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Key Points

•Different metabolic
pathways are involved
in intracellular meta-
bolic reprogramming
depending on the ge-
netic characteristics of
AML cells.

• Leukemic progenitors
activate different pro-
grams of the metabo-
lism, depending on their
levels of differentiation
blockade.

Leukemic cells display some alterations in metabolic pathways, which play a role in

leukemogenesis and in patients’ prognosis. To evaluate the characteristics and the impact

of this metabolic reprogramming, we explore the bone marrow samples from 54 de novo

acute myeloid leukemia (AML) patients, using an untargeted metabolomics approach

based on proton high-resolution magic angle spinning-nuclear magnetic resonance. The

spectra obtained were subjected to multivariate statistical analysis to find specific

metabolome alterations and biomarkers correlated to clinical features. We found that

patients display a large diversity of metabolic profiles, according to the different AML

cytologic subtypes and molecular statuses. The link between metabolism and molecular

status was particularly strong for the oncometabolite 2-hydroxyglutarate (2-HG), whose

intracellular production is directly linked to the presence of isocitrate dehydrogenase

mutations. Moreover, patients’ prognosis was strongly impacted by several metabolites,

such as 2-HG that appeared as a good prognostic biomarker in our cohort. Conversely,

deregulations in phospholipid metabolism had a negative impact on prognosis through 2

main metabolites (phosphocholine and phosphoethanolamine), which could be potential

aggressiveness biomarkers. Finally, we highlighted an overexpression of glutathione and

alanine in chemoresistant patients. Overall, our results demonstrate that different

metabolic pathways could be activated in leukemic cells according to their phenotype and

maturation levels. This confirms that metabolic reprogramming strongly influences

prognosis of patients and underscores a particular role of certain metabolites and

associated pathways in AML prognosis, suggesting common mechanisms developed by

leukemic cells to maintain their aggressiveness even after well-conducted induction

chemotherapy.

Introduction

Acute myeloid leukemia (AML) consists of a set of malignant proliferations that lead to immature myeloid
progenitor cells, which have completely or partially lost their differentiation capacity and get accumulated
in the bone marrow, peripheral blood, and potentially, in other organs. The incidence is about 3 to 8
cases/100 000 per year in the world.1 Historically, AML has several subtypes according to French-
American-British (FAB) classification (M0-M7), representing clonal expansion of malignant hematopoi-
etic cells blocked at distinct differentiation stages along with different lineages.2
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Despite the considerable progress in the understanding of the
genetic characteristics of AML, we need to go further in the
characterization of leukemic cells. Indeed, the main treatment of
AML is still based on chemotherapy using a combination of cytosine
arabinoside and anthracycline. These drugs have been used as
a standard of care for nearly 40 years,3 but the 5-year survival
remains about 35% in patients less than 60 years of age,4

conferring to this malignant blood disease a real adverse prognosis.
Therefore, new approaches are warranted to better define the
prognosis of the patients at diagnosis and to develop drugs
targeting mechanism of leukemic initiation and progression.

Mutated genes and/or chromosomal aberrations have been long
shown to affect some processes, including signaling pathways or
cell differentiation. Subsequently, genetic modifications that induce
alterations in epigenetic control of gene expression, RNA splicing,
or regulation of immune response have been described.5 Indeed,
a part of the immunosuppression in AMLmay be directed by genetic
aberrations and simultaneously by some metabolites.6 In addition,
and in complement to these functional alterations, metabolic
reprogramming was determined to be a major contributor to the
leukemic process.

In a general way, cancer cells are characterized by a quick and
uncontrolled proliferation and had a reduced/altered dependence
to external stimuli. To supply cells in nutrients and energy needed for
their growth and division, several mechanisms are involved. Beyond
the Warburg effect, which allows introducing the concept of the
metabolic reprogramming, other metabolic pathways are strongly
altered in cancers. In AML, the leukemic cells produce reactive
oxygen species (ROS), which could promote blast proliferation.7

Particularly, it seems that the aggressiveness and poor prognosis
linked with FMS-like tyrosine kinase 3-internal tandem duplication
(FLT3-ITD) AML are because of the increase in endogenous ROS.8

The leukemic cells could have a high oxidative phosphorylation
activity, associated to the chemoresistance.9 Our team recently
showed that de novo AML patients had a deregulated redox
balance, which was linked to their molecular status and played
a major role in their prognosis.10 Isocitrate dehydrogenase (IDH)
mutations provide a significant example of the link between
metabolism and leukemogenesis.11 These mutations play a crucial
role in the modification of energetic metabolism in leukemic cells
and in deregulation of ROS production, generating 2-hydroxyglutarate
(2-HG) instead of a-ketoglutarate (a-KG) when the gene is mutated.12

Moreover, glutamine (Gln) is particularly involved in metabolic
reprogramming. The leukemic cells use this metabolite as a carbon
source for energy production through the tricarboxylic acid (TCA) cycle
and redox homeostasis. Also, Gln is an important metabolite for
glutathione (GSH) synthesis, making it an essential element in the
redox balance control in AML. The link between glutaminolysis and
TCA cycle activity appears to be essential in cell survival,13 because
Gln is a source of a-KG, which can be converted into 2-HG by IDH
mutants.14

In this context of deregulated metabolism in leukemic cells, high-
resolution magic angle spinning-nuclear magnetic resonance
(HRMAS-NMR) is particularly well suited for metabolomics inves-
tigations because it is highly robust, reproducible, and nondestruc-
tive. This method is well appropriated to semisolid sample analysis
and allows us to be close to in vivo conditions. Moreover, the
HRMAS method is very rapid and allows the direct analysis of the

samples, without the need for a prior step of chemical extraction of
metabolites,15 which helps avoid some bias. Limited NMR or mass
spectrometry–based metabolomics studies on AML patients have
already been carried out. Wang et al16 and Musharraf et al17 have
shown significant metabolic differences between AML patients and
healthy subjects involving aberrant metabolic pathways such as
TCA cycle, glycolysis, or fatty acid metabolism. More recently,
another team has found a noninvasive serum metabolite biomarker
panel for the detection of AML.18 In our study, we used HRMAS-
NMR to show that, in the basal state, human leukemia cell lines
exhibit a specific metabolic signature related to the diversity of
AML subtypes represented and their phenotypes. Moreover, when
cultured in a serum-free medium, they showed quick metabolic
adaptation and continued to proliferate and survive despite the lack
of nutrients.19

In the present study, using the same method, we aimed to better
characterize metabolic pathways deregulated in leukemic cells to
find discriminant metabolites correlated to the prognosis of de novo
adult AML at diagnosis. In a prospective study, we investigated the
metabolic profiles of AML patients and explored their different
metabolic specificities, according to the different FAB subtypes of
AML used as markers of the cellular differentiation, the European
Leukemia Net (ELN) prognostic group, the molecular statuses
(NPM1 [nucleophosmin 1], FLT3-ITD, and IDH mutations), the
status of different immunologic markers studied by flow cytometry,
and the response to the chemotherapy induction. We thus
established a list of discriminant metabolites having a positive or
negative correlation with AML prognosis. In this way, we identified
some clues to aid therapeutic decisions and directly target the
altered metabolic pathways in AML.

Materials and methods

Patient inclusion and sample collection

Fifty-four patients were recruited between June 2016 and
December 2019 from Grenoble-Alpes University Hospital, in
accordance with the ethical standards and the Declaration of
Helsinki. The selection criteria were the diagnosis of de novo AML
with bone marrow blasts higher than 20% and age above 18 years
old. The patients with secondary AML or acute promyelocytic
leukemia were not included in this study. The bone marrow samples
were collected in BD Vacutainer tubes before chemotherapy
induction. All patients received a standard 7 1 3 scheme of
induction.

HRMAS-NMR–based metabolomics

Sample preparation. Bone marrow samples were pretreated
and mononuclear cells were isolated by the Ficoll gradient. The cells
were suspended in few microliters of cold deuterated phosphate-
buffered saline and transferred into an insert for MAS rotor (total
volume, 30 mL), which were stored at 280°C until acquisition by
HRMAS-NMR. One to 3 inserts per patient were prepared
(depending on available sample).

Acquisition parameters. All the 1H NMR experiments were
performed using a Bruker 500 Avance III spectrometer (IRMaGE,
CEA-Grenoble). Just before acquisition, the sample was inserted
into a 4-mm zirconium rotor, which was immediately transferred to
the magnet. The MAS spin rate was set to 4000 Hz and sample
temperature to 277 K. A Car-Purcell-Meiboom-Gilles (CPMG)
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acquisition sequence was used to attenuate the signal from the
lipids and macromolecules present in the sample (total echo time,
30 ms). Each acquisition lasted 17 minutes.

Preprocessing of spectra. All the HRMAS-NMR spectra were
corrected for phase using Topspin (v3.5, Bruker Biospin). All further
preprocessing steps (baseline correction, chemical shift align-
ments) and bucketing were performed using NMRProcFlow 1.2
Online (https://nmrprocflow.org/). The spectral region between 0.8
and 8.7 ppm was divided into buckets with an equal width of 0.001
ppm. The regions d 4.6 to 5.3, d 3.35 to 3.40, d 3.65 to 3.75, d 3.79
to 3.93, and d 3.95 to 4.03 were discarded to eliminate the residual
water peak and to remove the pollution signal, corresponding to the
peaks of a polyethylene glycol component. Each bucket was
normalized to the total sum of buckets. The peak assignment was
based on 2-dimensional (2D) experiments (heteronuclear single
quantum coherence [HSQC] and total correlated spectroscopy
[TOCSY]), databases (eg, HMD Human Metabolome Database),
and the literature.

Statistical analysis

Multivariate analyses were conducted using the SIMCA 16.1
software (Umetrics). The orthogonal projection to latent structure
with discriminant analysis (OPLS-DA) models were built with
HRMAS-NMR data and from which subgroup (or patient subtype)
data originated, depending on the condition studied or the patient
subgroup analyzed. The total number of components was de-
termined using the cross-validation procedure, which produces the
R2Y and Q2 factors that indicate, respectively, the goodness of the
fit and predictability of the model. A model is considered as robust
and predictive when both are $0.5. The scores were plotted in 2D
with the first 2 components, whereas the loadings were plotted in
1D to mimic a spectrum. Furthermore, each NMR variable was
color-coded according to the statistical signification of the correlation
among the groups, with a hot colored (eg, red) metabolite being more
significant than a cold colored (eg, blue) one. Metabolites with
correlation .0.5 were considered for further univariate analyses.
Moreover, univariate statistics (Student t tests, 2-way analysis of
variance, and survival analysis) were conducted with GraphPad
Prism (supplemental Methods).

Immunophenotyping by flow cytometry

Bone marrow aspirate was collected in BD Vacutainer tubes for
routine analysis. The sample was analyzed within 8 hours after the
aspiration. The cells were numerated using the ABX MICROS 60
(HORIBA ABX SAS, Montpellier, France) cell counter. Then, the
following antibodies were tested on all patient samples: CD34-
APC-A750 (581; Ref B92463; Beckman Coulter), MPO-PE (Kit
CD3/MPO/CD79a; 5B8; Ref 333164; BD Biosciences), CD14-
V450 (MwP9; Ref 560349; BD Biosciences), CD300e-APC (UP-
H2; Ref 130-101-773; Miltenyi Biotec), CD117-APC (104D2; Ref
333233; BD Biosciences), CD133-PE (AC133; Ref 130-080-801;
Miltenyi Biotec), and CD45-V500 (HI30; Ref 560777, BD
Biosciences). The cells were stained by direct immunofluorescence
for 15 minutes in the dark at room temperature. After this
incubation, the erythrocytes were lysed, and the samples were
washed with BD FACS lysing solution (Ref 349202; BD
Biosciences) and phosphate-buffered saline, respectively. The
analyses of the samples were performed on a FACSCanto-II flow
cytometer with 3 lasers and 8 colors (BD Biosciences). Finally, the

data were analyzed usingBDFACSDiva Software v6 (BDBiosciences).
Blast cells were identified by CD45/SSC gating, as these cells are
CD45low. This gating procedure improved the phenotypic de-
termination of the leukemic clone.

Results

Patients’ characteristics

At diagnosis, the median age was 62 years, with a sex ratio of 1.7,
indicating a masculine predominance. The leukocytosis was
variable, with patients having a leukocyte rate in peripheral blood
between 4 and 30 103/mL predominantly. AML subtypes were
defined according to the FAB classification. The most represented
subtype was M2 (43% of the patients), whereas the least
represented subtype was M0 (6% of the patients). Concerning
the blast percentage in bone marrow, 16 patients had more than
80%, 11 between 60% and 80%, 14 between 40% and 60%, and
13 between 20% and 40% of bone marrow blasts. Prognostic
groups were defined according ELN risk stratification, favorable,
adverse, and intermediate, based on their karyotypes and associ-
ated mutations. AML patients (n 5 54) were divided into the 3 risk
subgroups: favorable (n 5 21), adverse (n 5 18), and intermediate
(n 5 15). Three genetic abnormalities were studied in our cohort:
NPM1, FLT3-ITD, and IDH (pooled as IDH1 and IDH2 mutations).
Thirty-one percent of the patients were NPM1 mutated, 24% were
FLT3 duplicated, and 24% were IDH mutated. Other mutations
needed to establish the prognostic risk of patients according to
the ELN classifications are shown in supplemental Table 1. Finally,
the response to the chemotherapy treatment was evaluated. The
patients were considered as chemoresistant in absence of
response to the first induction of chemotherapy after 1 month.
Thirty-one patients were chemosensitive, and 7 were chemo-
resistant (supplemental Table 1).

Patients from different AML FAB subtypes display

different metabolic profiles

The metabolites identified in the 1H HRMAS-NMR spectra of cells
are presented in supplemental Table 2. As shown in Figure 1A, on
the score plot of the OPLS-DA model built, some patients seemed
to display common metabolic characteristics while a general
tendency to scattering was observed (Figure 1A). This may be
because of the presence of 2-HG in high quantity, because IDH
mutation was evenly distributed in all AML subtypes. Therefore,
when excluding IDH-mutated patients (Figure 1B), the OPLS-DA
model was much more robust, and a clear separation of the profiles
according to the cellular differentiation was found. This result has
been confirmed by excluding the 2-HG peak in the statistical model
of Figure 1A (supplemental Figure 1).

Metabolomics revealed significant intracellular

changes according to the mutational status

of patients

Three genetic abnormalities were systematically studied in our
cohort. First, we observed NPM1-mutated patients and wild-type-
NPM1 patients had a clear different metabolic profile (Figure 2A).
This is because of a significant decrease of glutamate (Glu),
phosphocholine (PC), and phosphocreatine/creatine (PCr/Cr) in
the NPM1-mutated subgroup, as well as an increase of 2-HG
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(not significant) and taurine (tau) in mutated patients compared with
wild-type NPM1 patients (Figure 2B).

Concerning the FLT3 status, excellent separation of the FLT3-ITD
and FLT3 wild-type subgroups was found (Figure 3A), because of
a significant increase of alanine (Ala), choline (Cho), phosphoetha-
nolamine (PE), and tau, as well as a significant decrease of Gln,
PCr/Cr, and scyllo-inositol (scyllo-I) in the FLT3-ITD patients
compared with FLT3 wild-type patients (Figure 3B).

Last, as expected, a clear clustering between IDH-mutated and
wild-type IDH patients was observed in the OPLS-DA model in
Figure 4A, because 2-HG is only present in the mutated group and
then emerged as the most discriminant metabolite between the 2
subgroups (P , .0001). No significant difference was observed
between the IDH1 and IDH2mutations (P5 0,47; data not shown).
Moreover, a significant decrease of Ala, Glu, GSH, PC, and PE was
also measured in the mutated patients (Figure 4B-C), suggesting
that IDH mutation induces remodeling of several metabolic
pathways. All the metabolic changes according to the mutational
statuses were detailed in supplemental Table 3.

Metabolic profile is linked to the differentiation stage

of leukemic cells

Several variations of the metabolic profile, according to the FAB
subtype, suggested that the differentiation stage of leukemic cells
could influence their metabolic characteristics. Therefore, we
analyzed metabolic profiles according to the characteristic immu-
nophenotyping of blast cells determined for each patient at
diagnosis. We first compared patients with a CD341/MPO2

phenotype, corresponding to immature AML to those with the

phenotype CD342/MPO1, corresponding to more mature AML. An
increase in aspartate (Asp) level was observed in patients with
immature AML, whereas the patients with more mature AML were
mainly characterized by an increase of 2-HG (Figure 5A). Then, we
were interested by AML differentiated in the monocytic lineage (M4
and M5). Hence, we analyzed the CD14 and CD300e status, and
Gln appeared as a marker of the monocytic cells, corresponding
to the phenotype CD141/CD300e1, whereas proline (Pro) was
mainly increased in monoblastic cells, corresponding to the
phenotype CD142/CD300e2 (Figure 5B). No differences were
found concerning the other tested antibodies and other analyzed
metabolites.

Impact of metabolism on prognosis in de novo AML

We further tested the potential interest of metabolomics for AML
prognosis. For that aim, we first built an OPLS-DA model with the 2
subgroups favorable and adverse risk, and we next predicted the
prognosis of patients classified in the intermediate prognostic
subgroup. First, we observed that patients in these 2 favorable and
adverse risk groups had clearly different metabolic profiles
(Figure 6A), mainly because of higher intracellular levels of Asp
and GSH (Figure 6B) in the adverse group compared with the
favorable group. While predicting intermediate patients without
prior knowledge using the adverse-favorable OPLS-DA model, we
found 53% of them classified as favorable (n 5 8) and 47%
classified as adverse (P , .05, exact Fisher test; Figure 6C). Until
now, among the 7 patients with intermediate prognoses, which
were predicted as adverse by the model, 6 are unfortunately dead.
Among the 8 patients predicted as favorable prognosis, 5 of them
are still alive.

AML0
AML1
AML2
AML4
AML5

-60

R2Y = 0,456; Q2 = 0,306

-80

-60

-40

-20

0

20

40

60
AML subtypes

-40 -20 0

Tpred1

Tp
re

d2

20 40 60

A

R2Y = 0,845; Q2 = 0,601

-40

-30

-20

-10

0

10

AML0
AML1
AML2
AML4
AML5

20

30

40

AML subtypes
(IDH-mutated patients excluded)

Tp
re

d2

Tpred1
-60 -40 -20 0 20 40 60

B

Figure 1. Specific metabolic profile of AML patients according to cytologic subtypes of leukemic progenitors (FAB classification). (A) Score plot of the OPLS-

DA model built with HRMAS NMR data of all patients (n 5 54) and the different AML subtypes. Based on the model factors (R2Y 5 0,456; Q2 5 0,306), we see a tendency

to separate the patients’ profiles according to their cytologic subtypes. Some patients appear to have common features. (B) Score plot of the same OPLS-DA model as panel

A, excluding the IDH mutated patients (n 5 41). The model is very robust and predictive (R2Y 5 0,845; Q2 5 0,601). The distribution of the metabolic profiles is influenced by

the oncometabolite 2-HG.
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Following this, the patients’ responses to chemotherapy was
analyzed. A great difference between metabolic profile of chemo-
sensitive and chemoresistant patients was seen in the OPLS-DA
model (Figure 7A). In the differentially expressed metabolites, we
observed an increase in Gln and scyllo-I (P 5 .05) in chemo-
sensitive patients. On the other side, an increase in GSH and tau
levels was measured in chemoresistant patients, like in those with
an adverse prognosis, and a significant increase in Ala (P , .01)
level, like in FLT3-ITD patients (Figure 7B-C).

Then, to evaluate whether the blast percentage could have
influenced our results in all the analysis described in this study,
we compared the mean of blast percentage in bone marrow
between all the groups of the studied patients: NPM1 wild type vs
NPM1 mutated; FLT3 wild type vs FLT3-ITD; IDH wild type vs IDH
mutated; favorable vs adverse prognosis; and chemosensitive vs
chemoresistant patients. All the mean comparison tests are not
significant with P . .05 (supplemental Figure 3).

Finally, because 2-HG was clearly linked to the presence of IDH
mutation and because this mutation has been reported as
a prognostic marker, we evaluated the prognostic value of 2-HG
intracellular level. We observed that patients with adverse
prognosis displayed lower levels of 2-HG compared with favorable
prognosis. To confirm the interest of 2-HG level, we used the
optimal threshold point of 1160 units identified using ROC analysis
to generate a Kaplan-Meier curve. A better survival after 3.7 years
was highlighted in AML patients who displayed higher levels of
2-HG, even though it was not significant (P 5 .11; supplemental
Figure 2). Moreover, to evaluate a potential impact of disease
burden, we studied the correlation between blast number and 2-HG

level. The results clearly show the absence of correlation (R2 5 .09;
supplemental Figure 3).

Discussion

In recent years, the development of HRMAS-NMR–based metab-
olomics has led to a better characterization of the cancer-
associated metabolic changes in cellulo. In this study, this method
has been used to refine our knowledge about the metabolic
characteristics of leukemic cells to elucidate the mechanisms
developed by these leukemic cells to promote their proliferation and
the impact of these deregulations on patients’ prognosis. The use of
advanced statistics, such as OPLS-DA, was essential and powerful
in separating unwanted variance caused by the variability between
patient lifestyle, regimen, or age, from the variance caused by
genetic status, prognostic risk, or response to chemotherapy.

The global analysis of the metabolites found in the leukemic
samples shows an important variation in their expression between
all the patients. Large differences between FAB subtypes were
identified first, which is consistent with the fact that FAB subtypes
of AML represent different cellular types, linked to the differentiation
and maturation stage of the leukemic cells. Moreover, we observed
that the differences among FAB subtypes are clearly more
significant when the oncometabolite 2-HG is excluded from the
analysis. The impact of 2-HG on the statistic model seems logical
because its production was found in a large amount within IDH-
mutated patients that were present in all the AML subtypes at
diagnosis.

Next, we explored the mutational status for the 3 genes: NPM1,
FLT3, and IDH. Metabolic alterations were found, which can be

0
NPM1 wt

Re
lat

ive
 a

m
pli

tu
de

 (a
.u)

NPM1 mut

1000

2000

3000
Glutamate levels

**

0
NPM1 wt

Re
lat

ive
 a

m
pli

tu
de

 (a
.u)

NPM1 mut

2000

4000

6000
Phosphocholine levels

**

0
NPM1 wt

Re
lat

ive
 a

m
pli

tu
de

 (a
.u)

NPM1 mut

200

400

1000

800

600

Phosphocreatine/creatine levels
**

0
NPM1 wt

Re
lat

ive
 a

m
pli

tu
de

 (a
.u)

NPM1 mut

1000

2000

3000

4000
Taurine levels

*

-80
-30

R2Y = 0,726; Q2 = 0,498

-20 -10 0 10 20 30

To
rth

1

Tpred1

120

100

80

60

40

20

0

-20

-40

-60

NPM1 mutation
Non mutated

Mutated

A B

Figure 2. Specific metabolic profile of AML patients according to the mutational status of NPM1. (A) Score plot of the OPLS-DA model built with HRMAS-NMR

data of NPM1 wild-type patients (n 5 30) and NPM1-mutated patients (n 5 17). The model is robust and predictive (R2Y 5 0,726; Q2 5 0,498). We see a clear separation

between the 2 groups. (B) Levels of Glu, PC, PCr/Cr, and tau in NPM1 wild-type patients compared with NPM1-mutated patients. Mean value 6 standard error of the mean

(SEM). Student t test, *P , .05, **P , .01.

160 LO PRESTI et al 12 JANUARY 2021 x VOLUME 5, NUMBER 1



correlated to the patients’ genotypes. Regarding the IDHmutations,
the link between the molecular status and the metabolism has been
largely described in the last decade.20,21 Previous studies have
highlighted a 20- to 50-fold variation of 2-HG levels in sera, urine,
and marrow aspirate in IDH-mutated vs nonmutated patients.22-24

In our study, we found the same range of expression of 2-HG and
we especially showed, for the first time in our knowledge, that IDH
mutations induce a significant accumulation of 2-HG into the cells.
Moreover, using ROC analysis, we identified a 2-HG threshold
allowing for the distinction between IDH-mutated and wild-type IDH
patients with a specificity close to 100%. In addition to the variation
of 2-HG levels, we highlighted significant variations in other
metabolites levels in IDH-mutated patients, suggesting an impact
of IDH status on various metabolic pathways. Indeed, we observed
some deregulations in the amino acid metabolism, with a reduction
of Glu and GSH levels in IDH-mutated patients. The same
observations were recently described in gliomas.25 In connection
with that, Gln was found to be a good prognostic biomarker
(although it was usually associated with heightened aggressive-
ness), because it is found to be increased in FLT3 wild-type and
IDH-mutated patients, as well as in chemosensitive patients. This
can be explained that by the fact that Gln is a primary carbon source
for the biosynthesis of 2-HG in mutant IDH tumors, which was
highlighted by in vivo imaging on mice.26

Concerning the FLT3 and NPM1 mutations, the metabolic
alterations were less specific, probably because these genes have
no direct impact on key enzymes of metabolism. The significant
variation of several metabolites observed in mutated vs nonmutated
patients for these 2 genes could reflect more the general metabolic

adaptation (eg, the FLT3-driven increase of proliferation), with an
acceleration of the membrane phospholipid production in FLT3-ITD
patients. Indeed, FLT3 mutation in AML led to a more important
proliferation and differentiation in cancer cells, increasing their
survival and decreasing the apoptosis.27,28 Furthermore, the
mutation in the NPM1 gene induced the assembly of a large
number of proteins required for ribosomal biosynthesis. Hence,
this mutation was found to contribute to the cellular growth and
proliferation.29

Furthermore, we attempted to correlate the metabolic character-
istics of patients with the differentiation phenotype of leukemic cells
and found that the 2-HG was overexpressed in patients with the
CD342/MPO1 phenotype, among the AML subtypes M0, M1, and
M2. It appeared that 2-HG was most representative of the
advanced stages of differentiation in these subtypes, with 11 of
our 13 patients mutated for the IDH gene (85%) who were
classified as M1 or M2 subtypes at diagnosis. The same has been
already described in child AML30 patients and adult patients.31

Among M4 and M5 patients, Gln was found to overexpress in
patients harboring CD141/CD300e1 phenotype, corresponding to
monocytic cells. Zellner et al highlight that monocytes are the main
cells that use Gln as an important energy substrate.32 Moreover,
it was described in hepatocarcinoma cells that Gln was mainly
increased at the mature stage of the cancer.33

As the activation and the deregulation of metabolic pathways are
processes developed by cancer cells to promote their survival,
thus promoting disease progression, it is likely that the over-
expression of certain metabolites can impact patients’ prognoses34;
the present study shows results to support the same. With respect
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to prognostic analysis, the metabolic profiles of the patients
classified under favorable and adverse risk, as well as those of
chemosensitive and chemoresistant patients, display significant
differences. Interestingly, the same metabolites were overexpressed
in the adverse prognostic subgroup and in chemoresistant patients,
particularly the GSH level. This metabolite appeared as a poor
prognostic biomarker, suggesting that leukemic cells had an
aberrant glutathione metabolism. Based on the literature, an
increase in this metabolite is associated with a strongly proliferative
response, which is essential for cell cycle progression.35 This
increase can be correlated with the number of patients in relapse.
The patients in the adverse prognostic group are at a greater risk of
relapse than others because of their complex karyotype and
associated mutations.36 Moreover, GSH increase is a major factor
contributing to the drug resistance through different mechanisms.
This metabolite can be linked or can react with drug substances,
interact with the ROS, and also help avoid DNA damage.35 A high
expression of glutathione-S-transferase combined with high GSH
levels can increase the conjugation and detoxification rate of
chemotherapy agents, considerably decreasing their efficacy.37

Furthermore, oxidized glutathione levels at diagnosis were lower in
survivors vs nonsurvivors in patients with AML.10

We further highlighted alterations in the expression of some
phospholipids (PC, PE) related to the prognoses and genotype of
the patients. Notably, phospholipid metabolism is frequently altered in
cancers. Specifically, the choline kinases, which transform choline
into PC, can be overexpressed, which leads to an increase in PC
levels, which in turn plays an important role in cell transformation and
cancerous proliferation.38 High levels of PE indicate an intense
cellular proliferation, frequently observed in cancers, associated with
a PC increase.39 Ackerstaff et al40 showed elevated levels of PE and
PC in breast cancer tissues compared with healthy tissues. In AML,
Wang et al16 observed that PC was expressed at higher level in sera
of patients with intermediate risk compared with favorable risk. More
recently, a lipidomic approach was performed to help the stratification
of AML patients,41 and a novel link between phospholipid metabolism
and AML stemness was uncovered, thereby providing a potential
therapeutic target for AML.42 Last, in neurologic oncology, studies
show that patients with high-grade glioma have higher levels of PE
and PC than those with low-grade glioma.43,44 More recently,
Viswanath et al45 observed that de novo synthesis of PE and PC
and choline and ethanolamine kinase activity decreased significantly
in patients with IDH-mutated glioma. They have established a link
between this negative regulation and the oncometabolite 2-HG,
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which would be responsible of these phenomena through hypoxia
inducible factor 1a stabilization. Our results confirm this particular link
between 2-HG and phospholipid metabolism in de novo AML and
provide additional results suggesting that IDH prognostic value could
be mediated through phospholipid regulation by 2-HG.

Finally, the level of Ala was found to be higher in FLT3-ITD patients
and chemoresistant patients, who can be considered a group of
poor prognosis patients. Several publications highlight the fact that
Ala is a poor prognostic biomarker, especially Chen et al,46 who
claim that, in mitochondrial DNA mutant cells that harbor human
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disease–associated oxidative phosphorylation defects, the increase
of cytosolic Ala contributes to the reoxidation of NADH, which is
a source of nicotinamide adenine dinucleotide phosphate (NADPH)
production, which leads to the glutathione and lipid biosynthesis.
Indeed, as mentioned before, GSH and lipids synthesis is linked to
a poor prognosis. Moreover, another study highlights the fact that
there is more pyruvate consumption in aggressive bladder cancer
stage, which leads to more Ala generation as a marker of
aggressiveness.47 Our results thus appear concordant with the
role of FLT3-ITD AML in the autophagic flux in leukemic stem cells,
which make them resistant to chemotherapy.48 In fact, Ala secretion
was described as a consequence of cancer cells autophagy.49

Altogether, targeting autophagy appears to be a promising lead,
especially in FLT3-ITD patients.

Conclusions

Our study provides an overview of the metabolites and metabolic
pathways involved in the intracellular metabolic reprogramming in
AML blasts. It highlights that different mechanisms, depending on
the genetic characteristics of leukemic progenitors, are activated in
AML, particularly proven by the strong link between the modifica-
tions of the metabolism and the presence of the IDH mutation.

Moreover, the study shows that leukemic progenitors activate
different programs of the metabolism, depending on their levels of
differentiation blockade. Finally, our data strongly suggest that,
besides redox balance, phospholipid metabolism plays a critical role
in the leukemic progression, and therefore, therapy targeting this
pathway can potentially improve the prognosis of AML patients.
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