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ABSTRACT

The railway industry in European countries is standing a

significant competition from other modes of transportation,

particularly in the field of freight transport. In this

competitive context, railway stakeholders need to modernize

their products and develop innovative solutions to manage

their asset and reduce operational expenditures. As a result,

activities such as condition-based and predictive maintenance

became a major concern. Under those circumstances, there

is a pressing need to implement prognostics and health

management (PHM) solutions such as remote monitoring,

fault diagnostics techniques, and prognostics technologies.

Many studies in the PHM area for railway applications are

focused on infrastructure systems such as railway track or

turnouts. However, one of the key systems to ensure an

efficient operability of the infrastructure is the overhead

contact line (OCL). A defect or a failure of an OCL

component may cause considerable delays, lead to important

financial losses, or affect passengers safety. In addition

maintaining this kind of geographically distributed systems

is costly and difficult to forecast. This article reviews the

state of practice and the state of the art of PHM for overhead

contact line system. Key sensors, monitoring parameters,

state detection algorithms, diagnostics approaches and

prognostics models are reviewed. Also, research challenges

and technical needs are highlighted
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permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

1. INTRODUCTION

These last years, railway industry made heavy investments

on the digitalization of its products and services. This

should be a considerable lever for product modernization

and a response to the concurrence from other types of

transportation. The digitalization can have a great impact

in multiple segments such as train control or signaling and

especially in maintenance policies for both rolling stock

and rail infrastructure. This trend can enable railway

operators to provide better customer service and reduce

operational expenditures, particularly in Europe, where the

harmonization and the liberalization of the rail market are

continuously increasing cost pressure on railway operators.

In addition, this is a chance for railway manufacturers

to develop new products and services in an increasingly

competitive global market. Consequently, condition-based

maintenance and predictive maintenance are seen as the

major fields of digital technologies applications aiming

maintenance costs reduction and a better service reliability.

The Prognostics and Health Management (PHM) is a

cutting-edge discipline, at the core of different technologies,

which aims to afford solutions for asset monitoring,

algorithms for health assessment, fault diagnostics, and

failure prognostics, as well as decision optimization and

Human Machine Interface development. Hence, in current

railway context, the use of PHM solutions can help to

deploy efficient condition-based and predictive maintenance

policies. This will enable the operators meeting industrial

challenges such as high service reliability, low operational

expenditures, and high asset availability.

Several solutions have been developed based on PHM



techniques for the different railway subsystems. Most of

these solutions are based on existing PHM technologies

fitted for rolling stock components such as bearings, railcar

wheels or brakes. In the area of infrastructure systems, point

machines are one of the main subjects of study. In this paper,

we will provide a review of key enablers for the deployment

of a PHM solution for an OCL system. Developing such

technologies, in the railway field, need to address the state

of art and the state of practices for the OCL system. For this

purpose, the section 2, gives a brief overview of the existing

PHM solutions in the railway industry. Section 3 reviews

the main steps for PHM solution deployment. Section 4

describes the OCL system, its most critical components, and

their failure modes. Then, we present the state of practices for

OCL monitoring in sections 5 and 6. In section 7 we address

a review of advanced data analytics and signal processing

techniques for OCL failure detection and diagnostics. Section

8 focus on OCL contact wire (CW) wear prognostics. In

section 9 insights are given for decision-making step, based

on prognostics and diagnostics data. Finally, we conclude in

section 10.

2. PHM IN THE RAILWAY INDUSTRY

Railway operators need new means to drive maintenance,

enhance service reliability and reduce operational costs. This

implies investments in new solutions and products which can

give asset’s current state and enable in-line data capture and

events processing. In this context, several PHM solutions

have been developed. The following section presents some

of the existing PHM solutions in the market.

2.1. Current Development of PHM in Railway Industry

Recent years have seen a keen interest in monitoring systems,

diagnostics and prognostics algorithms, and decision support

solutions for railway maintenance and fleet management.

This trend began with the deployment of several remote

monitoring products for rolling stock systems. In 2006,

ALSTOM launched a remote monitoring system called

TrainTracer (Alstom, 2017) which aims to track the state

of each train during its operation. TrainTracer captures data

from multiple sensor sources coupled with GPS localization

allowing a continuous monitoring of the train. This tool

was completed in 2008 by ”eTrain”, a data collection system

which enables train-to-ground data transmission networks

and a ground processing system. In the same way,

Siemens proposed a solution called EFLEET composed of

a set of wireless data transmission, remote-monitoring and

analysis solutions dedicated to rolling stock. Similarly,

GE developed in early 2000 a remote monitoring system

and fault diagnosis system called RM&D, including the

real-time status, performance information, GPS positioning

and environmental data (Lu, Shan, Tang, & Wen, 2016). The

main purpose of these products is to to capture and store data

remotely from a fleet of vehicles which enables to set up a

condition-based maintenance.

Later, a new type of solutions has appeared on the

market dedicated to predictive maintenance. Orbita,

a Bombardier Transportation solution, can generate

maintenance requirements automatically from different

sensors by gathering data from remote sensors installed on

different sub-systems of the rolling stock and achieving data

analytics for fault diagnostics and prediction (Le Mortellec,

Clarhaut, Sallez, Berger, & Trentesaux, 2013). HealthHub

(Alstom, 2016) is a predictive maintenance solution proposed

by Alstom which makes it possible to determine the status

of rolling stock, infrastructure and signaling systems

automatically. This tool includes TrainTracer for rolling

stock sub-systems monitoring, TrainScanner, a diagnostics

portal which is capable to measure wheels condition, brake

pads, pantograph strips wear and check the train integrity.

HealthHub includes also TrackTracer, a set of monitoring

systems for railway track, and CatenaryTracer, a solution

for OCL monitoring, these two solutions can be integrated

within an operational vehicle. In addition, data provided

from different sources are sent to ALSTOM’s Cloud platform

in order to apply advanced algorithms for diagnostics and

failure prediction. In the same trend, Siemens proposes

Railigent (Railigent - Digital Services, 2017), a remote

monitoring system which is capable to transmit data from

infrastructure and vehicle systems to terrestrial terminals in

real time. This solution is completed by a single platform

called Sinalytics (Gaus & Kayser, 2016) for remote analytics

and maintenance services including railway, energy and data

models to predict and prevent faults and energy consumption

analysis.

The objective of deploying such tools is, at first, to provide

solutions to gather an important amount of data from different

components and subsystems and store them into a cloud

solution in order to enhance analysis algorithms to achieve

a better condition monitoring of an asset and automatic

advisory generation. Combining these different technologies

will constitute a PHM system for each monitored component

or sub-system.

2.2. Beyond the Current Technology

At least a decade ago, rolling stock and infrastructure

maintenance policies were based essentially on planned

inspections and experts’ knowledge. Investments in

remote monitoring technologies is allowing an evolution

of the traditional preventive maintenance policies to a

condition-based and predictive maintenance. For this

purpose, PHM for railway systems can provide key tools

to meet the railway industry needs, namely, safety, service

reliability, and economics. A way to achieve PHM

implementation is to adapt the existing PHM solutions to



railway industry. Therefore, the available PHM products for

railway are deployed gradually.

The railway manufacturers initially invested on remote

monitoring solutions for train subsystems such as doors,

brakes, HVAC, toilets, engines, etc. Thereafter, data analytics

with cloud computing solutions were deployed. The trend

is currently extending PHM to the other sub-systems of

the rolling stock, and infrastructure. Currently, railway

manufacturers have to design specific monitoring systems

for infrastructure. One of the solutions considered is

to design monitoring systems integrated within operating

trains for infrastructure monitoring. However, it may be

difficult to manage data acquisition within different trains

velocity and operational conditions, particularly in the case of

infrastructure systems. In fact, the infrastructure is generally

maintained by operators, which use dedicated inspection

trains. This capability falls within the specialized inspection

companies such as MER-MEC, Eurailscout, and DMA

companies, or operators trains dedicated to monitoring track

condition and OCL such as ”Doctor Yellow” a high-speed

train used on the Japanese high-speed network for the

Shinkansen (”Bullet Train”), and the IRIS 320 for SNCF

(French National Railway Corporation).

All things considered, designing a PHM solution for

infrastructure components need a global awareness of

practices and application characteristics. The following

paragraphs address the key state of practices and state of art

of PHM techniques for OCL.

3. DESIGN CONTEXT OF A PHM SOLUTION FOR AN

OCL

A successful implementation of a PHM program has

to meet important constraints related mainly to PHM

objectives and asset specificity. The OCL system is

geographically extended. It is composed of a large

population of standardized components and is considered

as a large-distributed system. It is subject to an

evolving environment and different operational conditions.

Consequently, an adapted architecture has to be set up for

such large-scale assets. A PHM system architecture for an

OCL system is proposed in (Brahimi, Medjaher, Leouatni,

& Zerhouni, 2016) considering trains equipped with data

acquisition systems, which enable infrastructure monitoring.

The proposed architecture addresses the constraints related

to the interacting components of both the rolling stock and

the OCL for data capture. In addition to asset characteristics,

PHM objectives can be related to different topics. For the

operators, a main objective is to generate alerts in real time

and promptly submitting it for immediate intervention. More

generally, a PHM system for an OCL has to deal with three

main objectives:

• use a minimum number of dedicated sensors to collect

data and deploy appropriate data collection facilities,

• access, monitor and manage the system health status

remotely with adapted algorithms and manage reference

models based on the collected data and operational

conditions. This objective depends on whether diagnosis

is achieved off-board or on-board (Le Mortellec et al.,

2013),

• propose appropriate advise on the maintenance policy

based on the state of health of the system

PHM systems implementation strategies have been discussed

by various researchers (Uckun, Goebel, & Lucas, 2008;

Kumar, Torres, Chan, & Pecht, 2008; Saxena et al., 2010;

Lee et al., 2014; Lamoureux, Massé, & Mechbal, 2015).

(Kumar et al., 2008) addressed a general description of

a hybrid approach implementation for electronic products.

(Lee et al., 2014) proposed a general methodology for

rotating machinery. These two contributions present a general

description of the requirements for each step of a PHM

program: (1) Data acquisition, (2) Data processing, (3)

Health Assessment, (4) Diagnostics module, (5) Prognostics

module, and (6) Decision. Other methodologies take a

broader view and present a general process dealing with

system requirements, objectives, and validation process

(Saxena et al., 2010; Lamoureux et al., 2015). Lately,

(Aizpurua & Catterson, 2016) formalized a generic approach

called ADEPS (Assisted Design for Engineering Prognostic

Systems) for systematic implementation of a prognostics

solution. This approach allows the verification and

validation of design requirements, but also prognostics

impact assessment based on system engineering and

reliability engineering analysis. More generally, the

proposed approaches for PHM system design share common

characteristics that can be broadly summarized as follows:

1. Definition of the requirements and objectives: this step

often results from a cost-benefit analysis of a PHM

system development regarding defined objectives.

2. Identification of a subset of components to be monitored:

this step relies on critical components identification with

respect to defined objectives. Hazard analysis can be

used in order to select the targeted components.

3. Definition of physical parameters to be monitored: these

parameters are related to failure mechanisms and modes

of the critical components.

4. Design of the PHM system architecture and design of

hardware and software solutions (Saxena et al., 2010):

this step consists of designing the different modules of

a PHM program. It depends on the approach chosen

for prognostics and diagnostics tasks. But also, on the

available data and the accuracy of available models.

5. Integration of the developed hardware and software

solutions: in this phase, the system is deployed at the



Figure 1. A high-speed pantograph and its main components.

level of each component and then at a system level.

6. Validation and verification of the system: the validation

and maturation of prognostics (Massé, Hmad, & Boulet,

2012) is carried out during this step.

In the proposed design methodology, the steps 2, 3 and 4

need to study the supervised system and review the state

of practices. The following sections present the main

technologies and key methods used through each discipline

of a PHM program: data capture, detection, diagnostics,

prognostics and advisory generation for an OCL.

4. OCL CRITICAL COMPONENTS AND THEIR FAILURE

MODES

The OCL coupled with the pantograph form the current

collection system. Its main function is to ensure a constant

contact between the pantograph head (pan-head) and the OCL

contact wire (CW) in order to keep an uninterrupted power

supply to the train. The figures 1 and 2 (Adapted from (UIC,

2007)) show a definition of the two interacting systems.

An OCL system is subject to multiple sources of faults

during its life-cycle, mostly caused by a failure, a damage

or a bad-fitting of a component. The OCL is a high

availability system and has a design life cycle in exceeding

30 years. However, its failure can cause significant delays or

cancellations resulting in large losses for the operators. For

example, 150 million euros of losses due to an OCL incidents

were recorded in 2005 by the SNCF (Massat, 2007).

In addition, current OCL maintenance policies are based

on preventive maintenance tasks, which involve planned

inspections of the OCL leading to traffic interruptions,

planning and overhauls issues. In this case, utilization

of condition monitoring to reveal incipient faults can be

considered as one way to schedule preventive maintenance

and optimize maintenance costs. Consequently, identifying

Figure 2. A span schematic of the OCL system.

a subset of components to be monitored regarding their

criticality and maintenance objectives is a key step for

designing a PHM solution. In (Brahimi, Medjaher,

Zerhouni, & Leouatni, 2016), a methodology for OCL

critical component selection is presented, where the authors

considers a PHM program deployment. The selection

procedure is related to three objectives: service reliability,

system availability, and maintenance costs. The following

critical components and their failure modes and mechanisms

are presented based on a previous work and Alstom’s experts’

knowledge.

4.1. OCL Contact Wire

The CW is the main component of an OCL. Its main

function is to ensure current transmission to the train through

sliding contact within pantograph strips. It is subject to two

main failure modes: bad positioning and important wear.

Additionally, the CW overhaul is the most-expensive cost of

the OCL maintenance budget.

An excessive stagger or sag of the CW can lead to a

pantograph dewirement (pantograph comes off the contact

wire) which can result in the OCL destruction. A bad position

of the CW can be caused by extreme weather conditions or

bad equipment installation. Consequently, for safety reasons,

infrastructure maintainers organize regular inspections to

measure the height and the stagger of the CW.

During its life cycle, the contact wire is subject to wear due

to environmental or operational parameters such as overheat,

arcs, exceeding contact force and more generally the

pantograph-catenary interaction. The CW wear estimation

is done by the calculation of the ratio between the original

section and the worn area of the CW. The threshold for

its overhaul is fixed at 80% of the original CW section.

Furthermore, it has been shown that the wear mechanism is

due to the combination of three physical phenomena (Bucca



& Collina, 2009; Usuda, Ikeda, & Yamashita, 2011; Bucca &

Collina, 2015) :

• Electrical contribution to wear. It is due to the current

flow at the contact between the CW and collector strips.

The power dissipation at the contact point involves a

wear of both strips and CW. This contribution depends

mainly on strips materials, and current levels and voltage.

• The mechanical wear is generated by the friction and

shocks caused during the interaction. This contribution

depends on the hardness of collector strips, surface

condition, contact force, train speed, and weather

conditions.

• Electrical arcs are generated during a loss of contact

between the CW and the pantograph. This power

dissipation may cause an electrical erosion and fusion for

both CW and pan-head strips.

4.2. Cantilever and Steady Arm

The OCL cables are normally supported from lineside masts

by using cantilevers. The messenger wire and the CW are

attached, respectively, to the stay tube (tie bar) and the steady

arm. The cantilever is electrically insulated from the masts

by using insulators (See Figure 3). The components that are

in motion and mechanically loaded are the most sensitive to

wear. Hence, the steady arm, linkages, and insulators are

considered as the most critical. The insulators are generally

made of glass or composite materials and has two main

failure modes: mechanical breakage due to fatigue, and

insulation failure due to environmental conditions (pollution

contamination). The steady arms enable a dynamic upward

movement of the contact wire during pantograph passing

allowing a soft transition under OCL cantilevers. Its uplift

should be sufficient in order to ensure a constant contact

and not too important to avoid a pantograph ”dewirement”.

As a consequence, the steady arm position is an important

parameter for an effective operation and it is considered as

an important parameter to monitor by the maintainers. In

addition, leakages, tubes, brackets, and arms are subject

to corrosion, which represents one of the main degradation

mechanism of these components.

4.3. Droppers

The droppers are considered as critical components since

the CW deflection and stagger depends on droppers lengths.

Furthermore, the droppers ensure the mechanical damping of

the CW during the pantograph-catenary interaction. They are

mainly subject to mechanical fatigue or to claws unfastening

due to OCL dynamic during operation. The Figure 4 shows a

dropper failure due to fatigue.

Figure 3. A Cantilever and its main components.

Figure 4. Dropper failure caused by fatigue.

4.4. Masts

Masts are generally made of H-section of galvanized steel.

Corrosion is the main degradation mechanism of the mast.

It is checked regularly by maintainers by visual inspection

or by using specific ultrasonic devices. However, there are

no remote monitoring systems for masts inspection. By the

same token, we would point out that there are no studies

in the literature regarding corrosion monitoring for the OCL

application.

5. MONITORING DATA FOR OCL

Data for PHM purpose can be classified within two main

categories: monitoring data (the most relevant data for system

behavior) and event data (maintenance tasks, overhauls date,

etc.). Monitoring data for the OCL are mostly derived from

safety constraints, system design requirements, and criteria

for systems interoperability. These parameters are generally

defined in international standards or country regulatory

agency directives (CENELEC, 2012; IEC, 2013; EU, 2014).

Theses standards define the comissioning tests and criteria for

the OCL, and also for maintenance purpose. In (UIC, 2009)

experts from different European operators and infrastructure

maintainers address a review of maintenance and diagnostics

methods for the OCL. Additionally, measurements are

verified regarding safety limits which are often considered as

maintenance thresholds.

In the case of inline inspection purpose, measurement



parameters for OCL monitoring can be classified into two

main categories: system monitoring data, and auxiliary

data. Auxiliary parameters are related to operational or

infrastructure information such as localization on the track,

train velocity, temperature, wind speed and direction, the

OCL design information (support number, claws, bridges and

tunnels localization, rail switches, etc.). Monitoring data

are those related to the system current condition, which fall

into three categories: geometrical data, mechanical data, and

electrical data.

5.1. Geometry Data

Geometry data are related to components positioning

regarding design definition. The aim is to measure some

lengths in order to detect and correctly assess any deviation

from the safety limits and design definition. The main

geometry parameters are height, stagger, and sag of the CW.

These values are measured relatively to track position. The

Measurement can be achieved in a static way (OCL is in its

static state without pantograph interaction), or dynamically

(pantograph-catenary interaction) with low contact force and

train velocity. Nevertheless, some advanced solutions enable

dynamic measurement with commercial speeds using a train

mounted measurement system (Nezu et al., 2015). The sag

value is checked regarding to a threshold value defined by

standards that allow the trains to reach the desired speed.

The stagger shall not exceed a limit value defined during

the design in order to avoid pantograph ”dewirement” and

cross-wind effect. The wear of the CW is considered as a

geometrical parameter. The wear measurement aims to plan

preventive maintenance tasks to ensure homogeneous wear

of the wires until they reach their limit. Other parameters

can be measured according to the maintenance policies of

infrastructure operator.

5.2. Mechanical Data

Mechanical data are related to the pantograph-catenary

interaction, in other words, they concern data used to assess

the dynamic interaction of the current collection system. The

contact force between the pan-head strips and the CW is

one of the main mechanical parameters for current collection

assessment. It can be described as a contribution of three

forces (Kiessling, Puschmann, Schmieder, & Schneider,

2009): the static force applied by the pantograph to the

OCL, the aerodynamic force which is proportional to the

square of pantograph speed, and the inertial force of the

pan-head during the interaction. The statistical values of the

contact force are considered as the main criteria for current

collection quality assessment (CENELEC, 2012; EU, 2014).

As consequence, they are used for diagnostics purposes.

The steady arm uplift produced by pantograph, the CW

elasticity, as well as the pan-head accelerations are also

Table 1. Data for OCL monitoring.

Geometry Mechanical Electrical
Height and Stagger Contact force Arcing rate

Sag Acceleration
Wear

considered for condition monitoring.

5.3. Electrical Data

Electrical data are used to assess both electrical and

mechanical performances, as well as OCL components

degradations. Current and voltages at injection points allow

energy performance evaluation of the OCL system regarding

design definition. The thresholds for these values are defined

in (CENELEC, 2012).

Electrical arcs are generated during a contact loss between

the OCL contact wire and the pantograph contact strips. This

phenomenon is used to assess the current collection quality

and for diangostics purpose. Specific devices are used to

detect arcs and estimate the contact loss duration and arcs

intensity. An arcing rate is given by (CENELEC, 2013):

NQ =

∑
tarc

ttotal
∗ 100% (1)

where tarc is the duration of an arc exceeding 5 ms, and ttotal
the time during which the value of the pantograph current

exceeding 30% the nominal value. Thresholds for percentage

of arcing NQ are defined for a given vehicle speed.

5.4. Summary

For a PHM purpose, one has to select the most relevant data

related to critical components failure mechanisms or system

abnormal behavior. Contact force, pan-head accelerations

and arcing rate are the main parameters for interaction

assessment. These parameters should give the necessary

information about the current condition of the OCL. The wear

of the CW is a key measure for maintenance tasks forecast

and optimization. Comparatively, measurements such as

height, stagger, and sag are necessary for safety purposes,

however, they are not related to failure mechanisms.

Equally important, auxiliary data must be recorded to take

into account different operational conditions, which are

necessary for data processing. Finally, we address a summary

of the most relevant parameters for fault diagnostics and

prognostics purpose in the Table. 1.

6. SENSORS FOR OCL MONITORING

In a PHM program, sensor selection step requires to take into

consideration several parameters depending on PHM system

architecture and host system configuration. In our case of



study, sensor selection depends mainly on the measurement

strategy. If commercial vehicles are used for infrastructure

monitoring, systems for data capture and data transmission

have to meet constraints such as compact design, onboard

memory, power management, data transmission software, and

meeting rolling stock safety standards. Comparatively, a

dedicated inspection vehicle has not to meet same constraints.

(Tuchband, Cheng, & Pecht, 2007) reviewed different

constraints to be taken into account for monitoring sensors in

a PHM framework. The criteria can be related to parameters

to be measured, sensors reliability, accuracy, operating range,

sensor resolution, size, weight, and cost.

Recent developments in sensor technologies, such as Micro

Electro Mechanical Systems (MEMS), ultrasonic sensors,

acoustic emission sensors, lasers, etc., afford multiple

solutions. In addition, the latest generation of wireless

technologies, such as Bluetooth or WIFI, provide interesting

solutions for data transfer. For current collection system

monitoring, several technologies have been designed for data

acquisition and monitoring. The following sections present a

survey on current existing sensors for OCL inspection.

6.1. Mechanical sensors

This category includes accelerometers as well as strain

gauges; they are used mainly for mechanical parameters

measurement defined in Table. 1. As explained in Section

5.2, the contact force can be seen as a combination of three

contributions: static force, pan-head inertia, and aerodynamic

force. The measurement of the inertial forces is carried

out using an instrumented pantograph head. The head

is equipped with force cells and accelerometers installed

at pan-head suspensions (Kolbe, Baldauf, & Tiffe, 2001;

Kusumi, Fukutani, & Nezu, 2006a). This allows measuring

the force generated during the interaction. The Figure. 5

shows an example of a strain gauge installed within pan-head

suspensions.

Similarly, pantograph aerodynamic forces are measured

using strain gauges fixed by the means of wires between

the bottom of the pantograph and the pan-head. The

measurement is done during dynamic test in order to estimate

the aerodynamic forces. It is then used to correct the global

estimation of the contact force.

6.2. Optical sensors

For a large-distributed system such OCL, getting access

to each of its components seems to be a hard task. For

this reason, the measurement systems are mainly based on

in-vehicle optical sensors, which allow measurement without

physical contact. These sensors include technologies such

as Laser Detection and Ranging (LIDAR) technology and

laser diode beams as well as ultraviolet (UV) cameras. Most

of these sensors are endowed with embedded processing

Strain Gauge

Contact strip

Figure 5. Strain gauge for contact force measurement.

units for direct data processing. Generally, such systems are

installed on vehicles roofs, or on a dedicated light rail vehicle.

They can also be installed on fixed spots (masts, gantry, etc.).

6.2.1. UV cameras

During a contact loss between the pan-head and the OCL, an

electric arc is generated. UV cameras are used in order to

capture the emissions of copper material during arcing. A

measurement methodology for this kind of sensor is defined

in the standard EN 50317 (CENELEC, 2013). Several

arcing systems based on UV cameras were developed by

railway operators. Examples of such sensors are described

in (Hayasaka, Shimizu, & Nezu, 2009) and (Bruno, Landi,

Papi, & Sani, 2001).

6.2.2. LIDAR

LIDAR technology uses a beam of pulsed laser light to

measure a distance from a target. It is often used for

3D scanning, navigation systems and to high-resolution

maps drawing. Recently, several applications of LIDAR

technology for railway infrastructure inspection purpose have

emerged (Arastounia & Oude Elberink, 2016; Jwa &

Sonh, 2015). It is used for 3D reconstruction of railway

infrastructure systems. In this way, it allows OCL geometry

inspection and broken component detection. Nevertheless,

current accuracy sensors accuracy is not sufficient for

automatic detection of abnormal components. In addition,

the amount of data and processing time remains relatively

high. This technology needs an onboard signal processing

algorithm for an efficient detection and diagnostic and can be

used for specific areas of the OCL such as overlaps between

sections.

6.2.3. Laser Diodes Arrays

CW wear measurement is a key task for OCL maintainers.

Sensors such laser-beam systems provide a high-accuracy of

the wear. The system developped in (Shimada, Kohida, &

Satoh, 1997) uses lasers scanning the whole CW area with

a rotary mirror. The surface of the CW causes irregular

reflection which is measured by a photoelectric transfer



element and is used to measure the duration of reflection.

Then, the constant speed of the laser beam is used to estimate

the duration of the reflection which is proportional to the

CW thickness. These technologies are based on stereoscopy

techniques for CW section image reconstruction. In addition,

the use of laser technology allow daytime measurement.

However, it requires a large capacity power supply and takes

a lot of space in vehicle rooftop. This makes this kind of

sensors unsuitable for commercial trains. This type of sensors

can also be used to measure the CW position relative to a

defined reference.

6.2.4. Area Scan Cameras

Linear or matrix CCD cameras combined with a light source

and image processing algorithms are mainly used for CW

position and wear measurement. (Borromeo & Aparicio,

2002) present a comparative analysis of measuring systems

for CW wear and position. Most of the systems are based on

image recognition and triangulation using CCD cameras for

wear and position measurement (Torroja, Garcia, Aparicio,

& Martinez, 1993; Borromeo & Aparicio, 2005; A. W. Shing

& Pascoschi, 2006). Similarly, other classification algorithms

are applied to high-speed CCD cameras videos (Petitjean,

Heutte, Delcourt, & Kouadio, 2009) in order to detect objects

missing or broken OCL components.

Linear area scan cameras or line scan cameras are generally

used for pan-head tracking. The technology relies on white

stripes placed on pan-head and image processing algorithms

to measure pan-head position and accelerations, as well as

contact force estimation. An example of this methodology is

given in (Koyama et al., 2014).

6.2.5. Fiber Bragg Gratting

Fiber Bragg Grating (FBG) sensors use optical fibers

containing, in a short section, a distributed Bragg

reflector which allows through wavelengths analysis multiple

applications such as temperature, pressure, and mechanical

stress measurement. They present many advantages, they

have a compact size and they can be used in a dense

electromagnetic environment. For the OCL monitoring, this

type of sensor was mainly used for contact force and pan-head

acceleration measurement (Boffi et al., 2009; Wagner et al.,

2014). Another application is their use for hotspots detection

on OCL (Theune et al., 2010) as well as the steady arm

uplift (Laffont et al., 2009). These sensors have numerous

advantages for contact force measurement regarding their

size and weight and electromagnetic compatibility. However,

their sensitivity to temperature and calibration issues remain

an obstacle for their deployment in commercial vehicles.

Figure 6. An illustration of the link between the sensor
technology, the sensor type, and monitoring data.

6.2.6. Infra-red cameras

Thermal and infra-red cameras for OCL monitoring are

mainly used for ”hot spots” detection. Knowing the sections

of the OCL cables, where the temperature is elevated, can

help to detect premature wear areas. In (Landi, Menconi, &

Sani, 2006), a thermal camera is used to detect electrical arcs

discharge resulting from the pantograph-OCL interaction.

6.3. Ultrasonic sensors

A reflective ultrasonic sensor capable to achieve

measurement at up to 160 km/h was developed for CW

height and stagger measurement relatively to the track

position (Mualem, 1999). Another use of ultrasonic

technology is for the CW crack detection due to material and

which is patented by SNCF (Gasselin et al., 2015).

6.4. Summary

Monitoring systems for the OCL are mainly dedicated to CW

position, wear estimation, mechanical behavior, and arcing

detection and quantification. Knowing these parameters is

necessary to carry out an efficient infrastructure management

and maintenance based on asset condition.

Due to the specific environmental constraints of vehicle’s

rooftop (High voltage, high current levels, wind, speed

constrained), the optical sensors are broadly used in the field

(See Figure. 6), since they allow non-contact measurements.

Multiple optical technologies have been developed and tested

by railway operators for the CW position measurement and

wear estimation. However, there are no standard solutions

for CW monitoring. A comparative study of these solutions,

highlighting sensors reliability, precision, and data processing

capabilities need to be addressed.

Strain gauges and accelerometers are used in order to assess

the mechanical behavior of the pantograph-OCL interaction.



The development of this kind of solutions, mainly for contact

force measurement, remains a topic of experts’ knowledge.

Improvement of FBG sensors can be a key enabler to

deploy embedded contact force measurement systems in

pantographs.

More generally, sensors definition for OCL monitoring

remains a railway operators competence. The sensors are

often developed for specific inspection cars or mounted on

an adapted auxiliary rail vehicle. There are some huge efforts

to achieve to propose monitoring solutions embedded within

operational vehicles, with the main objective of streaming

data directly from the track to a data center. Additionally,

sensors and data transmission requirements are not addressed

in the literature.

7. DETECTION AND DIAGNOSTICS

A fault can be defined as a deviation of a characteristic

property or parameter of the system from its standard

condition. In a PHM system the state detection module

aims to detect a deviation from a standard behavior of

a component or a sub-system based on monitoring data.

More generally, detection can be completed with diagnostics

analysis. When a fault is detected, diagnostics module

achieves fault isolation by locating the fault to a specific

component. Then, diagnostics system accomplishes fault

identification by determining the root cause of the failure

based on known fault symptoms.

Several classifications have been proposed for detection

and diagnostics methods (Isermann, 1997; Chantier,

Coghill, Shen, & Leitch, 1998; Venkatasubramanian,

Rengaswamy, Yin, & Kavuri, 2003). In most cases,

diagnostic methods are related to available knowledge and

data. We can broadly classify diagnostics into data-driven

and model-based models. For data-driven models, we

distinguish qualitative methods and quantitative methods.

Qualitative approaches include methods such as expert

systems and trend modeling. Quantitative methods are

based on pattern recognition techniques and AI approaches

(Venkatasubramanian, Rengaswamy, Kavuri, & Yin, 2003)

which use advanced classification algorithms for fault

diagnostics, including principal component analysis (PCA),

neural networks, self-organizing maps (SOM), support vector

machines (SVM), k-nearest neighbors (KNN),etc.

For large-scale systems that compose the railway

infrastructure, setting up a sophisticated supervisory

control system is a cost and hard task. The OCL is a linear

asset which is geographically distributed with a large number

of components subject to external conditions and operational

constraints. Hence, the monitoring function for such system

is achieved by using regular inspections and measurements

in order to supervise the system behavior. Consequently, the

fault isolation for an OCL is defined as the localization of a

fault on an area of the OCL network and which component of

OCL is faulty. Fault identification is defined as determining

the component failure or fault. In this context, data-driven

approaches seem well suited for this kind of application in

order to transform monitoring data into an a priori knowledge

of the system through feature extraction. In this way, most of

the studies focus on feature extraction techniques for OCL

diagnostics. There are three main areas of study: CW wear

assessment based on the electric arcing phenomenon, faulty

components diagnostics based on contact force measurement,

and image processing for components assessment.

7.1. Related Works Based on Electric Arcing

Current collection system arcing can lead to important wear

for both collector strips and CW. Consequently, the study of

arcs can be a good indicator for CW wear status.

In 2001, investigations have been conducted by the Italian

railway operator (Balestrino et al., 2001) in order to study

the relationship between the CW contact surface condition

and the electrical arcing. Based on the arcing measurements,

it has been shown that sequences of continuous sparking

are generated due to the so-called ”welding effect”. This

effect generates hot spots and a micro-welding phenomenon

on localized parts of the CW due to irregular sliding

contact caused by the contact roughness. The occurrence

of welding effect implies an important deterioration of the

CW which is more important with higher speeds. Thereafter,

a correlation between break arcs occurrence and traction

current harmonics was revealed in (Bruno, Landi, Papi, Sani,

& Violi, 2001). Based on these results, a methodology was

proposed to assess the arcing phenomena and distinguish

between a singular burst of arcing and the electric welding

effect (Barmada, Landi, Papi, & Sani, 2003). The proposed

methodology is based on Discret Wavelet Transform (DWT)

using a Daubechies multiresolution wavelet analysis applied

to traction current. The results showed that break arcs can

be detected and localized only by using traction current.

However, the welding effect was detected only using UV

sensor. A signal processing approach is also used in (Huang

& Chen, 2008) in order to detect arcs frequencies. A

Fast Fourier Transform (FFT) is applied to the traction

current. However, wide time windows induce information

loss regarding the train location.

Later, researchers investigate the use of clustering techniques

in order to assess current collection quality regarding contact

loss. A SVM is trained using voltage and current levels

data and photosensor information (Romano, Tucci, Raugi,

& Barmada, 2014). The result has shown a correct detection

rate of 80%. A fuzzy c-means and K-means unsupervised

learning algorithms were applied in (Barmada, Tucci, &

Romano, 2014a, 2014b; Barmada, Tucci, Menci, & Romano,

2016), based on extracted features from the traction current



and voltage. Based on test run data, the Dunn index

calculation indicate that the best number of cluster for the

K-means clustering algorithm should c = 4. A statistical

analysis of the clustering results showed that all the arcs with

a duration higher than 5 ms are localized in the first two

clusters, with 93.5% of the longer arcs in the first one and

6.5% in the second cluster. The remaining clusters are related

to the absence of arcs (arcs with a duration less then 5 ms),

in particular, in the last cluster no current is measured. This

approach allows a reliable detection and localization of arcs

with a duration higher than 5 ms. Knowing that enable to

localize and detect the local wear of the CW. In other words,

achieving CW diagnostics.

In (Aydin, Celebi, Barmada, & Tucci, 2016), an

enhanced feature extraction method is proposed, based on a

mathematical morphology technique applied to current and

voltage signals. The aim of the mathematical morphology is

to enhance arcs frequencies components in the FFT spectrum

of the traction current. Then, three SVM classifiers are

trained based on different data and spectrum obtained from

the feature extraction step. A fuzzy integral is applied to

the output of the three classifiers. The whole performance

of classification was about 96.31%.

7.2. Related Works Based on Contact Force

Several studies focused on pantograph-OCL mechanical

behaviour monitoring (Kusumi, Fukutani, & Nezu, 2006b;

Collina, Fossati, Papi, & Resta, 2007; Cho, Lee, Park, Kang,

& Kim, 2010).. They are mainly related to the study of

the relationship between OCL geometry irregularities and

contact force in order to assess current collection quality.

These studies shows a strong correlation is established

between contact variations due to the OCL geometry and the

contact force.

A diagnostics method for faulty components was proposed

in (Massat, 2007) and is based on a pantograph-catenary

interaction model. Dropper failure, splicers installed on

the CW, and a faulty steady arm were the faulty conditions

considered in this study. The methodology relies on the

wavelet transform of the pantograph-catenary contact force.

For each faulty condition, the defect signature is extracted

from the contac-force to build an adapted wavelet. This

wavelet is then stored in a database in order to be used

for defect detection, localization and identification. For

each adapted wavelet, corresponding to a specific defect, the

continuous wavelet transform (CWT) is calculated in order to

detect and localize the defect. A health indicator is built by

calculating the maximum power of the wavelet coefficients.

This method was, at first, apllied to pantograph-catenary

simulation signals with a rate of 100% for detection. Based

on these results, inline tests were held to validate the

methodology on field data. The detection rate was about 66%

for defect were detected (EUROPAC, 2008).

7.3. Image Processing Techniques

Authors in (Petitjean et al., 2009; Montreuil, Kouadio,

Petitjean, Heutte, & Delcourt, 2008) proposed a methodology

to retrieve dropper information based on high-speed cameras

images. A pattern recognition system, based on k-nearest

neighbors algorithm (k-NN) algorithm, is trained to identify

the components of interest (dropper). Then, a Hidden

Markov Model (HMM) is used in order to verify components

consistency and to detect OCL stave model thanks to a

database model. This method allowed to identify 95.7% of

droppers from videos.

An application of computer vision techniques is proposed in

(Wang, Sun, Gu, & Wang, 2011) in order to measure steady

arm angle and detect faulty positions. This method shows

good results for a speed up to 400 km/h.

7.4. Summary

The pantograph-catenary interaction can provide multiple

information about OCL geometry and its components

conditions. The electrical arcing phenomenon was largely

studied within diagnostics aim, it enables to assess CW

and pantograph strips conditions using advanced signal

processing techniques and machine learning algorithms

applied to traction current and voltage. The study of the

contact force is another important topic of research. Existing

software for pantograph-catenary interaction modeling allow

a better understanding of OCL design impact on contact

force and, thus, developing model-based approaches for

fault detection and diagnostics. However, these models

need to be enhanced with components degradation models

and parameters uncertainties for model-based approaches

development. More field data and tests can be considered to

achieve this aim. More broadly, as for arc detection, the use

of machine learning techniques applied to contact force can

be a key enabler for diagnostics models development.

Another way to detect faulty components is the use of

image processing techniques applied to onboard cameras

videos. These approaches need to be improved and can

be limited to high-speed applications. In addition, vision

techniques need important data storage capabilities and can

be time-consuming for processing.

Finally, the Table 2 summarizes all the approaches and

the target component for fault detection and diagnostics

approaches for the OCL.

8. PROGNOSTICS

Prognostics approaches can be classified broadly into three

categories: physics-based, data-driven and hybrid approaches

(Gouriveau, Medjaher, & Zerhouni, 2016).



Table 2. Fault detection and diagnostics approaches for the OCL.

Component Contact wire Dropper Steady arm
Fault or

Failure type Local wear Anomaly (Splicer) Fatigue failure Bad position
Anomaly

(Hard spot)

Measurement Arcs (current and voltage) Contact force
1) Contact force

2) Image processing Image processing
Contact

force

Approach

Machine Learning
(classification and clustering)

and signal processing
(feature extraction)

Signal processing
1) Signal processing

2) Pattern recognition
Computer

vision
Signal

processing

Methods

Features extraction: FFT, DWT
Classification and

clustering: c-means,
K-means, SVM, and fuzzification

Continuous Wavelet
Transform (CWT)

1) CWT
2) kNN and hMM

Multiclass
Spectral

Clustering
CWT

Physics-based (or Model-based techniques) rely on the failure

mechanism to build an explicit model of the degradation

model. This approach is used when there are not enough

time-to-failure data but a good knowledge of the physics of

the system and its failure modes are available. However,

the development of this kind of approaches needs to make

assumptions that limit the applicability of the developed

models.

Data-driven approaches use available data in order to capture

the relationships between the degradation and system’s

extracted information. These approaches can be simpler to

set up than physics-based ones. However, they often need

an important quantity of time-to-failure data and neglect the

physical behavior leading to failures, which can be a lack for

an advisory generation.

Hybrid approaches are seen as a combination of data-driven

and physics-based approaches. They can be achieved

in two ways: by fusion of results of the data-driven

and physics-based approaches or the use of a data-driven

approach in order to tune physics-based model parameters.

In our case of study, contributions have been proposed

to forecast the wear of the CW. Both data-driven and

physics-based approaches were studied for CW wear

prediction.

In (Bucca & Collina, 2015), a heuristic model of wear is

proposed based on previous tribology studies and test rig

data. The model relies on three contributions of wear for

the contact wire: mechanical contribution due to friction,

electrical contribution due to energy dissipation relative to

the current flow and arc contribution during contact loss

between pantograph and OCL. The contribution of each wear

phenomena is fitted by using test data provided by a dynamic

test bench for pantograph-OCL interaction (Bucca & Collina,

2009). With the contact force and the current inputs provided

from a pantograph-catenary simulation software, the model

is used to estimate the wear of CW for a certain period of

time. A correlation between wear measurements and the wear

estimation obtained from the model were established.

A data-driven approach is developed in (W. C. Shing, 2011).

This work is based on monitoring data collected during two

years on the same line. The data includes OCL geometry

parameters, contact force, and traction current. A statistical

analysis on the data allows to select a set of parameters as an

input of an artificial neural network (ANN) model in order

to establish a wear prediction model. The correlation score

obtained for the trained model was about 0.7 on test data.

Additionally, the model was used to characterize parameters

influence on wear evolution.

These approaches use different sources of data in order to

assess the OCL health state. The use of arcs measurement

allows detecting the welding effect on the contact wires due to

long arcs. The processing of contact force was used to detect

a geometrical defect or broken components. Furthermore,

models for the contact wire wear were developed based on

data-driven or physics based approaches. Combining all

these techniques and validate and assess them may lead to

a validation of a contact wire wear prediction model and

diagnostics methods

9. DECISION FOR PREDICTIVE MAINTENANCE

Few contributions addressed the decision part of PHM

dealing with maintenance scheduling and optimization, based

on prognostics and diagnostics information. However, some

approaches have been proposed for rail track and railway

switches maintenance.

(Letot, Soleimanmeigouni, Ahmadi, & Dehombreux, 2016)

addressed the problem of rail track tamping interventions

scheduling. A cost model has been proposed for the

optimization of the maintenance time, for a single track

section, based on three thresholds, namely, comfort penalty,

speed reduction penalty and track closure (failure). Before

that, a prognostics process for the track geometry relying

on a stochastic Wiener process was proposed. Finally, an

adaptive opportunistic maintenance strategy has been defined

for the whole track line composed of several track sections,

each of them being associated with its own degradation

evolution. In this case, a grouping strategy is used to decrease



the number of interventions based on the optimal time for

maintenance for each track section. Authors showed that

maintenance actions based on prognostics information and

cost optimization gave better results than the systematic one.

In (Camci, 2014) proposed a methodology to schedule

the maintenance of geographically distributed assets in the

case of railway switches. The approach is based on the

Travelling Maintainer Problem (TMP) which aims to find

the most cost-effective routing for the maintenance operator

to visit assets based on RUL information. The TMP is

formulated by the assumption that each location can be

visited several times or not at all during the maintenance

horizon. Hence, an optimization problem is proposed for

maintenance scheduling, it is based on the minimization

of an elaborate cost function, composed of the expected

failure cost, the maintenance cost, and the travel cost. A

genetic algorithm and a Particle swarm have been developed

to determine a maintenance schedule for a fixed number of

maintenance tasks. However, the approach was practically

limited due to the high number of assets which generate

an important computational time and the considered work

duration for maintenance operators. In (Camci, 2015), the

author proposed an enhanced procedure by introducing a

penalty function for the work duration that allows limiting

working hours in a day. In addition, an enhanced genetic

algorithm was proposed for the case where each location can

be visited at least and at most once.

In summary, similar approaches can be applied to the OCL

which is a geographically distributed asset, and necessitate

to schedule maintenance actions based on different criteria

that can be defined, for the OCL, as current collection quality

(speed reduction), travel cost and failure cost. In addition,

merging both rolling stock condition and infrastructure data

can afford better-informed decisions.

10. CONCLUSION

In current railway industry context, developing a PHM

program for condition-based and predictive maintenance

purpose is a key challenge for competitiveness. Designing

a PHM solution for the OCL system, which is geographically

distributed, is not a common task comparing to usual studied

systems in PHM field. To this aim, a comprehensive

review of means for OCL PHM deployment was conducted.

System components and failure modes were reviewed,

and monitoring solutions needs were addressed. Overall,

this paper identifies key parameters and sensors for OCL

monitoring, as well as principal contributions from the

literature for OCL diagnostics and insights for contact wire

wear prediction. Lastly, we reviewed briefly the decision

aspects for railway infrastructure.

While OCL system is well known by railway experts and

engineers, several obstacles to PHM development need to

be highlighted. Sensor for OCL monitoring needs to be

standardized. Furthermore, a comparative study must be

conducted regarding uncertainty, reliability and costs. CW

diagnostics using arc measurement is the main topic of

research and important development has been realized thanks

to the use of machine learning techniques. Detection

and diagnostics of faulty components using contact force

need more research development. The use of data-driven

techniques based on contact force should be explored.

Moreover, image processing techniques are still limited due

to data storage issues and operational parameters such as train

speed. A physics-based model for CW wear prediction is

available. However, this model does not take into account all

operational parameters. Combining a data-driven approach

with this model should be a key enabler for wear prognostics.

Finally, implementation of PHM methods for an OCL needs

real-world operating systems data in order to accelerate

diagnostics and prognostics research.
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