atlas and a zoomed area in Fig. 10. This atlas provides a
clear distinction of crossing fibers and will be of great interest
in future studies for example of white matter microstructure
destruction in diseases.

Fig. 10: Example of a DDI atlas superimposed on the average
B0 image: Axial view on the first line and coronal view. This
atlas is constructed from our database of 46 real DDI images.

VI. DISCUSSION

In this study, we presented a general framework to inter-
polate MCM and we applied it for two anisotropic compart-
ments: the tensor compartment and the DDI compartment.
The averaging of several tensors can be done in a multiple
ways preserving different properties of the tensors [46], [47].
We chose the log-Euclidean framework as a fast and efficient
method and more importantly because it offers a natural
metric. On the contrary, no natural metric is available yet for
the DDI compartment and it is more challenging to find a
robust one as demonstrated in this paper. Thus, a potential
direction for future work could be to investigate this question
for other anisotropic compartments (NODDI, CHARMED, ...).

One other important point in our approach is the choice of
the semi-metric or metric that is applied. This choice is crucial
as it may change the parameters of the simplified models.
It therefore has to be adapted to the application for which
the interpolation or averaging is made. We have chosen in
our experiments and method to use metrics that preserves
as much as possible the PDF of the resulting simplified
compartments but other options could be explored such as
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more microstructure oriented metrics that would preserve other
properties of the compartments.

Another acute problem is the number of clusters of the
model. In our experiments, the number of anisotropic com-
partments is the same for the entire image. A priori, some
parts of the brain do not need 3 compartments in addition
to a free water compartment. Tools based on AIC exist to
compute a specific number of compartments for each voxel
[48]. The number of compartments after interpolation in
our algorithm is however fixed for the entire image. Simple
solutions towards handling better images with varying num-
ber of anisotropic compartments include taking the mean or
maximum of the number of clusters of the input voxels do
not support successive transformations. We can imagine smart
algorithms to estimate automatically the optimal number of
clusters after interpolation. Such methods already exist for
spectral clustering based on rotation of the spectral vector [49]
or the selection of eigenvalues [50]. Unfortunately they cannot
consider one cluster as a solution and are thus not directly
applicable to our problem.

Finally, the purpose of this method is to provide efficient
tools to directly register a set of MCMs on a common
reference. A clinical study often includes data from a group
of healthy subjects, and a group of patients affected by
the same disease. From such a database, we are looking
for biomarkers that highlight anatomical abnormalities. The
registration of such abnormalities, as lesions, is an important
topic and difficult one. There is indeed no guarantee that
a lesion after the registration process can be detectable or
keep the same properties. This complex problem is common
to all the registration methods, including ours. Therefore,
it could be interesting, as a future work, to compare how
the preservation of lesion biomarkers depends on the chosen
registration method.

VII. CONCLUSION

As MCM becomes increasingly used in research studies
and are on the line to be evaluated on clinical one, tools
specifically designed for such models are required. In this
paper, we proposed a method to interpolate and average MCM
images as a simplification problem. Isotropic and anisotropic
compartments averaging are treated separately, this latter
part using spectral clustering adapted for this purpose. This
simplification process, very generic, can be applied to any
MCM provided that we are able to compute semi-metrics
between anisotropic compartments. The code for MCM image
averaging and interpolation is available open-source as part of
the Anima1 software package.

We tested the entire pipeline applying 3 consecutive rota-
tions to an original MTM estimated from HCP data. For each
applied rotation, at each voxel, 24 anisotropic compartments
are simplified into 3 ones using spectral clustering. Yet, after
3 rotations the interpolated MTM is very similar compared
to the original MTM showing its ability to preserve crossing
fibers. In addition to this, quantitative experiments were also

1Anima: Open source software for medical image processing from the
Empenn team. https://anima.irisa.fr - RRID:SCR 017017

performed on DDI comparing 4 different metrics for both
synthetic and real data. The covariance analytic method ex-
hibits significantly better performance than other ones for both
experiments. As we saw in the visual analysis there are still
some questions to be analyzed further on the attenuation of the
diffusivity with the covariance analytic method, nevertheless
it is able to robustly recover the orientation after several
transformations.
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